Systematic Microbial Archaea

Embed Size (px)

Citation preview

  • 8/7/2019 Systematic Microbial Archaea

    1/90

    REPLACEMENT

    Date : 11 February 2011

    Time : 10 am 12 noon

    Venue : BioTech 2.1

  • 8/7/2019 Systematic Microbial Archaea

    2/90

    EXAM 1Date : 17 February 2011Time : 8 - 10 am

    Venue : BioTech 2.2

    REPLACEMENT (with Dr. Wan Zuhainis)

    Date : 18 February 2011

    Time : 8 10 am

    Venue : BioTech 2.2

  • 8/7/2019 Systematic Microbial Archaea

    3/90

    HOW TO

    PASS A TEST

    WITH DIGNITY

  • 8/7/2019 Systematic Microbial Archaea

    4/90

  • 8/7/2019 Systematic Microbial Archaea

    5/90

  • 8/7/2019 Systematic Microbial Archaea

    6/90

  • 8/7/2019 Systematic Microbial Archaea

    7/90

  • 8/7/2019 Systematic Microbial Archaea

    8/90

  • 8/7/2019 Systematic Microbial Archaea

    9/90

    Kingdom ofProcaryotae:Eubacteria and Archaeabacteria

  • 8/7/2019 Systematic Microbial Archaea

    10/90

    Tree of Life

  • 8/7/2019 Systematic Microbial Archaea

    11/90

    11

    PROKARYOTESPROKARYOTES

    BACTERIABACTERIA ARCHAEAARCHAEA

    EUKARYOTESEUKARYOTES

  • 8/7/2019 Systematic Microbial Archaea

    12/90

    Learning objectives

    1. To describe different categories of

    prokaryotes

    2. To compare and differentiate the features

    of eubacteria and archaebacteria

    3. To discuss the features and importance of

    some members of kingdom prokaryote

  • 8/7/2019 Systematic Microbial Archaea

    13/90

    The Archaea

  • 8/7/2019 Systematic Microbial Archaea

    14/90

    Mount St. Helen (erupting in July 1980)

    home to Archaea

  • 8/7/2019 Systematic Microbial Archaea

    15/90

    Yellowstone

    NationalPark

  • 8/7/2019 Systematic Microbial Archaea

    16/90

    Geysers

  • 8/7/2019 Systematic Microbial Archaea

    17/90

    Antarctics

  • 8/7/2019 Systematic Microbial Archaea

    18/90

    Polymerase chain reaction

    DNA polymerase from Thermus aquaticus,

    an archaeon

    Not denatured at 94oC

    For PCR (denaturation at

    94oC, priming at 65oC andextension at 72oC)

  • 8/7/2019 Systematic Microbial Archaea

    19/90

    Characteristics:

    As diverse as eubacteria- Gram +/-

    - Shape

    - Size: 0.1-15 um; 200 Qm (filaments)- Multiplication: binary fission, budding,

    fragmentation

    - Respiration: aerobic, anaerobic(facultative / obligate)

    - Nutrition: chemolithoautotrophs /

    organotrophs

  • 8/7/2019 Systematic Microbial Archaea

    20/90

    Habitat:

    mesophiles

    hyperthermophiles ( >100o

    C )

    cold environments

    hypersaline

    anaerobic environment

  • 8/7/2019 Systematic Microbial Archaea

    21/90

    Unique feature: Cell Wall

    Gram Positive Archaea Gram Positive Bacteria

    Single thick

    homogenous layer

    Single thick

    homogenous layer

    - Different chemistry

  • 8/7/2019 Systematic Microbial Archaea

    22/90

  • 8/7/2019 Systematic Microbial Archaea

    23/90

    Cell Wall of Gram +ve Archaea

    - Pseudomurein

    N-acetyltalosaminuronic acid (not N-

    acetylmuramic acid as inpeptidoglycan)

    F(13) glycosidic bond (not F(14)

    glycosidic bond)

  • 8/7/2019 Systematic Microbial Archaea

    24/90

    N-

    acetyltalosaminuronic

    acid

  • 8/7/2019 Systematic Microbial Archaea

    25/90

  • 8/7/2019 Systematic Microbial Archaea

    26/90

  • 8/7/2019 Systematic Microbial Archaea

    27/90

    Unique feature: Cell Wall

    Archaea (+/-) Bacteria (+/-)

    Susceptible tolysozyme and F-

    lactam antibiotics

    F(13) glycosidic

    bond

    Resistant tolysozyme and F-

    lactam antibiotics

    F(14)

    glycosidic bond

  • 8/7/2019 Systematic Microbial Archaea

    28/90

    Comparison of Gram -ve cell wall

    Archaea

    Layer of protein or

    glycoprotein

    Bacteria

    Peptidoglycan network

  • 8/7/2019 Systematic Microbial Archaea

    29/90

    Unique feature: Membrane lipids

    - Differ from bacteria and eucaryotes

    Archaea Bacteria/Eucaryote

    HC-HC-HC

    Glycerol

    Ether

    linkHC-HC-HC

    Fatty

    acid

    Ester

    link

    Branched

  • 8/7/2019 Systematic Microbial Archaea

    30/90

    MembraneLipids

  • 8/7/2019 Systematic Microbial Archaea

    31/90

    Membrane

    Lipid

  • 8/7/2019 Systematic Microbial Archaea

    32/90

    Unique feature: Genetics

    Archae Bacteria

    Single closed DNA

    circle

    Single closed DNA

    circle

    Genome size: smaller

    (~0.5-5.8 Mbp)

    Genome size: bigger

    (~0.6 10 Mbp)

    Great variations in GCcontent (21-68%)

    Lower variations inGC content

  • 8/7/2019 Systematic Microbial Archaea

    33/90

    Unique feature: Start codon

    - AUG start codon

    Archaea: methionine (as in eukaryotes)

    Bacteria: N-formylmethionine

  • 8/7/2019 Systematic Microbial Archaea

    34/90

    Archaeal Taxonomy

    - 1st edition Bergeys Manual (based onphysiological and morphological

    differences)

    a. Methanogenic archaeab. Archaea sulfate reducers

    c. Extremely halophilic archaea

    d. Cell wall-less archaeae. Extremely thermophilic sulfur

    metabolizers

  • 8/7/2019 Systematic Microbial Archaea

    35/90

    Archaeal Taxonomy

    - 2nd edition Bergeys Manual

    (based on rRNA)

    a. Phylum Euryarchaeota

    b. Phylum Crenarchaeota

    Discussion based on 2ndedition of Bergeys Manual

  • 8/7/2019 Systematic Microbial Archaea

    36/90

    Phylum Crenarchaeota

  • 8/7/2019 Systematic Microbial Archaea

    37/90

  • 8/7/2019 Systematic Microbial Archaea

    38/90

  • 8/7/2019 Systematic Microbial Archaea

    39/90

    Geogemma

    - Currently the record holder for

    surviving high temperatures 130oC

  • 8/7/2019 Systematic Microbial Archaea

    40/90

    Phylum Euryarchaeota

  • 8/7/2019 Systematic Microbial Archaea

    41/90

    Phylum Euryarchaeota

    Based on physiology and ecology, thedominant groups are:

    a. Methanogens

    b. Halobacteria

    c. Thermoplasms

    d. Extremely Thermophilic S0-Metabolizers

    e. Sulfate-reducing Archaea

  • 8/7/2019 Systematic Microbial Archaea

    42/90

    The Methanogens

    - Largest group of archaea

    - Morphology:

    long rods (filamentous) / spirilla

    straight or curved rods

    irregular cocci

  • 8/7/2019 Systematic Microbial Archaea

    43/90

    The Methanogens

    - Cell wall composition: pseudomurein or

    heteropolysaccharides or

    proteins

    - Gram reaction: +/-/variable

    - Motility: +/-

  • 8/7/2019 Systematic Microbial Archaea

    44/90

    The Methanogens

    - Strict anaerobe

    - Convert CO2, H2, formate, methanol,

    acetate methane (end product)

    Energy obtained

    C source

  • 8/7/2019 Systematic Microbial Archaea

    45/90

    Where to find them?

    - Marine/fresh water sediments

    - Deep soils

    - Intestinal tract (ruminant)

    belch 200-400 L of CH4

    a day

    - Sewage treatment facilities

    Anoxic environments rich in organic

    matters:

  • 8/7/2019 Systematic Microbial Archaea

    46/90

    In sewage treatment plants:

    Sludge (organic matters)

    H2 + CO2 + acetate

    Methanogens

    CH4

    Hydrogenotrophic methanogenesis

    Acetoclastic

    methanogenesis

    CO2 + CH4

    1 kg organic matter 600 liter methane

  • 8/7/2019 Systematic Microbial Archaea

    47/90

    The Methanogens

    Beneficial:

    Methane clean burning fuel energyfor heat and electricity

  • 8/7/2019 Systematic Microbial Archaea

    48/90

    The Methanogens

    Harmful:

    Methane absorbs infrared

    radiation global warming

    25x more potent than CO2

  • 8/7/2019 Systematic Microbial Archaea

    49/90

    Phylum EuryarchaeotaHalobacteria or extreme halophiles

  • 8/7/2019 Systematic Microbial Archaea

    50/90

    The Halobacteria

    - Aerobic

    - Motile or non-motile

    - High concentration of 3 - 4 M NaCl

    - Habitat: salt lakes, salted fish spoilage -

    Red-yellow pigmentation

    li h bi

  • 8/7/2019 Systematic Microbial Archaea

    51/90

    Hypersaline habitats:

    Great Salt Lake, Utah (left)

    San Francisco Bay, California (right)

    EVAPORATING POND

  • 8/7/2019 Systematic Microbial Archaea

    52/90

    The Halobacteria- e.g. Halobacterium salinarium

    - Photosynthesis with bacteriochlorophylls

    Purple pigment (light-

    harvesting pigment =

    bacteriorhodopsin)

    Pigment absorbs light energy form proton gradient on

    membrane synthesis of ATP

  • 8/7/2019 Systematic Microbial Archaea

    53/90

    HOW TO

    PASS A TEST

    WITH DIGNITY

  • 8/7/2019 Systematic Microbial Archaea

    54/90

  • 8/7/2019 Systematic Microbial Archaea

    55/90

  • 8/7/2019 Systematic Microbial Archaea

    56/90

  • 8/7/2019 Systematic Microbial Archaea

    57/90

  • 8/7/2019 Systematic Microbial Archaea

    58/90

    The Eubacteria( True bacteria )

    Discussion based on Bergeys Manual ofDeterminative

    Bacteriology (9th edition, 1994)

  • 8/7/2019 Systematic Microbial Archaea

    59/90

    Importance of Bacteria

    Life is microbial ! Micro-organisms colonise

    every environment on earth

    >80% of lifes history was

    bacterial You have more bacterial

    cells than human cells

    Pathogenic microbes

    globally are the most

    important cause of human

    disease and death

  • 8/7/2019 Systematic Microbial Archaea

    60/90

    Microbes in the News

  • 8/7/2019 Systematic Microbial Archaea

    61/90

    Microbes in the News

  • 8/7/2019 Systematic Microbial Archaea

    62/90

    Bacterial cell

    iff b i l

  • 8/7/2019 Systematic Microbial Archaea

    63/90

    Differences between Bacterial

    and Human Cells

    Bacterial cells

    No nucleus

    No intracellularorganelles

    (but ribosomes)

    No introns Plasmids,

    bacteriophage

    Human cells

    Nucleus

    Intracellularorganelles

    Introns

    Viruses

  • 8/7/2019 Systematic Microbial Archaea

    64/90

    Size matters

    Animal cell

    1 micron

    10 microns

    Bacterial cells

    Diff b t

  • 8/7/2019 Systematic Microbial Archaea

    65/90

    Differences between

    Bacteria and Viruses

    Viruses

    Obligate intracellular

    parasites

    No ribosomes

    DNA or RNA, not

    both

    seen by EM

    10-100s of genes

    Bacteria

    Usually free-living,

    but can be parasites

    Ribosomes

    DNA and RNA

    Seen by LM 100s-1000s of genes

  • 8/7/2019 Systematic Microbial Archaea

    66/90

    Kingdom Procaryotae

    4 categories:

    a. Gram-ve eubacteria with

    cell walls

    b. Gram+ve eubacteria with

    cell walls

    c. Eubacteria lacking cellwalls

    d. The archaeabacteria

    Based on

    nature of

    bacterial

    cell wall

    Categories (a) and (b):

  • 8/7/2019 Systematic Microbial Archaea

    67/90

    Categories (a) and (b):

    Thin layer of peptidoglycan in

    between cytoplasmic membrane

    and outer membrane (*)

    Peptidoglycan

    Cytoplasmic

    membrane

    *Outer membrane

    (lipopolysaccharide & protein)

    Gram ve cell wall Gram +ve cell wall

    Thicker layer of

    peptidoglycan

  • 8/7/2019 Systematic Microbial Archaea

    68/90

    Developed and published in 1884 by theDanish physician Hans Christian Gram

    An important tool in bacterial taxonomy,

    distinguishing so-called Gram-positivebacteria, which remain coloured after the

    staining procedure, from Gram-negative

    bacteria, which do not retain dye and need

    to be counter-stained.

    Staphylococcus aureus (Gram-positive cocci)

    Escherichia coli (Gram-negative rods)

    The Gram Stain

    The Gram stain procedure

  • 8/7/2019 Systematic Microbial Archaea

    69/90

    Crystal violet

    (primary stain)

    Gram's iodine

    (trapping agent)

    Decolorise with

    acetone or alcohol

    Counterstain with

    safranin

    Gram-positives

    appear purple

    Gram-negatives

    appear pink

    The Gram stain procedure

  • 8/7/2019 Systematic Microbial Archaea

    70/90

    Gram-positive rods

    Gram-negative rods

    Gram-positive cocci

    Gram-negative cocci

  • 8/7/2019 Systematic Microbial Archaea

    71/90

  • 8/7/2019 Systematic Microbial Archaea

    72/90

    Cell morphology

    Important features:

    - Gram stain reaction

    - Shape

    - Size

    - Endospore presence

  • 8/7/2019 Systematic Microbial Archaea

    73/90

    Endospore-forming Bacteria

    - Shape, position and size of endospore useto identify species

    Oval, terminal

    C. barkeri

    Spherical, terminal

    C. tetani

    Oval, between

    center and end

    C. botulinum

  • 8/7/2019 Systematic Microbial Archaea

    74/90

    Metabolism

    Processes to obtain energy + convertenergy into usable form

    Important features:

    - Enzymes

    - Metabolized sugars

    - Metabolized amino acids

    - Photosynthesis??

  • 8/7/2019 Systematic Microbial Archaea

    75/90

    How to use metabolic diversity in

    classifying bacteria?

    Bacterium NO

    Bacterium YA

    Substrate A

    B C D E

    W X Y Z

    Intermediates in differentmetabolic pathways

    EndProduct

  • 8/7/2019 Systematic Microbial Archaea

    76/90

  • 8/7/2019 Systematic Microbial Archaea

    77/90

    Reproductive traits

    Important features:

    - Influence by light ??

    - Influence by oxygen??

    - Colony morphology

    G N i R d

  • 8/7/2019 Systematic Microbial Archaea

    78/90

    Gram-Negative Rods

    Enteric BacteriaEscherichia coli

    Salmonella

    ShigellaYersinia

    Pseudomonas

    ProteusVibrio cholerae

    Klebsiella pneumoniae

    G N i R d

  • 8/7/2019 Systematic Microbial Archaea

    79/90

    Gram-Negative Rods Fastidious GNRs

    Bordetella pertussis

    Haemophilus influenzae

    Campylobacter jejuni

    Helicobacter pylori

    Legionella pneumophila

    Anaerobic GNRs

    Bacteroides fragilis

    Fusobacterium

    G N ti C i

  • 8/7/2019 Systematic Microbial Archaea

    80/90

    Gram-Negative Cocci

    Neisseria gonorrhoeae causes gonorrhea

    Neisseria meningitidis causes meningitis

    Both Gram-negativeintracellular diplococci

    G P iti C i

  • 8/7/2019 Systematic Microbial Archaea

    81/90

    Gram-Positive Cocci

    Staphylococci catalase-positive

    cocci in clusters

    Staphylococcus aureus

    coagulase positive

    Staphylococcus epidermidis

    coagulase negative

    G P iti C i

  • 8/7/2019 Systematic Microbial Archaea

    82/90

    Gram-Positive Cocci

    Streptococci catalase negative

    cocci in chains or pairs

    Streptococcus pyogenes

    Streptococcus pneumoniae

    E nterococcus faecalis

    G P iti R d

  • 8/7/2019 Systematic Microbial Archaea

    83/90

    Gram-Positive Rods Clostridia

    Anaerobes

    C. perfringens

    C. tetani

    C. botulinum

    Bacillus cereus

    Aerobe

    Listeria monocytogenes

    Faculative anaerobe

  • 8/7/2019 Systematic Microbial Archaea

    84/90

    Non-Gram-stainable bacteria

    Unusual gram-positives

    Spirochaetes

    Obligate intra-cellular bacteria

    Unusual Gram-positives

  • 8/7/2019 Systematic Microbial Archaea

    85/90

    Category (c) : Eubacteria lackingcell walls

    - Bacteria without cell wall

    - No definite shape

    - E.g. mycoplasmas

    Unusual Gram positives

  • 8/7/2019 Systematic Microbial Archaea

    86/90

    M l

  • 8/7/2019 Systematic Microbial Archaea

    87/90

    Mycoplasmas

    - No peptidoglycan and stained pink (Gram -)

    - DNA sequences similarity to Gram positive- Irregular shape/pleomorphic

    - = protoplast but resistant to osmotic lysis

    - Strong plasma membrane presence ofsterols and lipoglycan

    - Smallest free-living cell

    - Require organic growth factors e.g. cholesterol,fatty acids, vitamins, amino acids and

    nucleotides or growth.

  • 8/7/2019 Systematic Microbial Archaea

    88/90

    Mycobacteria

    Acid-fast bacilli stained by Ziehl-Neelsen stain

    M. tuberculosis

    M. leprae

    M. avium

    S i h t

  • 8/7/2019 Systematic Microbial Archaea

    89/90

    Spirochaetes Thin spiral bacteria

    Viewable by phase-contrast

    microscopy

    Treponema pallidum

    Borrelia burgdorferi

    Leptospira

    Obligate intracellular

  • 8/7/2019 Systematic Microbial Archaea

    90/90

    g

    bacteria

    Rickettsia

    ChlamydiasC. trachomatis

    C. pneumoniae

    C. psittaci

    Rickettsias growing within the host cells