55
Systematic Circuit Analysis Nodal Analysis Chapter 4 Section 1

Systematic Circuit Analysis Nodal Analysis Chapter 4 Section 1

  • View
    233

  • Download
    1

Embed Size (px)

Citation preview

Systematic Circuit Analysis

Nodal Analysis

Chapter 4 Section 1

3 Fundamental Principles

bull Ohmrsquos Law V = I R where I enters at the higher

voltage side

bull Kirchoffrsquos Voltage Law Algebraic sum of voltages around a loop

equal zero

bull Kirchoffrsquos Current Law Algebraic sum of currents entering and

leaving a node equal zero

Circuit Simplificationbull Series Resistors can be combined into a

single equivalent resistancebull Parallel Resistors can be combined into a

single equivalent resistancebull Current sources in parallel add

algebraicallybull Voltage sources in series add algebraicallybull A voltage source is series with a resistor

can be replaced by a current source in parallel or vice versa

Shortcuts

bull Voltage Divider ndash a voltage dividing across a series combination of resistorsndash Largest voltage is across the largest resistor

bull Current Divider ndash a current dividing among a parallel combination of resistorsndash Largest current is through the smallest

resistor

Nodal Analysis

bull Employs the 3 fundamental laws

bull May not require any circuit simplification

bull Consists of a straight-forward step-by-step procedure

bull Involves the solution of a set of linear equations simultaneously

bull Used by most circuit analysis computer programs like PSpice

Example

bull Find the voltages and currents

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node Vo=0 volts

bull Label the other nodes with V1 V2 etc

Voltage Notation

bull Remember that voltage is always measured with respect to some other point

bull So V1 the voltage at node 1 minus the voltage at node 0 or V1-Vo = V10 = V1

bull V12 would be the voltage at node 1 minus the voltage at node 2 or V12 = V1-V2

Voltage Notation

bull V12 could also be obtained by going through any path say node 3

V12 = V132 where V132 = V13 + V32

But V13 + V32 = (V1-V3) + (V3-V2)

And (V1-V3) + (V3-V2) = V1-V2 = V12

Circuit After Step OneV1

Vo = 0 volts

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

3 Fundamental Principles

bull Ohmrsquos Law V = I R where I enters at the higher

voltage side

bull Kirchoffrsquos Voltage Law Algebraic sum of voltages around a loop

equal zero

bull Kirchoffrsquos Current Law Algebraic sum of currents entering and

leaving a node equal zero

Circuit Simplificationbull Series Resistors can be combined into a

single equivalent resistancebull Parallel Resistors can be combined into a

single equivalent resistancebull Current sources in parallel add

algebraicallybull Voltage sources in series add algebraicallybull A voltage source is series with a resistor

can be replaced by a current source in parallel or vice versa

Shortcuts

bull Voltage Divider ndash a voltage dividing across a series combination of resistorsndash Largest voltage is across the largest resistor

bull Current Divider ndash a current dividing among a parallel combination of resistorsndash Largest current is through the smallest

resistor

Nodal Analysis

bull Employs the 3 fundamental laws

bull May not require any circuit simplification

bull Consists of a straight-forward step-by-step procedure

bull Involves the solution of a set of linear equations simultaneously

bull Used by most circuit analysis computer programs like PSpice

Example

bull Find the voltages and currents

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node Vo=0 volts

bull Label the other nodes with V1 V2 etc

Voltage Notation

bull Remember that voltage is always measured with respect to some other point

bull So V1 the voltage at node 1 minus the voltage at node 0 or V1-Vo = V10 = V1

bull V12 would be the voltage at node 1 minus the voltage at node 2 or V12 = V1-V2

Voltage Notation

bull V12 could also be obtained by going through any path say node 3

V12 = V132 where V132 = V13 + V32

But V13 + V32 = (V1-V3) + (V3-V2)

And (V1-V3) + (V3-V2) = V1-V2 = V12

Circuit After Step OneV1

Vo = 0 volts

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Circuit Simplificationbull Series Resistors can be combined into a

single equivalent resistancebull Parallel Resistors can be combined into a

single equivalent resistancebull Current sources in parallel add

algebraicallybull Voltage sources in series add algebraicallybull A voltage source is series with a resistor

can be replaced by a current source in parallel or vice versa

Shortcuts

bull Voltage Divider ndash a voltage dividing across a series combination of resistorsndash Largest voltage is across the largest resistor

bull Current Divider ndash a current dividing among a parallel combination of resistorsndash Largest current is through the smallest

resistor

Nodal Analysis

bull Employs the 3 fundamental laws

bull May not require any circuit simplification

bull Consists of a straight-forward step-by-step procedure

bull Involves the solution of a set of linear equations simultaneously

bull Used by most circuit analysis computer programs like PSpice

Example

bull Find the voltages and currents

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node Vo=0 volts

bull Label the other nodes with V1 V2 etc

Voltage Notation

bull Remember that voltage is always measured with respect to some other point

bull So V1 the voltage at node 1 minus the voltage at node 0 or V1-Vo = V10 = V1

bull V12 would be the voltage at node 1 minus the voltage at node 2 or V12 = V1-V2

Voltage Notation

bull V12 could also be obtained by going through any path say node 3

V12 = V132 where V132 = V13 + V32

But V13 + V32 = (V1-V3) + (V3-V2)

And (V1-V3) + (V3-V2) = V1-V2 = V12

Circuit After Step OneV1

Vo = 0 volts

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Shortcuts

bull Voltage Divider ndash a voltage dividing across a series combination of resistorsndash Largest voltage is across the largest resistor

bull Current Divider ndash a current dividing among a parallel combination of resistorsndash Largest current is through the smallest

resistor

Nodal Analysis

bull Employs the 3 fundamental laws

bull May not require any circuit simplification

bull Consists of a straight-forward step-by-step procedure

bull Involves the solution of a set of linear equations simultaneously

bull Used by most circuit analysis computer programs like PSpice

Example

bull Find the voltages and currents

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node Vo=0 volts

bull Label the other nodes with V1 V2 etc

Voltage Notation

bull Remember that voltage is always measured with respect to some other point

bull So V1 the voltage at node 1 minus the voltage at node 0 or V1-Vo = V10 = V1

bull V12 would be the voltage at node 1 minus the voltage at node 2 or V12 = V1-V2

Voltage Notation

bull V12 could also be obtained by going through any path say node 3

V12 = V132 where V132 = V13 + V32

But V13 + V32 = (V1-V3) + (V3-V2)

And (V1-V3) + (V3-V2) = V1-V2 = V12

Circuit After Step OneV1

Vo = 0 volts

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Nodal Analysis

bull Employs the 3 fundamental laws

bull May not require any circuit simplification

bull Consists of a straight-forward step-by-step procedure

bull Involves the solution of a set of linear equations simultaneously

bull Used by most circuit analysis computer programs like PSpice

Example

bull Find the voltages and currents

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node Vo=0 volts

bull Label the other nodes with V1 V2 etc

Voltage Notation

bull Remember that voltage is always measured with respect to some other point

bull So V1 the voltage at node 1 minus the voltage at node 0 or V1-Vo = V10 = V1

bull V12 would be the voltage at node 1 minus the voltage at node 2 or V12 = V1-V2

Voltage Notation

bull V12 could also be obtained by going through any path say node 3

V12 = V132 where V132 = V13 + V32

But V13 + V32 = (V1-V3) + (V3-V2)

And (V1-V3) + (V3-V2) = V1-V2 = V12

Circuit After Step OneV1

Vo = 0 volts

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Example

bull Find the voltages and currents

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node Vo=0 volts

bull Label the other nodes with V1 V2 etc

Voltage Notation

bull Remember that voltage is always measured with respect to some other point

bull So V1 the voltage at node 1 minus the voltage at node 0 or V1-Vo = V10 = V1

bull V12 would be the voltage at node 1 minus the voltage at node 2 or V12 = V1-V2

Voltage Notation

bull V12 could also be obtained by going through any path say node 3

V12 = V132 where V132 = V13 + V32

But V13 + V32 = (V1-V3) + (V3-V2)

And (V1-V3) + (V3-V2) = V1-V2 = V12

Circuit After Step OneV1

Vo = 0 volts

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node Vo=0 volts

bull Label the other nodes with V1 V2 etc

Voltage Notation

bull Remember that voltage is always measured with respect to some other point

bull So V1 the voltage at node 1 minus the voltage at node 0 or V1-Vo = V10 = V1

bull V12 would be the voltage at node 1 minus the voltage at node 2 or V12 = V1-V2

Voltage Notation

bull V12 could also be obtained by going through any path say node 3

V12 = V132 where V132 = V13 + V32

But V13 + V32 = (V1-V3) + (V3-V2)

And (V1-V3) + (V3-V2) = V1-V2 = V12

Circuit After Step OneV1

Vo = 0 volts

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Voltage Notation

bull Remember that voltage is always measured with respect to some other point

bull So V1 the voltage at node 1 minus the voltage at node 0 or V1-Vo = V10 = V1

bull V12 would be the voltage at node 1 minus the voltage at node 2 or V12 = V1-V2

Voltage Notation

bull V12 could also be obtained by going through any path say node 3

V12 = V132 where V132 = V13 + V32

But V13 + V32 = (V1-V3) + (V3-V2)

And (V1-V3) + (V3-V2) = V1-V2 = V12

Circuit After Step OneV1

Vo = 0 volts

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Voltage Notation

bull V12 could also be obtained by going through any path say node 3

V12 = V132 where V132 = V13 + V32

But V13 + V32 = (V1-V3) + (V3-V2)

And (V1-V3) + (V3-V2) = V1-V2 = V12

Circuit After Step OneV1

Vo = 0 volts

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Circuit After Step OneV1

Vo = 0 volts

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step Two

bull Choose currents for every circuit branch that is connected to any of the unknown voltage nodesndash In this circuit choose currents for the

branches connected to V1

ndash You can also label voltages at other nodes in the circuit (nodes that have only two components) Va and Vb

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Circuit after Step Two

I1

+ - I3

+ -

+I2

-

V1

Vo = 0 volts

VaVb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etc

bull The idea is to get all the currents to be expressed in terms of the node voltages so that a KCL equation can be written at each unknown node giving us as many equations as unknowns

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step Three

bull If you have a resistor between two nodes then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

bull For this circuit the 10Ω resistor is between nodes 1 and ground (node 0)I2 = (V1 ndash 0) 10Ω = V1 10Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step Three Cont

bull If you have a resistor and a series voltage source between two key nodes determine the voltage at the node between the components and then use Ohmrsquos law

bull There is a 6v source and 14Ω resistor in series between node 1 and groundVa = Vo+6v = 6vI1 = (Va - V1) 14Ω = (6v - V1) 14Ω

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step Three Cont

bull There is also 5v source and 10Ω resistor in series between node 1 and ground

bull Determine the voltage at the intermediate node Vb = Vo+5v = 5v

bull Use Ohmrsquos law to determine the current I3 = (V1-Vb) 14Ω = (V1-5v) 10Ω

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Circuit after Step Three

I1=(6-V1)14Ω+ -

I3=(V1-5)10Ω + -

+ I2 =V110Ω

-

V1

Vo = 0 volts

Va=6v Vb=5v

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI1 = I2 + I3

bull Substitute each value or expression into each KCL equation(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step 5 Solve

bull Solve the set of equations for each unknown voltage(6v-V1)14Ω = V110Ω + (V1-5v)10Ω

bull Multiply both sides to clear fractions70Ω[(6v-V1)14Ω = V110Ω + (V1-5v)10Ω]

30v - 5V1= 7V1 + 7V1 - 35v

bull Group like terms and solve65v = 19V1 or V1 = 342v

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step 5 Solve Cont

bull Since V1 = 342v

bull Find each current by substituting the voltage values found into each current equation as appropriateI1 = (6v-V1)14Ω = (6-342)14 = 184 A

I2 = V110Ω = 34210 = 342 A

I3 = (V1-5v)10Ω = (342-5)10 = -158 A

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step 6 ndash Reality Check

I1=184A+ -

I3= -158A + -

+ I2=342A

-

V1=342v

Vo = 0 volts

Va=6v Vb=5v

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Example with a Dependent Source

bull Find the voltages and currents

I1

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Handling the Dependent Source

bull The dependent source will be dependent on some voltage or current in the circuit

bull You will need to express that voltage or current in terms of the unknown node voltages

bull The idea is to only use the node voltages in finding the currents so that there will be as many KCL equations as variables

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step One

bull Identify all nodes that have at least 3 components connected to them

bull Choose one of the above nodes as the ground or reference node at zero volts

bull Label the other nodes with V1 V2 etc

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Circuit after Step 1

V1

Vo = 0 volts

I1

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step Two

bull Choose currents for every circuit branch that are connected to any of the unknown key voltage nodes

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Circuit after Step 2

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step Three

bull Find the value of each current or find an expression for each current in terms of the unknown voltages V1 V2 etcIf you have a resistor between two nodes

then the current is the voltage at the node where the current originates minus the voltage at the other node divided by the resistance (Ohmrsquos Law)

I2 = (V1 ndash 0) 4Ω = V1 4Ω

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step Three Cont

bull If you have a resistor and a series voltage source between two nodes determine the voltage at the node between the components and then use Ohmrsquos lawVb = Vo+3v = 3vI1 = (V1-Vb) 2Ω = (V1-3v) 2Ω

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step Three Cont

bull If you have multiple resistors andor voltage sources between two key nodes combine them together to get one resistor and one sourceIf there is a dependent part of the source

express it in terms of the unknown node voltages

Determine the voltage at the node between the equivalent resistor and source

Use Ohmrsquos law

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Circuit for Step 3

V1

Vo = 0 volts - I3 +

+I2

-

I1

+ - Vb=3v

5v + 4ΩI1

VaVb

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step Three Cont

bull The combined dependent source is 5v+4ΩI1

So Va = V1 ndash (5v+4ΩI1)

But I1 in the dependent source was determined to be (V1-3v)2Ω

So Va = V1ndash(5v + 4Ω(V1-3v)2Ω) = -V1+1

bull I3 = (Vo-Va) 4Ω = (0-(-V1+1)) 4Ω I3 = (V1 -1v) 4Ω

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Circuit for Step 4

V1

Vo = 0 volts - +I3=(V1-1)4Ω

+ I2=V12Ω -

I1=(V1-3)2Ω+ - Vb=3v

5v + 4ΩI1

Va=1v-V1

Vb

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step 4

bull Write Kirchoffrsquos Current Law at each node with an unknown voltageI3 = I2 + I1

bull Substitute each value or expression into each KCL equation(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step 5 Solve

bull Solve the set of equations for each unknown voltage(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω

bull Multiply both sides to clear fractions4Ω[(V1 -1v) 4Ω = V1 4Ω + (V1-3v) 2Ω]

V1 - 1v = V1 + 2(V1-3v)

bull Group like terms and solve5v = 2V1 or V1 = 25v

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step 5 Solving for Currents

bull Finding each current

bull I3 = (V1 -1v) 4Ω = (25v -1v) 4Ω = 375 A

bull I2 = V1 4Ω = 25v 4Ω = 625 A

bull I1 = (V1-3v) 2Ω = (25v-3v) 2Ω = -25 A

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step 6 - Checking

V1=25v

Vo = 0 volts - + I3=375A

+ I2=625A -

I1= -25A+ - Vb=3v

5v+4ΩI1=4v

Va=1v-V1=-15v

Vb

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Class Activity

bull Find the current equations at node 1

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Class Activitybull Find I2 in terms of V1

For a resistor between nodes use Ohmrsquos lawAdd polarities if not shown (+ at V1 - at V0)

I2 = V160Ω

+

_

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Class Activitybull Find I3 in terms of its value

For a current source between nodes the current is fixed by the source

I3 = 2 A

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Class Activitybull Find I4 in terms of V1

If you have series resistors combine them and then use Ohmrsquos law

I4 = V1(30+70)Ω = V1(100Ω)

+_+_

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Class Activitybull Find I1 in terms of V1

Combine series resistors even if not next to each other then find the voltage between the source and equivalent resistance

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Finding I1

100+80=180Ω

Va=100v

So I1 = (Va-V1)180Ω = (100-V1)180Ω

Vo=0v Vo=0v

V1 V1+ - + -

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Class Activitybull Find I5 in terms of V1

The voltage on the right side of the 50Ω resistor is known because of the 150v source

I5 = (V1-150v) 50Ω

+ -

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Class Activitybull Write KCL equation at node 1

I1 + I3 = I2 + I4 + I5

Substitute all the current equations(100-V1)180+2A=V160+V1100+(V1-150v)50

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Class Activity(100-V1)180+2A=V160+V1100+(V1-150v)50

Multiply both sides by 9000Ω

5000-50V1+18000=150V1+90V1+180V1-27000

Group 50000 = 470V1 Solve V1= 1064 v

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Class ActivityChecking

I1=-036A I2=1773A I3=2A I4=1064A I5=-872A

I1+I3= -036+2 =1964 A

I2+I4+I5 = 1773+1064-872 = 1965 A ndash Yes

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Example with 3 Unknown Nodes

bull Find Voltages and Currents

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Steps 1 amp 2

bull Find key nodes assign one to ground choose currents in branches

Vo=0 volts

V1 V2V3

Va

I1

I5

I3I2

I4

+ -

+ -

+ -

+

-

+

-

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step 3 ndash Current Equations

bull Currents for resistors between nodesI1=(V1-V3)4Ω

I3=(V2-V3)7Ω

I4=V21Ω

I5= V35Ω

bull Resistor and source between nodesVa = V1+ 9v

I2 = (Va-V2)3Ω = (V1+9v-V2)3Ω

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Step 4 ndash KCL Equations

bull KCL Equation at each key nodeAt node 1 0 = I1 + I2 + 8A

At node 2 I2 = I3 + I4

At node 3 25A + I1 + I3 = I5

bull Substituting for each currentAt 1 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

At 2 (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

At 3 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

At node 1

bull 0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A

bull Multiply both sides by 12Ω to clear fractions12Ω[0 =(V1-V3)4Ω +(V1+9v-V2)3Ω +8A]

Or 0 =3V1-3V3 +4V1+36v-4V2 +96v

bull Combining terms7V1 -4V2 -3V3 = -132v

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

At node 2

bull (V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω

bull Multiply both sides by 21Ω to clear fractions21Ω[(V1+9v-V2)3Ω =(V2-V3)7Ω + V21Ω ]

Or 7V1+63v - 7V2 = 3V2 - 3V3 +21V2

bull Combining terms7V1 -31V2 +3V3 = -63v

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

At node 3

bull 25A+(V1-V3)4Ω +(V2-V3)7Ω = V35Ω

bull Multiply both sides by 140Ω to clear fractions140Ω[25A+(V1-V3)4Ω +(V2-V3)7Ω =V35Ω]

Or 3500v+35V1-35V3+20V2-20V3=28V3

bull Combining terms35V1 +20V2 -83V3 = -3500v

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs

Set of 3 Simultaneous Eqs

bull 7V1 -4V2 -3V3 = -132v

bull 7V1 -31V2 +3V3 = -63v

bull 35V1 +20V2 -83V3 = -3500v

bull Solve by hand calculator or computerV1 = 5414 v

V2 = 7737 v

V3 = 46316 v

  • Systematic Circuit Analysis
  • 3 Fundamental Principles
  • Circuit Simplification
  • Shortcuts
  • Nodal Analysis
  • Example
  • Step One
  • Voltage Notation
  • Slide 9
  • Circuit After Step One
  • Step Two
  • Circuit after Step Two
  • Step Three
  • Slide 14
  • Step Three Cont
  • Slide 16
  • Circuit after Step Three
  • Step 4
  • Step 5 Solve
  • Step 5 Solve Cont
  • Step 6 ndash Reality Check
  • Example with a Dependent Source
  • Handling the Dependent Source
  • Slide 24
  • Circuit after Step 1
  • Slide 26
  • Circuit after Step 2
  • Slide 28
  • Slide 29
  • Slide 30
  • Circuit for Step 3
  • Slide 32
  • Circuit for Step 4
  • Slide 34
  • Slide 35
  • Step 5 Solving for Currents
  • Step 6 - Checking
  • Class Activity
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Finding I1
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Example with 3 Unknown Nodes
  • Steps 1 amp 2
  • Step 3 ndash Current Equations
  • Step 4 ndash KCL Equations
  • At node 1
  • At node 2
  • At node 3
  • Set of 3 Simultaneous Eqs