111
Tabriz University of Medical Sciences SYNTHESIS, IN VITRO AND CELLULAR CHARACTERIZATION AND EVALUATION OF GEMCITABINE-PEPTIDE NANOCONJUGATES By: Samad Mussa Farkhani A Thesis Presented to the FACULTY OF ADVANCED MEDICAL SCIENCES TABRIZ UNIVERSITY OF MEDICAL SCIENCES In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE (MEDICAL NANOTECHNOLOGY) Supervisors: Dr. Hadi Valizadeh Dr. Javid Shahbazi Mojarrad Advisor: Dr. Parvin Zakeri-Milani Thesis No: 93/2-11/4 May 2015

Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

Tabriz University of Medical Sciences

SYNTHESIS, IN VITRO AND CELLULAR

CHARACTERIZATION AND EVALUATION OF

GEMCITABINE-PEPTIDE NANOCONJUGATES

By:

Samad Mussa Farkhani

A Thesis Presented to the

FACULTY OF ADVANCED MEDICAL SCIENCES

TABRIZ UNIVERSITY OF MEDICAL SCIENCES

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE (MEDICAL NANOTECHNOLOGY)

Supervisors:

Dr. Hadi Valizadeh

Dr. Javid Shahbazi Mojarrad

Advisor:

Dr. Parvin Zakeri-Milani

Thesis No: 93/2-11/4 May 2015

Page 2: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

I

Tabriz University of Medical Sciences

Faculty of advanced medical sciences

Dissertation submitted for MS.c degree of

Medical Nanotechnology

Synthesis, in vitro and cellular characterization and evaluation of

gemcitabine-peptide Nano conjugates

Author:

Samad Mussa Farkhani

Supervisors:

Dr. Hadi Valizadeh

Dr. Javid Shahbazi Mojarrad

Advisor:

Dr. Parvin Zakeri-Milani

Place of performance:

Faculty of Pharmacy, Research Center for Pharmaceutical Nanotechnology

and Drug Applied Research Center of Tabriz university of Medical Sciences

Dissertation No: 93/2-11/4 May 2015

Page 3: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

II

In the name of Allah

Statement of Originality

I certify that the following thesis is based on the results of investigations

performed by me, that this is my own composition, and that it has not previously

been presented for a higher degree.

I hereby confirm above mentioned statement, as a supervisor /

advisor of this thesis.

Page 4: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

III

Dedication

This thesis work is dedicated to my parents, who have always loved me

unconditionally and whose good examples have taught me to work hard

for the things that I aspire to achieve.

Page 5: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

IV

Acknowledgement

I would like to express my special appreciation and thanks to my

supervisor Professor Hadi Valizadeh, you have been a tremendous mentor

for me. I would like to thank you for encouraging my research and for

allowing me to grow as a research scientist. I must offer my profoundest

gratitude to my second supervisor Dr. Javid Shahbazi Mojarrad who has

been always available for my questions. I would also like to thank my

advisor Dr. Parvin Zakeri-Milani.

I would like to acknowledge financial, academicals and technical support

of Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz

University of medical sciences. I express my warm thanks to Dr. Yadollah

Omidi and Dr. Mohammad Reza Rashidi for their support and guidance

at RCPN.

Page 6: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

V

I am also thankful to my good friends Ali Shirani, Samaneh Mohammadi

and Alireza Valizadeh who supported me in all steps of work and also

writing the thesis, and incented me to strive towards my goal. I also thank

Dr. Siavoush Dastmalchi, Dr. Hamed Hamishehkar, Dr. Abolfazl

Akbarzadeh and Dr. Roya Salehi Who accepted to be the reviewer team of

my thesis. At the end a special thanks to my family for all their support.

Page 7: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

VI

List of publication:

FARKHANI, S. M., JOHARI-AHAR, M., ZAKERI-MILANI, P., SHAHBAZI

MOJARRAD, J. & VALIZADEH, H. 2015. Enhanced cellular internalization of

CdTe quantum dots mediated by arginine- and tryptophan-rich cell-penetrating

peptides as efficient carriers. Artificial cells, nanomedicine, and biotechnology, 1-5

Page 8: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

VII

List of abbreviations

1 Gem: Gemcitabine

2 BOC: Tert-Butyloxycarbonyl

3 CPP: Cell-penetrating peptide

4 DCM: Dichloromethane

5 DIEPA: N, N-Diisopropylethylamine

6 DMF: Dimethylformamide

7 DMSO: Dimethyl sulfoxide

8 EDT: 1, 2-Ethanedithiol

9 EDTA: Ethylenediaminetetraacetic acid

10 FBS: Fetal bovine serum

11 FITC: Fluorescein isothiocyanate

12 FMOC: Fluorenylmethyloxycarbonyl

13 AuNPs: Gold nanoparticles

14 hCNT: Human concentrative nucleoside transporter

15 hENTs: Human equilibrative nucleoside transporters

16 MTT: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

17 SPPS: Solid-phase peptide synthesis

18 AgNPs: Silver nanoparticles

Page 9: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

VIII

19 PBS: Phosphate buffered saline

20 QDs: Quantum dots

21 TBTU: N, N, N′, N′-Tetramethyl-O -(benzotriazol-1 - yl)uronium

tetrafluoroborate

22 TFA: trifluoroacetic acid

23 TIS: Triisopropylsilane

24 Arg (R):Arginine

25 Trp (W):Tryptophan

26 Glu (E): Glutamic acid

Page 10: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

IX

Table of contents

Abstract ..................................................................................................................... 1

Chapter one: ............................................................................................................. 3

Introduction .............................................................................................................. 3

1. Gemcitabine ...................................................................................................... 4

1.1. Problems in Drug Delivery ........................................................................ 7

Chapter two: ...........................................................................................................10

Literature review ....................................................................................................10

1.1.1. Discovery of CPPs .............................................................................11

1.1.2. Classes of CPPs..................................................................................12

1.1.3. Mechanisms of CPP uptake ...............................................................15

1.1.4. Applications of CPP ...........................................................................16

1.1.4.1. Intracellular delivery .......................................................................16

1.1.4.2. Quantum dots ..................................................................................17

1.1.4.3. Gold nanoparticles ..........................................................................17

1.1.4.4. Nanosilver .......................................................................................18

1.1.4.5. Liposome ........................................................................................18

1.1.4.6. Delivery of biologically active peptides and proteins ....................19

1.1.4.7. Delivery of oligonucleotides, nucleic acids and siRNA ................19

1.1.4.8. CPP as carriers for anticancer drug delivery ..................................20

Chapter three: ........................................................................................................21

Material and methods ............................................................................................21

2.1. Materials and equipment .............................................................................22

2.1.1. Materials ................................................................................................22

2.1.2. Laboratory Equipment ..........................................................................23

2.2. Methods .......................................................................................................24

Page 11: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

X

2.2.1. Peptides synthesis by solid-phase peptide synthesis (SPPS) ................24

2.2.1.1. Swelling of the resin .......................................................................24

2.2.1.2. FMOC deprotection ........................................................................25

2.2.1.3. Coupling of amino acid to the resin ................................................26

2.2.1.3.1. Monitoring of Coupling and Capping with ninhydrin test ..........26

2.2.1.4. Cleavage of synthesized peptides from resin .................................28

2.2.1.5. Freeze drying of precipitated peptides ............................................29

2.2.2. Particle Size Measurement ....................................................................30

2.2.3. SEM .......................................................................................................30

2.2.4. FITC labeling of peptides .....................................................................30

2.2.5. Preparation of Gem-peptide conjugates ................................................31

2.2.6. Cell culture ............................................................................................33

2.2.6.1. Thawing A549 cells ........................................................................34

2.2.6.2. Passaging A549 cells ......................................................................34

2.2.6.3. Cell Counting ..................................................................................35

2.2.7. MTT assay .............................................................................................36

2.2.8. Fluorescent Microscopy ........................................................................37

2.2.9. Flow cytometry .....................................................................................38

Chapter four: ..........................................................................................................39

Results .....................................................................................................................39

3.1. Synthesis of CPPs ........................................................................................40

3.2. Cytotoxicity of synthesized CPPs ...............................................................41

3.2.1. Effect of poly-glutamate on toxicity of cationic CPPs .........................42

3.3. Cellular Uptake Studies of CPPs and CPP-E9 conjugates ..........................48

3.4. Cellular Uptake studies of six peptides .......................................................54

3.5. Anti-tumor performance of drug loaded CPPs ............................................58

Chapter five: ...........................................................................................................61

Discussion ................................................................................................................61

Page 12: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

XI

4.1. Effect of CPPs on gemcitabine cytotoxicity ...............................................62

4.2. Poly-glutamate interaction with CPPs ........................................................65

4.3. Conclusion ...................................................................................................69

5. References ......................................................................................................71

6. Persian part ...................................................................................................81

Page 13: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

XII

List of figures and tables

Figure Page

Figure 1-1. Chemical structure of gemcitabine Page 6

Figure 1-2. Mechanism of gemcitabine action Page 7

Table 1-1. Types and amino acid sequences of some CPPs Page 14

Figure 1-3. Mechanisms of CPP uptake across the cellular membrane Page 16

Figure 2-1. Reaction vessel of peptides synthesis Page 25

Figure 2-2. Schematic representing synthesis of R5W3R4 peptide Page 29

Figure 2-3. Synthesis of FITC-labeled Peptide Page 31

Figure 2-4. Schematic representing preparing of Gem-R5W3R4 conjugate Page 33

Figure 2-5. MTT reduction in live cells by mitochondrial reductase results in the

formation of formazan Page 36

Table 3-1. Sequence and other parameters of the synthesized CPPs Page 40

Figure 3-1. Cytotoxicity of peptides on A549 cells after 72 h incubation Page 42

Figure 3-2. Size distribution of [RW]6/E9, R5W3R4/E9, and R9/E9 nanoparticles

Page 43

Page 14: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

XIII

Figure 3-3. SEM images of R9, R9/E9, R5W3R4, R5W3R4/E9, [RW]6 and

[RW]6/E9 Page 45

Figure 3-4. Toxicity of peptides and their nanoconjugates on A549 cells determined

by MTT assay Page 47

Figure 3-5. IC50 of three peptides after and before interaction with E9 Page 48

Figure 3-6. Fluorescent imaging of A549 cells incubated with 10, 25, and 50 µM

FITC-labeled R9 and R9/E9 for 1.5 h at 37 °C Page 51

Figure 3-7. Fluorescent imaging of A549 cells incubated with 10, 25, and 50 µM

FITC-labeled R5W3R4 and R5W3R4/E9 for 1.5 h at 37 °C Page 52

Figure 3-8. Fluorescent imaging of A549 cells incubated with 10, 25, and 50 µM

FITC-labeled [RW]6 and [RW]6/E9 for 1.5 h at 37 °C Page 53

Figure 3-9. Cellular uptake of FITC-labeled peptides and peptides/E9 in live A549

cells after incubation for 1.5 h at 37 °C measured by flow cytometery Page 54

Figure 3-10. Fluorescence microscopy, visualization of FITC-labeled, R5W3R4

(A,B), [RW]6 (C,D), [RW]5 (E,F), [RW]4 (G,H), and [RW]3 (I,J) in A459 cells

line Page 56

Figure 3-11. Cellular uptake of FITC-labeled peptides in live A549 cells after

incubation Page 57

Page 15: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

XIV

Table 3-2. Amount of drug loading efficiency Page 58

Figure 3-12. Toxicity of Gem-R5W3R4 (A), Gem-[RW]6 (B), Gem-[RW5] (C),

Gem-[RW]4 (D), Gem-[RW]3 (E) and Gem to A549 cells Page 60

Figure 4-1. Schematic drawing representing the effect of E9 on the uptake and

cytotoxicity of arginine and tryptophan-rich CPPs Page 69

Page 16: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

1

Abstract

Background

Gemcitabine is an anticancer drug that displays activity in the treatment of

pancreatic, non-small cell lung, bladder, ovarian and breast cancers. However the

drug has certain drawbacks such as short plasma half-life, its high hydrophilicity and

the induction of resistance related to hENT1 transporters. In recent years it was

showed that the use of cell penetrating peptides (CPPs), a short peptides that improve

the uptake of various covalently and noncovalently attached molecules, could

increase cellular delivery of antitumor drugs.

Aim

The present study was designed to investigate the effect of CPPs conjugation on the

cytotoxicity of gemcitabine in A549 lung carcinoma cell line. Also the effect of poly-

glutamate peptide on cellular uptake and cytotoxicity of the cationic CPPs was

studied.

Methods

The peptides were synthesized manually by solid phase peptide synthesis methods.

Cellular uptake and distribution of peptides was performed by means of flow

Page 17: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

2

cytometry and fluorescent microscopy. The gem drug was conjugated to the CPPs

by using succinic linker. Measuring the cytotoxicity of gemcitabine and Gem-CPP

conjugates was performed with MTT assay. Size and morphology of poly-

glutamate/CPP nanoconjugates was carried out by use of DLS.

Results

The data demonstrated that at 15 and 25 µM, Gem-R5W3R4, Gem-[RW]6 and Gem-

[WR]3 conjugates exhibited decreased cell viability compared to Gem alone. Also

E9 interaction could decrease the toxicity of these cationic CPPs at high

concentrations.

Conclusion

The findings in this study support the advantages of using CPPs for improving

intracellular delivery of drugs into tumor as well as their activity. Furthermore, it is

possible to overcome gemcitabine resistance associated with deficiencies in the

expression of hENT1 by using CPP strategy. Additionally, the obtained results

indicate that the cytotoxicity of CPPs could be reduced by poly-glutamic acid (E9)

with slight decrease in uptake efficiency.

Keywords: Cell penetrating peptides, Gemcitabine, Cytotoxicity, Poly-glutamate,

Page 18: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

3

Chapter one:

Introduction

Page 19: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

4

1. Gemcitabine

Gemcitabine (Gem, dFdC) is a fluorinated nucleoside analogue that displays

anticancer activity in the treatment of pancreatic, non-small cell lung, bladder,

ovarian and breast cancers (Fig. 1-1) (1). Gemcitabine is transported into the cells

by sodium-dependent (concentrative nucleoside transporter hCNTs) and by sodium

independent (equilibrative nucleoside transporter hENTs) mechanisms. It is

recognized that Gemcitabine transportation into cells mediated by five nucleoside

transporters, two equilibrative nucleoside transporters hENT1 and hENT2 and three

concentrative nucleoside transporters (hCNT1, hCNT2, hCNT3) (2). Studies have

shown that most intracellular uptake of gemcitabine is directed by hENT1 and, to a

lesser amount, by hCNT1 and hCNT3 (1). After entering to the cell, the drug

phosphorylated to monophosphate derivative (dFdCMP) by deoxycytidine kinase

(dCK). It then converted to gemcitabine diphosphate (dFdCDP) and gemcitabine

triphosphate (dFdCTP), by nucleoside monophosphate kinase (UMP/CMP) and

diphosphate kinase, respectively (3). The new evidence demonstrates that

incorporation of dFdCDP and dFdCTP into DNA strand is essential for gemcitabine

to inhibit cell replication and induce apoptosis in tumor cells (4). dFdCDP inhibits

ribonucleoside diphosphate reductase liable for catalyzing the reaction that generates

the deoxyribonucleotides required for synthesis and repair of DNA. The triphosphate

form of gemcitabine, dFdCTP, incorporates into DNA as a false nucleoside,

Page 20: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

5

inhibiting DNA polymerase and thereby preventing the detection and repair of DNA

repairing enzymes and causing cell death by apoptosis (5-7). Figure 1-2 displayed

the mechanism of gemcitabine action after entering to the cell.

Although the explained mechanism of action contribute to the efficiency of

gemcitabine for cancer treatment, the drug has certain drawbacks that are related to

its unfavorable pharmacokinetic properties. Gemcitabine with a low molecular

weight is rapidly and extensively deaminated in blood and in some tissues by

deoxycytidine deaminase (dCDA) to the inactive and more soluble metabolite 2/, 2/-

difluorodeoxyuridine (dFdU), leading to a short plasma half-life (8, 9). In addition,

it was stated that transport of gemcitabine across the cell membrane requires active

nucleoside transporters. Most of the gemcitabine uptake is mediated by hENT1

transporters and, in fact, hENT1-deficient cells such as human breast and pancreatic

cancer cells are highly resistant to this nucleoside analogue. Deficiency in dCK in

cancer cells is also a frequently described form of intrinsic or acquired resistance to

gemcitabine (10-13). Additionally, the increasing amount of resistance also reduces

the drug cytotoxicity. Because of this, a frequent administration schedule at high

drug doses is required that cause serious side effects such as: myelosuppression, high

levels of hepatoxicity, renal toxicity, gemcitabine-induced arterial thrombosis, and

anemia (14). In recent years various strategies such as liposomes, nanoparticles,

lipidic and nonlipidic derivatives, and polymeric drug conjugates have been

Page 21: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

6

investigated to prevent rapid plasma degradation of gemcitabine and enhance

delivery to the tumor tissue (15).

Figure 1-1. Chemical structure of gemcitabine

Page 22: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

7

Figure 1-2. Mechanism of gemcitabine action

1.1. Problems in Drug Delivery

Cell-penetrating peptides as drug carriers

Many pharmaceutical molecules need to pass through one or more cell membranes

to reach their site of action. A common characteristic of all plasma membranes is a

phospholipid bilayer, about 10 nm thick, arranged with the hydrophilic heads on the

outside and the lipophilic chains facing inwards. This Feature gives a sandwich

effect, with two hydrophilic layers surrounding the central hydrophobic part (16).

Page 23: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

8

The cellular membrane is highly efficient in its role as a selectively permeable

barrier. While this phospholipid bilayer is essential to cell survival and function, it

also presents a major challenge for intracellular delivery of various therapeutic and

diagnostic molecules (17). Although small cancer drugs can cross this membrane via

a natural cellular process or direct diffusion through the lipid bilayer and protein-

based therapeutics can enter cells by membrane mobile transport, in many cases the

effective passage of some bioactive molecules through the plasma membrane

remains a major obstacle for intracellular delivery of cargo (18). Good cellular

uptake often needs the use of high dose of drugs in order to obtain the expected

intracellular biological effect. Therefore, improving the translocation of anticancer

drugs across the cellular membrane will significantly decrease the amount of

administered drug, and the wide side effects on healthy tissues that are currently

observed in most of the cases (19).

Several drug carriers, such as nanospheres, nanocapsules, liposomes, micelles,

lipoproteins, and polymers have been used widely over the past few decades to

deliver a selection of therapeutic and diagnostic agents (20). While several carrier

currently used for drug translocation, cell-penetrating peptides (CPPs) have become

one of the most popular and efficient techniques for intracellular delivery of their

cargo molecules. CPPs are generally defined as short cationic peptides, typically

Page 24: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

9

with 5–30 amino acids, which able to penetrate cellular membranes and transfer

covalently or non-covalently attached bioactive molecules into cells (21).

Objectives:

General objective: synthesis of peptide-Gemcitabine nanoconjugates

Specific objectives:

1. Synthesis of cell penetrating peptide containing arginine and tryptophan

amino acids.

2. Coupling of FITC as fluorescent molecule to the CPP for evaluating uptake

of peptides into cells.

3. Evaluating the cytotoxicity of gemcitabine and peptide-gem conjugates on

A549 cancer cells.

Hypothesis:

1- Because of intrinsic ability of these peptides for delivering cargo, our

synthesized peptides efficiently transport gemcitabine into cell.

2- What is the effect of presence of tryptophan and their position within a poly-

arginine influence uptake efficiency as well as cytotoxicity?

Page 25: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

10

Chapter two:

Literature review

Page 26: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

11

1.1.1. Discovery of CPPs

In 1965, it was found that histones and cationic polyamines such as poly-lysine

stimulate the cellular uptake of albumin by cancer cells in culture. It was revealed

that direct conjugation of albumin and other molecules to poly-lysine made the

transport of the coupled cargo more specific and effective. Subsequent studies

revealed that medium-length polymers of arginine were significantly more effective

at entering cells than the polymers composed of lysine, ornithine or histidine (22).

Initially discovered in 1988, Tat, the HIV transactivator of transcription protein, was

the first sequence found that also passed very efficiently through cell membranes of

cultured mammalian cells (23, 24). Covalently binding the Tat to proteins or

fluorescent probes allowed these molecules to cross the cell membrane (25). In 1991,

the Antennapedia homeodomain (HDAntp) from Drosophila was illustrated to be

internalized by neuronal cells. This helped the discovery in 1994 of the first PTD or

CPP, a 16-merpeptide derived from the third helix of the homeodomain of

Antennapedia named Penetratin. In this year for the first time CPPs used as vectors

when penetratin was employed for the delivery of a small exogenous peptide (26,

27). The research was followed by the identification of the minimal peptide sequence

of TAT (47YGRKKRRQRRR57) required for effective cellular uptake in 1998 (28).

After that, additional polycationic peptides of natural VP22, AntP and synthetic

origin (transportan) have been identified which also facilitate cellular uptake, alone

Page 27: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

12

or together with attached cargoes. Since then, the list of available CPPs has grown

intensely and the number continues to increase (table 1-1)

1.1.2. Classes of CPPs

A number of researchers divided CPPs into three categories based on their origin,

which include:

Protein derivatives:

They include natural peptides which exist in organisms and can increase the uptake

of macromolecules into cell.

Synthetic CPPs:

They usually prepared by synthesis from amino acids in the laboratory or industrial

and haven’t exist naturally.

Chimeric:

They are a combination of synthetic peptides and protein derivatives.

In another classification CPPs divided into three group base on Physical–chemical

properties;

Cationic CPPs:

The cationic peptides are short amino acid sequences that are often contains arginine,

lysine and histidine. Arginine as an amino acid has a guanidine head group that can

Page 28: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

13

make hydrogen bonds with the negatively charged phosphates and sulfates on the

plasma membrane and might lead to internalization with cell surfaces. Lysine

although has positive charge similar to arginine, but it does not contain the guanidine

head group, and then is less effective at penetrating to the cell membrane when acting

alone. The first CPP discovered was cationic named Tat. Studies on oligoarginine

peptides (from R3 to R12) have shown that the minimal sequence for effective cellular

internalization is octaarginine (R8), and that increasing the number of arginines rises

the level of uptake (29). It was confirmed that the arginine-rich CPP is more efficient

than the other cationic peptides (30). Several studies suggest that at least eight

positive charges are needed for efficient cellular uptake of cationic peptides.

Amphipathic CPPs:

Amphipathic peptides have lipophilic and hydrophilic blocks that are responsible for

mediating the peptide translocation across the plasma membrane. These peptides

mainly are chimeric peptides obtained by covalently attaching a hydrophobic

domain for efficient targeting to cell membranes to a NLS (nuclear localization

sequences).

Hydrophobic CPPs:

Page 29: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

14

They contain hydrophobic amino acids and have a low net charge. Compared with

cationic and amphipathic CPPs, only a few hydrophobic CPPs have been discovered

until now.

Table 1-1. Types and amino acid sequences of some CPPs.

Type Name Sequence References

Cationic Polyarginine R8, R9, R10, R12 (31)

TAT 49–57 RKKRRQRRR (32)

Penetratin (pAntp) RQIKIWFQNRRMKWKK (33)

P22N NAKTRRHERRRKLAIER (34)

DPV6 GRPRESGKKRKRKRLKP (35)

DPV3 RKKRRRESRKKRRRES (35)

Amphipathic Transportan GWTLNSAGYLLGKINLKALAALAKKIL (36)

Pep-1 KETWWETWWTEWSQPKKKRKV (37)

MPG GLAFLGFLGAAGSTMGAWSQPKKKRKV (37)

pVEC LLIILRRRIRKQAHAHSK (38)

MAP KLALKLALKALKAALKLA (39)

CADY GLWRALWRLLRSLWRLLWRA (40)

Hydrophobic K-FGF AAVLLPVLLAAP (41)

C105Y CSIPPEVKFNKPFVYLI (42)

Page 30: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

15

1.1.3. Mechanisms of CPP uptake

It is obvious that understanding the uptake mechanism and intracellular trafficking

of CPPs is an important step for optimization of these carriers to produce best effect,

and to determine the intracellular behavior and efficiency of the cargo delivery (43).

Although these peptides have been widely used to transport various molecules into

cells, the exact uptake route of CPPs is still challenging lots of questions (44).

Recently, depending on CPP own features, the carried molecule, the cell type and

the membrane lipid composition, the two major intracellular uptake mechanism of

CPP include nonendocytotic and the endocytotic pathways have been proposed (45).

Figure 1-3 has shown different uptake mechanisms proposed to explain the

internalization of free or cargo-conjugated CPPs. It was suggested that CPP with

small cargoes, may enter cells rapidly via direct translocation in addition to the

endocytic way. In contrast, translocation of large molecules coupled to these

peptides tended to be mediated by macropinocytosis in an energy-dependent manner

with slower rates for larger compounds (46).

Page 31: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

16

Figure 1-3. Mechanisms of CPP uptake across the cellular membrane (47)

1.1.4. Applications of CPP

1.1.4.1. Intracellular delivery

Page 32: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

17

The ability to intracellular delivery of large hydrophilic molecules, such as peptides,

proteins, DNA, siRNA and large particles is a problem because of the bioavailability

restriction imposed by the cell membrane. The discovery of CPPs that can

translocate effectively across cell membrane, hence, opened up fascinating

perspectives for the development of cell delivery. In recent years, these peptides

have been used for efficient cellular delivery of a broad variety of molecules (48).

Delivery of nanoparticles and nanocarriers by CPPs

Recently, CPPs have been employed for cellular delivery of a broad variety of

cargoes including various nanoparticles and pharmaceutical nanocarriers.

1.1.4.2. Quantum dots

In recent years, quantum dots (semiconductor nanocrystals) was used for cancer

targeting and imaging in living animals. They have unique photophysical properties

which make them interesting candidates as fluorescent tags (49). CPPs are used for

improving intracellular delivery of QDs. In one study, it was shown that a CPPs

termed SR9 facilitates the transport of noncovalently associated QDs into A549 cells

(50).

1.1.4.3. Gold nanoparticles

Recently gold nanoparticles (AuNPs) have been employed for cellular applications

including biomedical imaging, clinical diagnostics, and even therapeutics (51).

Page 33: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

18

However, to reach their full potential, strong methods must be developed for the

control of gold uptake into cells and for their localization to the cytosol or to specific

organelles. For cellular uptake and targeted delivery, AuNPs have been

functionalized with CPP to improve internalization or with NLS, and TAT peptides

to target the cell nucleus (52).

1.1.4.4. Nanosilver

Silver nanoparticle (AgNP) has been widely used in biomedical, because of its ready

manufacturing process, quality control, and biocompatibility. Recently, AgNP has

been reported for its anticancer effect. A nanopharmaceutical system using TAT

peptide was developed for multidrug-resistant (MDR) cancer treatment, in which

nanosilver with mean size of 8 nm modified with TAT peptide displayed exceptional

antitumor activity in both MDR cells and non-resistant cells (53).

1.1.4.5. Liposome

A liposome is a vesicle usually made of phospholipids and can be filled with drugs,

and used to deliver drugs for cancer and other diseases. To increase control over

drug release, a novel method of constraining a CPP have been developed, which can

be utilize to trigger transport of liposomes into cells upon radiation with UV light.

First, TAT peptide modified on both ends with an alkyl chain and after that was

anchored to the liposomal surface in a forced and deactivated form. When the TAT

Page 34: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

19

was engaged in this loop formation no cellular uptake occurred. Disconnection one

of the two alkyl chains that inked to TAT via a UV-cleavable upon irradiation led to

the exposure of the TAT, then induced cellular delivery of the entire liposome

particle into cells (54).

1.1.4.6. Delivery of biologically active peptides and proteins

CPP was used for peptides and protein delivery. Several studies have been used

penetratin to promote the delivery of fragments of protein-inhibiting cyclin-

dependent kinase (Cdk), which have role in regulating the cell cycle. Also, Tat

peptide could stimulate the cellular delivery of Cdk-inhibiting peptide, enabling

arrest of cell proliferation (55, 56).

1.1.4.7. Delivery of oligonucleotides, nucleic acids and siRNA

Recently, CPPs have been used successfully to translocation of oligonucleotides into

cells (57, 58). It has been reported that tow CPP includes transportan and penetratin

were able to transport a peptide nucleic acid (PNA), which was unable to cross the

plasma membrane in its original from, into melanoma cells (59). Cationic CPPs,

interact with the negatively charged phosphate backbone of nucleic acids through

electrostatic interactions (60). Recently, some studies have explored the possibility

to apply CPPs as a gene delivery system. In one study, Liu et al. used arginine-rich

peptides for gene delivery into cells in a noncovalent fashion. They indicated that

Page 35: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

20

these peptides are able to transfer plasmid DNA into A549 cancerous cells (61). TAT

peptide also is able to successfully deliver of siRNA to cells for gene silencing used

in the modulation of gene expression (61).

1.1.4.8. CPP as carriers for anticancer drug delivery

Among the various types of cancer treatment, chemotherapy is the most widely used

approaches. Despite the abundant use of chemotherapy, it causing unpleasant side

effects and limited due to its systemic toxicity (61). Since CPPs increase cellular

uptake, the conjugation of anticancer drug with these peptides may also be a

powerful tool for decrease their toxicity in tumor therapy. Several drug such as Taxol

(62), Methotrexate (63), and doxorubicin (64) have shown improved activity when

conjugated to CPP.

In this study, we developed six Gem-CPP conjugates in aim to enhance its

intracellular delivery and therapeutic effects. Six arginine and tryptophan-rich CPPs

were synthesized with solid phase peptide synthesis procedure. The uptake

efficiency of CPPs into cells examined by flow cytometry and fluorescent

microscopy. The synthesized peptides, were chemically conjugated to Gem and

cytotoxicity of conjugates was tested by MTT assay in A594 cell line. Additionally

the effect of electrostatic interaction of poly-glutamate (E9) on cytotoxicity and

cellular uptake of arginine and tryptophan-rich peptides was studied.

Page 36: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

21

Chapter three:

Material and methods

Page 37: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

22

2.1. Materials and equipment

2.1.1. Materials

Fmoc-Arg(Pbf)-OH, Fmoc-Trp(Boc)-OH and Fmoc-Glu(OtBu)-OH

(AAPPTec, Louisville, USA)

O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate

(TBTU) (Sigma, St. Louis, USA)

N-Ethyldiisopropylamine (Merck, Germany)

Fmoc-Rink-Amide AM resin (AAPPTec, Louisville, USA)

Gemcitabine hydrochloride (Actavis, Italy)

Fluorescein isothiocyanate (FITC) Isomer I (Sigma, St. Louis, USA)

Trifluoroacetic Acid (TFA) (Sigma, St. Louis, USA)

Piperidine (Sigma, St. Louis, USA)

Dimethylformamide(DMF), Dichloromethane (Scharlau, Italy)

Dimethyl sulfoxide (Merck, Germany)

Triisopropylsilane (TIPS) (Sigma, St. Louis, USA)

Phenol (Sigma, St. Louis, USA)

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Roth,

Germany)

RPMI1640 medium (Gibco, USA)

Page 38: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

23

Trypsin-EDTA (Invitrogen, Carlsbad, USA)

Penicillin/streptomycin (Applichem, Germany)

Fetal bovine serum (FBS) (Gibco, USA)

Cell culture T-75 flask (Biofil, Canada)

Cell culture 96-well plates, 6-well plates (Biofil, Canada)

A549 lung carcinoma cell line (Pasture, Iran)

2.1.2. Laboratory Equipment

Flow cytometry (FACSCalibur, Becton Dickinson, San Jose, CA, USA)

Vacuum pump (Heidolph, Germany)

Rotary evaporator (Heidolph, Germany)

Freeze Dryer (Telstar, Spain)

Centrifuges (Sigma, Germany)

Incubator (Memmert, Germany)

Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK)

Scanning electron microscope (SEM, Mira3 FEG-SEM Tescan, Czech

Republic)

Olympus IX81 fluorescence microscope (Olympus Optical Co., Ltd., Tokyo,

Japan)

Page 39: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

24

UV-Vis Spectrophotometers (Shimadzu)

Microplate Reader (Bio-Tek)

Magnetic stirrer

Reaction vessel for peptides synthesis

2.2. Methods

2.2.1. Peptides synthesis by solid-phase

peptide synthesis (SPPS)

All peptides were synthesized manually by solid-phase peptide synthesis method on

a FMOC-Rink-Amide AM resin by FMOC strategy in a fritted glass vessel (fig. 2-

1). The CPPs synthesis steps includes:

2.2.1.1. Swelling of the resin

Resin was swelled in anhydrous DMF for about 1 h under dry nitrogen. For 125 mg

of resin, 2 mL DCM was added. After 30 min resin and DCM was poured into the

reaction vessel and DCM was filtered off by vacuum.

Page 40: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

25

Figure 2-1. Reaction vessel of peptides synthesis

2.2.1.2. FMOC deprotection

FMOC deprotection of resin was carried out using piperidine in DMF (20% v/v, 2

mL, 30 min). Ninhydrin test was used to monitor FMOC deprotection. After 30 min

for ensure about completion of deprotection, ninhydrin test carried out. With

completion of deprotection, the reaction solution was filtered off and resin was

washed with DMF (4 × 2 mL) and DCM (4 × 2mL).

Page 41: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

26

Calculation the amount of materials required for peptide synthesis

The amount of amino acid required for coupling to resin calculated based on the

loading amount of resin with free amine group. The loading of Rink amid AM resin

was equal to 0.4-0.9 mmol/g and the molar ratio values for synthesis was 1:3:3:3

(free amine group: amino acid: TBTU: DIEPA). Accordingly, for 125 mg resin in

minimum loading the amount of materials calculated was equal to 79, 95, and 63 for

tryptophan, arginine and glutamate respectively. The amount of coupling reagent

including TBTU and DIEPA used for each coupling was equal to 43, and 30 µl

respectively.

2.2.1.3. Coupling of amino acid to the resin

Amino acid was coupled to the resin in the presence of TBTU and DIPEA in DMF

(2 mL) by mixing for 2 h under N2 atmosphere. Then the reaction was monitored

using the ninhydrin test. When the ninhydrin test is negative and coupling was

completed, the reaction solution was filtered off and resin was washed with DMF (4

× 2 mL) and DCM (4 × 2mL). If the ninhydrin test was not negative, the coupling

procedure was repeat. Others amino acids coupled to the amino acid chain by these

deprotection, washing, coupling and washing cycle.

2.2.1.3.1. Monitoring of Coupling and Capping with

ninhydrin test

Page 42: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

27

Ninhydrin can be used to monitor deprotection in solid phase peptide synthesis

(Kaiser Test). This test is a qualitative exam for the presence or absence of free

primary amino groups, and it can also be a useful indication about the completeness

of a coupling step. Ninhydrin reacts with the deprotected N-terminal amine group of

the peptide-resin which gives a characteristic dark blue color. The Kaiser test

requires minimal amounts of analyte and is completed within a few minutes.

Ninhydrin Test Solutions:

Reagent A: 1- Dissolve 16.5 mg of KCN in 25 mL of distilled water 2- Dilute 2

mL of above solution with 98 mL of pyridine (freshly distilled from ninhydrin).

Reagent B: dissolve 1.0 g of ninhydrin in 20 mL of n-butanol.

Reagent C: dissolve 20 g of phenol in 10 mL of n-butanol.

Ninhydrin test Method:

First were taken 10-15 beads of resin in a test tube. Then, 2-3 drops of reagents A,

B, and C was added to tube. The tubes were heated at 110°C for 5 minutes.

Interpretation of Results

Colorless or faint blue color (beads): complete coupling, proceed with

synthesis

Page 43: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

28

Dark blue solution but beads are colorless: nearly complete coupling, extend

coupling or cap unreacted chains

Solution is light blue but beads are dark blue: coupling incomplete, recouple

Solution is intense blue and all beads are blue: failed coupling, check amino

acid, reagents, then recouple

2.2.1.4. Cleavage of synthesized peptides from

resin

After the coupling of all amino acids, the resin was washed with DMF, DCM and

ethanol respectively (each 2 × 2 mL). The resin was dried under vacuum for 24 h.

Fresh cleavage cocktail, reagent B, TFA/ TIPS / phenol /water (88:2:5:5 v/v/v/v, 3

mL/30mg resin-peptide), was added to the resin for side-chain deprotection and the

final cleavage of the synthesized peptide from the solid support. The mixture was

shaken at room temperature for 2 h. The resin was collected by filtration and washed

with another 2 mL of fresh cleavage cocktail. Combined filtrates were evaporated

by rotary to reduce the volume under dry nitrogen. The crude peptide was

precipitated by adding diethyl ether (10 time of added TFA volume) and centrifuged

at 4000 rpm for 4 min, followed by decantation to obtain the solid precipitates. The

obtained peptide was further washed with ether (2 ×50 mL) for 2 times (fig. 2-2).

Page 44: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

29

Figure 2-2. Schematic representing synthesis of R5W3R4 peptide.

2.2.1.5. Freeze drying of precipitated peptides

Freeze-drying or lyophilisation is an effective method of drying various materials

without harming them. This process carried out by sublimation, which involves the

direct transition between the solid state and the gaseous state without passing

through the liquid phase. For long-term preservation, the synthesized CPPs were

lyophilized. The peptides were dissolved in appropriate solution and then freeze-

Page 45: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

30

dried at a pressure of 0.5 mbar and with a temperature of -40 °C for 48 h. the freeze-

dried peptides could be stored for about 6 month at -20 °C.

2.2.2. Particle Size Measurement

For the formation of conjugates between peptides and poly glutamate (E9), first three

CPP were dissolved in DMSO and after that poly-glutamate was added to each

peptides in ratios of 1:1, 1:5 and 1:10 (E9:CPPs). Conjugates and free peptides were

diluted in distilled water and particle sizes of each E9/peptides conjugates were

analyzed using a Zetasizer Nano ZS.

2.2.3. SEM

SEM sample was prepared by drop casting a 5 mM aqueous solution (20 µL)

onto the mica surface. Mica surface was lyophilized and analyzed in a Scanning

electron microscopy (SEM, Mira3 FEG-SEM Tescan 5.0 kV). All samples were

imaged after coating with gold, in high vacuum mode.

2.2.4. FITC labeling of peptides

First, N-terminal FMOC deprotection of each prepared peptide was carried out using

piperidine in DMF. A solution of 1.1 equivalent of FITC in pyridine/DMF/DCM

was prepared and added to the peptides-resin then mixed overnight. The completion

Page 46: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

31

of reaction was checked using ninhydrin test. The resin was washed and final

cleavage of the CPP-FITC conjugates from the resin was carried out according to

the mentioned protocol (fig. 2-3).

Figure 2-3. Synthesis of FITC-labeled Peptide

2.2.5. Preparation of Gem-peptide conjugates

GEM was coupled to peptides using a succinyl spacer that linked the amine group

of peptides to the hydroxyl (R-OH) group of GEM. The NH2 group of the peptides

Page 47: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

32

was changed to a carboxyl moiety by reaction with succinic anhydride as a linker.

After synthesis of peptides on the resin, the final Fmoc removed (20% piperidin, 30

min) and resulted in free amino group. These deprotected peptides were treated with

succinic anhydride (1.5 eq.) and DIEPA (3 eq) in DMF for 2 h. the completion of

reaction controlled with Ninhydrin test. The resin was washed with DMF (4 × 2 mL)

and DCM (4 × 2mL). for conjugation of succinylated peptide to gemcitabine, TEA

(50 µL) were added to a solution of 40 mg Gem in 3 Ml of an 85:15 (v/v) DMA/DMF

mixture and added to succinylated peptides. The reaction was kept under gently

stirring for 48 h. after that the mixture was dried and peptide-GEM conjugates

cleavage from resin with TFA/ TIPS / phenol /water (88:2:5:5 v/v/v/v, 3 mL)

cocktail (fig. 2-4).

Page 48: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

33

Figure 2-4. Schematic representing preparing of Gem-R5W3R4 conjugate.

2.2.6. Cell culture

A549 is a human epithelial cell line derived from a lung carcinoma tissue and are

adherent in culture. A549 lung carcinoma cell line was obtained from Pasteur

Institute (Iran). Cells were maintained in RPMI 1640 medium supplemented with

Page 49: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

34

10% FBS, 100 units/mL penicillin, and 100 μg/mL streptomycin and grown at 37

°C in a 5% CO2 humidified atmosphere.

2.2.6.1. Thawing A549 cells

Due to that the frozen cells were in DMSO, which is toxic to the cells, procedures

carried out quickly.

1- First frozen vial of cells placed in 37ºC water bath for ~1 minute until cells

almost completely thawed.

2- The vial contents transferred to a 15 ml conical tube containing 9 ml pre-

warmed media

3- The tube was centrifuged for 5 min in 1,500 rpm to pellet cells. The

supernatant was discarded and cell pellet was resuspended in 10 ml of media

and transferred to flask.

4- Flask placed in incubator (37ºC with 5% CO2).

2.2.6.2. Passaging A549 cells

Cells over growing in flask occupy spaces available for expansion so passage is

necessary. This procedure was performed when cells reached to 80 - 95%

confluency.

Page 50: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

35

1- The media was removed using glass pipette vacuum and washed 2 times with

PBS.

2- Appropriate amount of Trypsin/EDTA was added.

3- Flask was incubated from 5 to 30 min (or until cells are visibly detached from

surface) in incubator.

4- Repeatedly pipette up and down was performed with 9 ml pre-warmed media

and transferred cells to 15 ml conical

5- About 1 ml of cells added to a new plate containing 9 ml pre-warmed media

and the cells were returned to incubator.

2.2.6.3. Cell Counting

Many biological applications such as microbiology, cell culture, MTT, fluorescent

microscopy and many others that use cells require that we determine cell

concentration for our experiment. Cell counting is rather straightforward and

requires a counting chamber called a hemocytometer.

First cells were detached by trypsin based on the mentioned protocol. 50 µl of cell

suspension and 50 µl trypan blue were mixed together and then injected into each

side of hemacytometer. The cells counted in 5 out of the 9 boxes of the grid using

10x objective with phase contrast. If a cell is stained blue, then it is dead and should

Page 51: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

36

not be counted. Then the average of five boxes was multiplied by 10,000 for amount

of cells per ml.

2.2.7. MTT assay

The MTT assay is an easy and reproducible colorimetric assay for evaluation of cell

viability. This test is based on the ability of viable cells to convert a soluble

tetrazolium salt [3–(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]

(MTT) into an insoluble formazan precipitate. Viable cells with active metabolism

convert MTT into a purple colored formazan product with an absorbance maximum

near 570 nm. The quantity of formazan is measured by recording changes in

absorbance at 570 nm using a plate reading spectrophotometer (fig. 2-5).

Figure 2-5. MTT reduction in live cells by mitochondrial reductase results in the

formation of formazan

Page 52: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

37

MTT assay procedure

Cells were trypsinized and centrifuged at 1000 rpm for 5 min. Then cells were

resuspended and counted and diluted to receive 1.5 × 104 cells in 200 µl in each well.

A549 cells were seeded into 96-well plates at a density of 1.5 × 104 cells/ well and

pre-incubated for 24 h at 37 °C in a humidified atmosphere of 5% CO2 in air. The

next day, different concentrations of peptides and Gem-CPP conjugates were added

to the culture medium (all experiments were performed in triplicate). Cells were

incubated at 37 °C for 72 h. Then the medium was removed and the wells were

washed with PBS. The MTT assay was performed by adding 50 μl of 2 mg/ml MTT

to each well for 4 h. MTT solution was removed and resulting formazan crystals

were dissolved by 200 μl DMSO and 25 μl Sorensen buffer then the absorbance of

individual wells was obtained at 570 nm. Untreated cells were defined as 100%

viable. The cell viability was calculated using following formula:

Cell viability = 𝑂𝐷 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑒𝑠𝑡/𝑂𝐷 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 × 100

2.2.8. Fluorescent Microscopy

The cellular uptake of the FITC-labeled peptide was examined in A549 cell line.

A549 cells were seeded with RPMI 1640 medium on coverslips in 6 well plates and

allowed to adhere overnight. Then the medium was removed and washed with PBS.

The cells were treated with FITC-labeled peptide and their conjugates diluted in

Page 53: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

38

serum free RPMI for 1.5 h at 37 °C. After incubation, the media containing the

compound were removed followed by washing with PBS three times. Cells were

fixed on the coverslips by formaldehyde. The most widely used chemical fixative is

formaldehyde, which shows broad specificity for most cellular targets. It reacts with

primary amines on proteins and nucleic acids to form partially-reversible methylene

bridges. To make 10 ml of fixative, 1ml of 37% formaldehyde mixed with 9 ml PBS.

In order to fixing the cells, 2 ml of fixative added to the cells and then the coverslips

were washed three time by PBS. Then coverslips were placed on a microscope slide.

2.2.9. Flow cytometry

A549 cells were seeded with RMPI 1640 medium in 6-well plates (3×105 cells/well)

24 h prior to the experiment. After 24 h, the medium was removed and washed with

PBS. Then FITC-labeled peptide and related nanoconjugates was added to the cells.

The plates were incubated for 1.5 h at 37 °C. After that, the medium containing the

peptide was removed. The cells were washed three times with PBS and detached

with 0.25% trypsin/EDTA (0.53 mM) for 5 min. Then to the each well, 2 mL of the

medium was added and centrifuged for 4 min. Cells were washed twice with PBS

and finally were resuspended in flow cytometry buffer and analyzed by

FACSCalibur.

Page 54: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

39

Chapter four:

Results

Page 55: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

40

3.1. Synthesis of CPPs

All the peptides were prepared manually by solid phase peptide synthesis on the

Rink-Amide AM resin. Kaiser test was used for controlling the completeness of each

deprotection and coupling step. After synthesis, each resin-bound peptide was dried

overnight, washed, and cleaved by cleavage cocktail to afford CPPs, which were

lyophilized. Table 3-1 display sequence, molecular weight, isoelectric point, and net

charge of the peptides prepared in this work.

Table 3-1. Sequence and other parameters of the synthesized CPPs

CPP Sequence

Molecular

weight (g/mol)

Isoelectric

point

Net charge

at pH 7

Estimated

solubility

R9 RRRRRRRRR 1422.72 pH 14 10

Good water

solubility

R5W3R4 RRRRRWWWRRRR 1981.36 pH 14 10

Good water

solubility

[RW]6 RWRWRWRWRWRW 2071.44 pH 14 7

Good water

solubility

[RW]5 RWRWRWRWRW 1729.04 pH 14 6

Good water

solubility

[RW]4 RWRWRWRW 1386.63 pH 14 5

Good water

solubility

Page 56: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

41

[RW]3 RWRWRW 1044.23 pH 14 4

Good water

solubility

E9 EEEEEEEEE 1179.07 pH 3.3 -8

Good water

solubility

R: Arginine, W: Tryptophan, E: Glutamate

3.2. Cytotoxicity of synthesized CPPs

As a functional delivery vector of anti-cancer drugs, blank CPPs must have high

uptake efficiency with low levels of toxicity against cells (65). Therefore, all

peptides were examined for their toxicity in A549 cells before examining the cell

toxicity of Gem-CPP conjugates. The cytotoxicity was determined by the MTT assay

after 72 h of peptide exposure at concentration range between 5 to 50 µM. As shown

in figure 3-1, the peptides exhibited no toxicity up to a concentration of 10 µM.

Among six CPPs, [RW]4 and [RW]3 did not show toxicity even at 50 µM. However

R5W3R4, R9, and [RW]6 exhibited cell toxicity value of 9%, 12% and 16% at

concentration of 25 µM, respectively. At 50 M concentration, cell death caused by

R9, R5W3R4, [RW]6, and [RW]5 were 37%, 28%, 34% and 14% respectively. The

data revealed that R9 has the greatest toxicity on A549 cells at maximum dose.

Page 57: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

42

Figure 3-1. Cytotoxicity of peptides on A549 cells after 72 h incubation.

3.2.1. Effect of poly-glutamate on toxicity of

cationic CPPs

One of the aim of this study was to investigate the effect of E9 interaction on the

uptake of synthesized cationic CPPs. For this purpose we selected three of the six

peptides and the effect of E9 was evaluated. Surprisingly, although poly-glutamate

had not significant effect on the uptake of peptides, but dramatically decrease

cytotoxicity of peptides. The following section discuss the effect of E9 on toxicity

and uptake of R9, R5W3R4, and [RW]6 in A549 cells line.

0

20

40

60

80

100

120

R5W3R4 [RW]6 [RW]5 [RW]4 [RW]3 R9

5 µM 10 µM 25 µM 50 µM%

cel

l via

bil

ity

Page 58: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

43

Size of nanoconjugates

Zetasizer was used for size determination of CPPs after interaction with poly-

glutamate. Figure 3-2 demonstrates size distribution of three nanoconjugates. The

obtained data showed that after interaction with E9, R9 formed nanosized structures

with diameter of about 300±50 nm. Because of positive charge of R9, it interacts

with E9 electrostatically and forms large nanoparticles. Conjugation of E9 to the

R5W3R4 results in smaller particles than the R9 with diameter of 170±35 nm. In

the case of [RW]6 that contains alternative arginine and tryptophan residues, after

interaction with poly-glutamate smallest nanostructures with diameter of 32±19 nm

were formed.

Figure 3-2. Size distribution of [RW]6/E9, R5W3R4/E9, and R9/E9 nanoparticles.

Page 59: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

44

SEM image of CPP-E9

The morphology of nanostructures after interaction of three CPPs with E9 were

characterized using scanning electron microscopy. Figure 3-3 demonstrates the SEM

images of three CPPs. SEM image of R9/E9 exhibited rod-shaped nanosized

structures. Nona-arginine SEM image showed spherical structure with size of about

40 nm. Similar to R9, interaction of poly-glutamate with R5W3R4 resulted in

formation of smaller rod-shape nanostructure. SEM image of [RW]6 revealed that

interaction of E9 has no effect on the shape and size of this peptide. The size of

[RW]6 after and before adding E9 was about 30 nm and its shape was spherical in

both cases. Taken together, the shape of three CPPs before interaction with E9 is

spherical with size below 60 nm. Interaction of E9 resulted in formation of rod-

shaped structure in case of R9 and R5W3R4.

Page 60: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

45

Figure 3-3. SEM images of R9, R9/E9, R5W3R4, R5W3R4/E9, [RW]6 and

[RW]6/E9 (10 mM).

Cytotoxicity study of peptides and CPP-E9 conjugates

To investigate the cytotoxicity of peptides and the effect of E9 conjugation on the

cytotoxic effects of peptides, MTT assay was performed in A549 cell line. Peptides

and their conjugates in concentrations up to 50 were exposed to cells for 72 hours.

The results showed that R9 had toxicity at concentrations higher than 25 µM. The

cytotoxicity data demonstrated that the toxicity of R9 was concentration-dependent

(Figure 3-4 A). As shown in figure 3-5, R9 displays IC 50 value of 66 µM against

Page 61: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

46

A549 which is increased to 160 µM after conjugation with E9. R5W3R4 (IC50=72

µM) was less toxic against A549 than R9 (Figure 3-4 B, Figure 3-5). Conjugation

with E9 resulted in decreased toxicity of R5W3R4 (IC50=125 µM). [RW]6, that

had no cytotoxicity at 10 µM, showed cell toxicity at 50 µM (Figure 3-4 C),

displaying IC 50 values of 76 µM (Figure 3-5). Conjugation with E9 had no

significant effect on the [RW]6 cytotoxicity (IC50 of 80 vs. 76 µM )

Page 62: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

47

Figure 3-4. Toxicity of peptides and their nanoconjugates on A549 cells determined

by MTT assay. The cells were incubated for 3 days in 10% FBS with or without

peptides (10, 25, and 50 µM) and analyzed for proliferation.

Page 63: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

48

Figure 3-5. IC50 of three peptides after and before interaction with E9.

3.3. Cellular Uptake Studies of CPPs and CPP-E9

conjugates

To explore the effect of electrostatic interaction of E9 with arginine and tryptophan-

rich CPP on the uptake and intracellular localization of the peptides their

internalization into A549 cells was investigated using fluorescent microscopy.

Figures 3-6, 3-7 and 3-8 show the intracellular uptake of three peptides and their

nanoconjugates following 1.5 h incubation at 37 °C. It is evident that the cellular

0

20

40

60

80

100

120

140

R9 R5W3R4 [RW]6

peptides alone

peptides/E9IC

50

M)

Page 64: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

49

uptake of peptides and their conjugates were enhanced with increasing the

concentration. The interaction of E9 with Nona-arginine decreased the uptake of the

peptide into the cell at 10 and 50 µM but increased it at 25 µM. Fluorescent images

revealed that after interaction of E9 with R9 the uptake of nanoconjugates into the

cell nucleus was reduced compared to the R9 alone (Figure 3-6). The image of FITC-

labeled R5W3R4 showed that the uptake of the peptide was slightly decreased after

conjugation with E9 at 10 µM. However, E9 has no considerable effect on the uptake

of R5W3R4 at higher concentration (Figure 3-7). The peptide with three tryptophan

in the middle of nine arginine showed highest uptake into the cells at 25 and 50 µM.

Similar to R9, translocation of R5W3R4/E9 to the cell nucleus was slightly

decreased compared to the R5W3R4 alone. The image of [RW]6 showed decreased

uptake of peptide at 10 and 25 µM concentration. However interaction of E9 with

[RW]6 at 50 µM did not affect its uptake into the cells (Figure 3-8). In conclusion

the information of the fluorescent microscopy of three peptides and their conjugates

demonstrates that the uptake of R5W3R4 peptide is better than R9 and [RW]6. Poly-

glutamate interaction probably decreases translocation of CPP into the cell nucleus

but have not considerable effect on the intracellular delivery of the peptides.

By means of flow cytometry the relative amounts of internalized peptide in

concentration 10 to 50 μM were obtained after 1.5 h incubation at 37 °C. The mean

cellular fluorescence was increased with increasing the concentration for all tested

Page 65: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

50

peptides. Figure 3-9 shows the relative fraction of positive cells (%) after treatment

with peptides and their conjugates. The data of flow cytometry indicated decrease

in percent of positive cells after interaction of R9 with E9 at 10 and 50 and increased

level at 25 µM. The cellular uptake of R5W3R4 was slightly decreased by E9 in all

concentrations. R5W3R4 exhibited best uptakes into the A549 cell at 50 µm. The

flow cytometry data of R9 and R5W3R4 and their conjugates with E9 are consistent

with fluorescent imaging data. E9 exhibited no effect on the cellular uptake of

[RW]6.

Page 66: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

51

Figure 3-6. Fluorescent imaging of A549 cells incubated with 10, 25, and 50 µM

FITC-labeled R9 and R9/E9 for 1.5 h at 37 °C. Control cells were incubated in

RPMI medium without the peptides.

Page 67: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

52

Figure 3-7. Fluorescent imaging of A549 cells incubated with 10, 25, and 50 µM

FITC-labeled R5W3R4 and R5W3R4/E9 for 1.5 h at 37 °C. Control cells were

incubated in RPMI medium without the peptides.

Page 68: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

53

Figure 3-8. Fluorescent imaging of A549 cells incubated with 10, 25, and 50 µM

FITC-labeled [RW]6 and [RW]6/E9 for 1.5 h at 37 °C. Control cells were incubated

in RPMI medium without the peptides.

Page 69: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

54

Figure 3-9. Cellular uptake of FITC-labeled peptides and peptides/E9 in live A549

cells after incubation for 1.5 h at 37 °C. The uptake was measured as the relative

fraction of positive cells (%) from flow cytometric analysis of all live cells positive

for the fluorophore.

3.4. Cellular Uptake studies of six peptides

The uptake and intracellular localization of six FITC-labeled peptides were

examined by fluorescent microscopy. Figures 3-10 shows the intracellular

distribution of the prepared peptides following 1.5 h incubation at. The uptake of all

peptides was examined at concentration of 25 µM because of low toxicity of their in

this concentration. [RW]5 exhibited the lowest uptake into the cells among six

Page 70: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

55

peptides. After entering the cell, much of [RW]5 accumulates around the nucleus.

R5W3R4, [RW]6 and [RW]4 displayed homogeneous staining throughout the

intercellular space and interestingly also stronger intensity in cellular structures that

are morphologically identified as the cell nucleus and nucleoli. Fluorescent image

revealed that [RW]3 enters mainly into the cell nucleus.

Flow cytometry was used to determine the relative amounts of internalized peptide

after 1.5 h incubation at 37 °C. After the incubation, cells were treated with trypsin

to remove the cell surface-bound peptides. The mean cellular fluorescence was

increased with increasing the concentration of CPPs. Figure 3-11 shows the relative

fraction of positive cells (%) after treatment with peptides. The percentage of cell

fluorescence was increased with increasing concentration of all peptides. This effect

was nearly linear in the tested concentrations. There was an increase in fluorescence

intensity of cells treated with peptides of higher amino acid content. However, the

[RW]5 exhibited lower levels of intracellular fluorescence. R5W3R4 and [RW]3

with three tryptophan showed maximum intracellular fluorescence relative to other

peptides.

Page 71: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

56

Figure 3-10. Fluorescence microscopy, visualization of FITC-labeled, R5W3R4

(A,B), [RW]6 (C,D), [RW]5 (E,F), [RW]4 (G,H), and [RW]3 (I,J) in A459 cells.

The top photos show fluorescence microscopy and the bottom bright field of A459

cells. Live cells were treated with 25 µm of peptides for 1.5 h at 37 °C. Control cells

were incubated in RPMI medium without the peptides.

Page 72: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

57

Figure 3-11. Cellular uptake of FITC-labeled peptides in live A549 cells after

incubation. The uptake was measured as the relative fraction of positive cells

(%) from flow cytometric analysis of all live cells positive for the fluorophore.

Measurement of drug loading

After completion of coupling reaction between each peptides and GEM, the amount

of drug loading was calculated by using U.V spectroscopy. We determine amount

of drug from the washing (non-conjugated drug) after coupling completion. Then

the loaded drug for each CPPs was calculated which showed in Table 3-2

Page 73: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

58

Table 3-2. Amount of drug loading efficiency

CPP-GEM conjugates

Amount of drug in 5 mg of each CPP-GEM conjugates

Wt% drug (mg) in 5 mg of each CPP-GEM conjugates

Drug loading efficiency

R5W3R4-GEM 0.58 11.6 15 %

[RW]6-GEM 0.625 12.5 14 %

[RW]5-GEM 0.46 9.2 13.8 %

[RW]4-GEM 0.525 10.5 16.4 %

[RW]3-GEM 0.7 14 17.6 %

3.5. Anti-tumor performance of drug loaded

CPPs

In this study, the anti-tumor activity of Gem or Gem–CPP were investigated using

the MTT test after 72 h incubation. The activity of drug-peptide conjugates, Gem-

R5W3R4, Gem-[RW]6, Gem-[RW]5, Gem-[RW]4 and Gem-[WR]3, was evaluated

and compared with that of free Gem (Fig. 3-12). Drug loaded CPPs at concentrations

of less than 10 µM Gem did not exhibit increased anti-proliferative activity

compared to the free Gem drug. However at 15 and 25 µM, Gem-R5W3R4, Gem-

[RW]6 and Gem-[WR]3 conjugates exhibited decreased cell viability. Free Gem at

Page 74: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

59

concentration of 15 and 25 showed 20% cell viability. The cell viability value was

reduced to 16% and 6% with Gem-R5W3R4 at 15 and 25 µM, respectively. In the

case of Gem-[RW]6, cell viability was decreased to 14% at 15 and 25 µM. Among

the five peptide-drug conjugates, Gem-[RW]3 displayed the highest cytotoxicity at

15 and 25 µM. The cell viability of Gem was decreased to 9% and 5% when it was

coupled to [RW]3 at 15 and 25 µM respectively Gem. In the case of Gem-[RW]5

and Gem-[RW]4 conjugates, cell viability was slightly increased in comparison to

the free Gem drug.

The enhanced cell toxicity of drug-peptide conjugates could be attributed to the high

cellular uptake tendency of the prepared peptides (66) demonstrated by the flow

cytometry and fluorescent microscopy studies.

Page 75: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

60

Figure 3-12. Toxicity of Gem-R5W3R4 (A), Gem-[RW]6 (B), Gem-[RW5] (C),

Gem-[RW]4 (D), Gem-[RW]3 (E) and Gem to A549 cells. The cells were incubated

for 3 days in 10% FBS with or without peptides and analyzed for proliferation

by MTT assay.

Page 76: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

61

Chapter five:

Discussion

Page 77: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

62

4.1. Effect of CPPs on gemcitabine cytotoxicity

Gemcitabine has a therapeutic activity against a variety of solid tumors (67, 68).

However, this anticancer drug suffer from serious limitations. Gemcitabine has very

short plasma circulation time and high hydrophilicity, resulting in limited

intracellular diffusion. In addition, cancer cells acquire resistance over time, which

becomes a major concern for most gemcitabine-related chemotherapies (69). The

resistance of tumor is related to the mechanism of action of this drug. Transport of

gemcitabine into cell requires both the concentrative (hCNT) and equilibrative

(hENT) nucleoside transporters. Considering that most of the gemcitabine uptake

into cells is mediated by hENT1 transporters, hENT1-deficient cells and decreased

expression of hENT1 confers lower gemcitabine toxicity by blocking the cellular

uptake of the drug (70).

Coupling of anticancer drug to CPP may result in numerous advantages, such as

improved solubility, intracellular uptake, bio-distribution and pharmacokinetic

profiles. CPP-based drug delivery system offers great potential for improving

intracellular delivery of therapeutic agents with poor permeability (66, 71). In this

study, in order to protect gemcitabine from rapid metabolic inactivation and to

improve cell absorption, some pro-drugs was designed by coupling gemcitabine

Page 78: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

63

drug to CPP. Furthermore this strategy could be used in fighting hENT1-deficient

and resistant tumor cells by increasing transport of the gemcitabine into the cells.

After synthesis of peptides, the uptake efficiency was investigated. Then,

gemcitabine was covalently attached to the peptides by using succinyl hydrolysable

spacer which allow for the drug release after uptake into the cells (72). The cytotoxic

efficacy of Gem and Gem-CPP conjugates were evaluated. The peptides sequences

were chosen to examine how the presence of tryptophans and their position within

poly-arginine influence the cytotoxic of conjugated Gem drug. It was showed that

the addition of tryptophan to oligo-arginine could increase cellular uptake efficiency.

Peptides with tryptophans in the middle, or evenly distributed along the peptide

sequence exhibited higher uptake than that of nona-arginine. This observation was

consistent with earlier reports (73). With increasing the number of amino acids in

the sequences the toxicity was improved so that Gem-R5W3R4 and Gem-[RW]6

conjugates with 12 residues exhibited the best toxicity in cancer cells.

The results showed that three of five peptides improved cytotoxicity of Gem. Gem-

R5W3R4, Gem-[RW]6 and Gem-[RW]3 conjugates displayed increased toxicity

compared to free Gem. The increased toxicity of these drug-CPP conjugates only

seen at the 15 and 25 µm. One of the possible reasons of this effect maybe contribute

to the mechanism of CPP cellular uptake. Recent studies showed endocytic pathways

to be the major route for internalization of CPPs. Although endocytosis pathway

Page 79: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

64

may be responsible for the vast majority of cationic peptide internalization,

numerous evidences suggest that direct penetration does occur at threshold

concentrations (74). It was shown that at low concentration, endocytosis of peptides

may occur which result endosomal entrapment peptides (75, 76). The cargo

molecules delivered into cell by CPP that taken up by endocytosis undergo

endosomal entrapment and possible metabolic degradation. But at higher

concentration (above 10 µm), direct translocation into cell is predominant. With the

direct uptake, the drug molecules delivered by CPP would not fall into endosomal

entrapment. Possibly, direct uptake of Gem-CPP conjugates at higher concentration

into cell is one of the reasons that improve toxicity of Gem. In addition that the Gem-

CPP conjugates could be useful for the cytoplasmic delivery, it also will be a

valuable strategy to overcome drug resistance. The main mechanisms recognized for

multidrug resistance, which is due to the presence of P-glycoprotein in plasma

membrane, that is, a ‘‘pump” that can extrude a wide range of anticancer drugs. The

ability of CPP-drug conjugates to evade the P-gp efflux pump was confirmed using

several assays (66, 77). Even though free anticancer drug diffused into the cell more

easily than CPPs–drug, free drug was rapidly pumped from the resistant cell lines.

But, the drug entered into cell mediated by CPP was not pumped from the resistant

cells, leading to higher toxicity in resistant cell lines.

Page 80: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

65

4.2. Poly-glutamate interaction with CPPs

According to the obtained results, noncovalent interaction of E9 with arginine and

tryptophan-rich CPPs can reduce the cytotoxicity of the peptides. Previously

arginine-rich CPPs were studied because of their efficient cell internalization

properties (78, 79). Due to the cationic moiety, they can interact with negative part

of cell membrane and efficiently enter to the cell. Therefore at higher concentration,

they can improve the cellular uptake. There is not sufficient number of studies that

could address the toxicity of the present CPPs in cells. In some studies it was

reported that these peptides are non-toxic at low concentration, but in higher dose

they exhibit significant cytotoxicity (80-86). A good CPP to be used as carrier of a

molecule must exhibit no toxicity against cancer cells and healthy cells. Recently, it

was reported that masking a positively charged CPP, with a negatively charged poly-

glutamate that is covalently attached, can reduce toxicity of peptide in vivo (87). We

hypothesized that noncovalent interaction between cationic peptides and poly-

glutamate could reduce the cytotoxicity of the CPPs while maintain their uptake

efficiency in vitro.

Recent studies using mammalian cells showed endocytic pathways particularly

macropinocytosis to be the major route for internalization of CPPs (88, 89). For

Page 81: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

66

example transport of short arginine-rich CPPs into the cell was shown to be occurred

via endocytosis-mediated uptake at low concentration (75). According to this

mechanism, cationic peptides are first simply adsorbed to the anionic moieties, such

as heparan sulfate, sialic, or phospholipidic acid of the cell membrane (19, 90).

However, there are evidences indicating that the uptake mechanisms of arginine-

rich peptides could differ according to several factors such as peptide sequence,

peptide concentration, cell type, and culture medium (90-92). Although

endocytosis pathway may be responsible for the vast majority of cationic peptide

internalization, numerous evidences suggest that direct penetration does occur at

threshold concentrations (93). Recently, it was proposed that CPPs enter to the cell

at higher concentration via direct translocation. The direct translocation of peptides

across cellular membranes include the “inverted micelle model”, the models

involving the formation of membrane pores and the “carpet model” (45, 94).

Cationic peptides accumulate on the cell membrane and eventually lead to form a

pore, through which they can enter into the cell. The formation of pore at high dose

of cationic peptides result in destruction of the cell membrane which may lead to

cell death (95).

When these arginine and tryptophan-rich CPPs were used without interaction by E9,

they enter into the cell at doses below 20 µM, and show no toxicity against A549

cell lines. At higher doses, they transport into the cell directly and can disrupt the

Page 82: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

67

cell membrane that could result in cell death. For arginine-rich CPP the potential for

direct translocation is thought to be related to the ability of the guanidinium of

arginines to form bidentate hydrogen bonds with membrane lipids and to induce

pores in artificial membranes (96). Regarding the point that E9 has net negative

charge, when it is added to the cationic peptides solution, rod-shaped nanostructures

is formed by electrostatic interaction. The SEM image and zeta size showed that the

shape of peptide before interaction with E9 is spherical with size below 60 nm.

Interaction of R9 and R5W3R4 with E9 resulted in rod-shaped nanostructures with

size range between 130-320 nm. Guterstam et al. have reported that the pathway for

cellular uptake of oligo-arginine is dominated by direct membrane translocation,

whereas the pathway for translocation of negatively charged oligonucleotide

mediated by oligo-arginine is dominated by endocytosis (97). Poly-glutamate also

has negative charge similar to oligonucleotides that could change uptake pathway of

cationic CPPs. It is possible that the uptake of this rod-shaped nanostructure occurs

via endocytosis that reduces toxicity of R9/E9 and R5W3R4/E9 compared to R9 and

R5W3R4 alone (fig. 4-1). The SEM image showed that size and shape of [RW]6 is

not changed after adding E9. The size of [RW]6 after and before adding E9 was

about 32 nm with spherical shape. E9 did not change the IC50 of [RW]6. This might

be due to difference in secondary structure of [RW]6 compare to other tow peptides

which cannot interact with E9 similar to R9 and R5W3R4 (98).

Page 83: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

68

Direct translocation is one of the possible reasons for efficient uptake of CPPs by

the cells. Data of FACS analysis showed that in the case of R9 and R5W3R4 uptake

efficiency was slightly decreased after interaction with E9. One of the possible

reasons for decrease uptake of these peptides is the endo-lysosomal entrapment of

the transduced peptides via endocytosis (76). Furthermore, translocation of these

cationic CPPs after interaction with E9 occur via endocytosis that reduce uptake

efficiency of CPPs compared to direct translocation. However in the case of [RW]6,

the uptake efficiency was not changed after conjugation with E9. Likewise the

cytotoxicity of [RW]6 was unchanged after addition of E9.

Page 84: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

69

Figure 4-1. Schematic drawing representing the effect of E9 on the uptake and

cytotoxicity of arginine and tryptophan-rich CPPs.

4.3. Conclusion

In conclusion, the results showed coupling of Gem to three of five peptides including

R5W3R4, [RW]6 and [RW]3 caused increase antitumor activity of drug at high

concentration. Collectively, the findings in this study support the advantages of

using CPPs for improving intracellular delivery of drugs into tumor as well as their

Page 85: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

70

activity. Furthermore, it is possible to overcome gemcitabine resistance associated

with deficiencies in the expression of hENT1 by using CPP strategy.

Also, the obtained results indicate that the cytotoxicity of CPPs could be reduced by

poly-glutamic acid (E9) with slight decrease in uptake efficiency. This observation

may be attributed to the altered uptake mechanism in the presence of E9 i.e. from

direct translocation (pore formation) to endocytosis (fig4-1). This effect may allow

the use of higher amount of CPPs for more efficient drug and gene delivery with

reduced side effects. However, the usefulness of these nanoconjugates for drug and

gene delivery should be examined using model drugs. Moreover studying the effect

of interaction of E9 with CPP on the secondary structure of peptides could be of

importance to explain the exact mechanism of obtained results.

Page 86: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

71

5. References

1. Hodge LS, Taub ME, Tracy TS. Effect of its deaminated metabolite, 2′, 2′-

difluorodeoxyuridine, on the transport and toxicity of gemcitabine in HeLa cells. Biochemical

pharmacology. 2011;81(7):950-6.

2. Paproski RJ, Ng AM, Yao SY, Graham K, Young JD, Cass CE. The role of human nucleoside

transporters in uptake of 3'-deoxy-3'-fluorothymidine. Molecular pharmacology.

2008;74(5):1372-80. Epub 2008/08/02.

3. Moysan E, Bastiat G, Benoit J-P. Gemcitabine versus modified gemcitabine: a review of

several promising chemical modifications. Molecular pharmaceutics. 2012;10(2):430-44.

4. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine.

Annals of oncology : official journal of the European Society for Medical Oncology / ESMO.

2006;17 Suppl 5:v7-12. Epub 2006/06/30.

5. Mackey JR, Mani RS, Selner M, Mowles D, Young JD, Belt JA, et al. Functional nucleoside

transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines.

Cancer research. 1998;58(19):4349-57. Epub 1998/10/10.

6. Vandana M, Sahoo SK. Long circulation and cytotoxicity of PEGylated gemcitabine and its

potential for the treatment of pancreatic cancer. Biomaterials. 2010;31(35):9340-56. Epub

2010/09/21.

7. Barton-Burke M. Gemcitabine: a pharmacologic and clinical overview. Cancer nursing.

1999;22(2):176-83.

8. Reddy LH, Couvreur P. Novel approaches to deliver gemcitabine to cancers. Current

pharmaceutical design. 2008;14(11):1124-37. Epub 2008/05/14.

9. Immordino ML, Brusa P, Rocco F, Arpicco S, Ceruti M, Cattel L. Preparation,

characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic

gemcitabine prodrugs. Journal of Controlled Release. 2004;100(3):331-46.

10. Bergman AM, Pinedo HM, Peters GJ. Determinants of resistance to 2',2'-

difluorodeoxycytidine (gemcitabine). Drug resistance updates : reviews and commentaries in

antimicrobial and anticancer chemotherapy. 2002;5(1):19-33. Epub 2002/07/20.

Page 87: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

72

11. Pili B, Bourgaux C, Amenitsch H, Keller G, Lepetre-Mouelhi S, Desmaele D, et al.

Interaction of a new anticancer prodrug, gemcitabine-squalene, with a model membrane:

coupled DSC and XRD study. Biochimica et biophysica acta. 2010;1798(8):1522-32. Epub

2010/05/04.

12. Santini D, Schiavon G, Vincenzi B, E Cass C, Vasile E, D Manazza A, et al. Human

equilibrative nucleoside transporter 1 (hENT1) levels predict response to gemcitabine in patients

with biliary tract cancer (BTC). Current cancer drug targets. 2011;11(1):123-9.

13. Sebastiani V, Ricci F, Rubio-Viquiera B, Kulesza P, Yeo CJ, Hidalgo M, et al.

Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer:

relationship to molecular mechanisms of gemcitabine resistance and survival. Clinical Cancer

Research. 2006;12(8):2492-7.

14. Storniolo AM, Allerheiligen SR, Pearce HL, editors. Preclinical, pharmacologic, and phase

I studies of gemcitabine. 1997.

15. Chitkara D, Mittal A, Behrman SW, Kumar N, Mahato RI. Self-Assembling, Amphiphilic

Polymer–Gemcitabine Conjugate Shows Enhanced Antitumor Efficacy Against Human Pancreatic

Adenocarcinoma. Bioconjugate chemistry. 2013;24(7):1161-73.

16. Peck TE, Hill S, Williams MA. Pharmacology for Anaesthesia and Intensive Care: Cambridge

University Press; 2008.

17. Fonseca SB, Pereira MP, Kelley SO. Recent advances in the use of cell-penetrating

peptides for medical and biological applications. Advanced drug delivery reviews.

2009;61(11):953-64. Epub 2009/06/23.

18. Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. Recent progress of cell-penetrating

peptides as new carriers for intracellular cargo delivery. Journal of Controlled Release.

2014;174(0):126-36.

19. Vives E, Schmidt J, Pelegrin A. Cell-penetrating and cell-targeting peptides in drug

delivery. Biochimica et biophysica acta. 2008;1786(2):126-38. Epub 2008/04/29.

20. Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side.

Trends in molecular medicine. 2012;18(7):385-93.

Page 88: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

73

21. Eiriksdottir E, Konate K, Langel U, Divita G, Deshayes S. Secondary structure of cell-

penetrating peptides controls membrane interaction and insertion. Biochimica et biophysica

acta. 2010;1798(6):1119-28. Epub 2010/03/11.

22. Ziegler A, Nervi P, Durrenberger M, Seelig J. The cationic cell-penetrating peptide

CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical,

biophysical, and metabolic evidence. Biochemistry. 2005;44(1):138-48. Epub 2005/01/05.

23. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency

virus. Cell. 1988;55(6):1189-93.

24. Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized

human immunodeficiency virus tat trans-activator protein. Cell. 1988;55(6):1179-88. Epub

1988/12/23.

25. Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug

delivery in cancer. Biochimica et biophysica acta. 2011;1816(2):232-46. Epub 2011/08/16.

26. Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia

homeodomain translocates through biological membranes. Journal of Biological Chemistry.

1994;269(14):10444-50.

27. Perez F, Joliot A, Bloch-Gallego E, Zahraoui A, Triller A, Prochiantz A. Antennapedia

homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous

peptide. Journal of cell science. 1992;102(4):717-22.

28. Munyendo WL, Lv H, Benza-Ingoula H, Baraza LD, Zhou J. Cell Penetrating Peptides in the

Delivery of Biopharmaceuticals. Biomolecules. 2012;2(2):187-202.

29. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug

discovery today. 2012;17(15-16):850-60. Epub 2012/04/03.

30. Wright LR, Rothbard JB, Wender PA. Guanidinium rich peptide transporters and drug

delivery. Current Protein and Peptide Science. 2003;4(2):105-24.

31. Tünnemann G, Ter‐Avetisyan G, Martin RM, Stöckl M, Herrmann A, Cardoso MC. Live‐cell

analysis of cell penetration ability and toxicity of oligo‐arginines. Journal of Peptide Science.

2008;14(4):469-76.

Page 89: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

74

32. Green M, Ishino M, Loewenstein PM. Mutational analysis of HIV-1 Tat minimal domain

peptides: Identification of< i> trans</i>-dominant mutants that suppress HIV-LTR-driven gene

expression. Cell. 1989;58(1):215-23.

33. Balayssac S, Burlina F, Convert O, Bolbach G, Chassaing G, Lequin O. Comparison of

penetratin and other homeodomain-derived cell-penetrating peptides: interaction in a

membrane-mimicking environment and cellular uptake efficiency. Biochemistry.

2006;45(5):1408-20.

34. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, et al. Arginine-rich peptides An

abundant source of membrane-permeable peptides having potential as carriers for intracellular

protein delivery. Journal of Biological Chemistry. 2001;276(8):5836-40.

35. De Coupade C, Fittipaldi A, Chagnas V, Michel M, Carlier S, Tasciotti E, et al. Novel human-

derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules.

Biochem J. 2005;390:407-18.

36. Pooga M, Hällbrink M, Zorko M. Cell penetration by transportan. The FASEB journal.

1998;12(1):67-77.

37. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug

discovery today. 2012;17(15):850-60.

38. Elmquist A, Lindgren M, Bartfai T, Langel Ü. VE-Cadherin-Derived Cell-Penetrating

Peptide,< i> p</i> VEC, with Carrier Functions. Experimental cell research. 2001;269(2):237-44.

39. Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, et al. Cellular

uptake of an α-helical amphipathic model peptide with the potential to deliver polar compounds

into the cell interior non-endocytically. Biochimica et Biophysica Acta (BBA)-Biomembranes.

1998;1414(1):127-39.

40. Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, et al. A

new potent secondary amphipathic cell–penetrating peptide for siRNA delivery into mammalian

cells. Molecular therapy. 2008;17(1):95-103.

41. Lin Y-Z, Yao S, Veach RA, Torgerson TR, Hawiger J. Inhibition of nuclear translocation of

transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif

and nuclear localization sequence. Journal of Biological Chemistry. 1995;270(24):14255-8.

Page 90: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

75

42. Rhee M, Davis P. Mechanism of uptake of C105Y, a novel cell-penetrating peptide. Journal

of Biological Chemistry. 2006;281(2):1233-40.

43. Khalil IA, Kogure K, Futaki S, Harashima H. Octaarginine-modified liposomes: enhanced

cellular uptake and controlled intracellular trafficking. International journal of pharmaceutics.

2008;354(1):39-48.

44. Cardoso A, Trabulo S, Cardoso AL, Lorents A, Morais CM, Gomes P, et al. S4 (13)-PV cell-

penetrating peptide induces physical and morphological changes in membrane-mimetic lipid

systems and cell membranes: Implications for cell internalization. Biochimica et Biophysica Acta

(BBA)-Biomembranes. 2012;1818(3):877-88.

45. Trabulo S, Cardoso AL, Mano M, De Lima MCP. Cell-penetrating peptides—mechanisms

of cellular uptake and generation of delivery systems. Pharmaceuticals. 2010;3(4):961-93.

46. Ma D-X, Shi N-Q, Qi X-R. Distinct transduction modes of arginine-rich cell-penetrating

peptides for cargo delivery into tumor cells. International journal of pharmaceutics.

2011;419(1):200-8.

47. Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell

penetrating peptides: Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic

and diagnostic molecules. Peptides. 2014;57:78-94.

48. Snyder EL, Dowdy SF. Cell penetrating peptides in drug delivery. Pharmaceutical research.

2004;21(3):389-93.

49. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, et al. Water-soluble

quantum dots for multiphoton fluorescence imaging in vivo. science. 2003;300(5624):1434-6.

50. Liu BR, Li J-F, Lu S-W, Lee H-J, Huang Y-W, Shannon KB, et al. Cellular internalization of

quantum dots noncovalently conjugated with arginine-rich cell-penetrating peptides. Journal of

nanoscience and nanotechnology. 2010;10(10):6534.

51. Oh E, Delehanty JB, Sapsford KE, Susumu K, Goswami R, Blanco-Canosa JB, et al. Cellular

uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides

and particle size. Acs Nano. 2011;5(8):6434-48.

Page 91: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

76

52. Maus L, Dick O, Bading H, Spatz JP, Fiammengo R. Conjugation of peptides to the

passivation shell of gold nanoparticles for targeting of cell-surface receptors. Acs Nano.

2010;4(11):6617-28.

53. Liu J, Zhao Y, Guo Q, Wang Z, Wang H, Yang Y, et al. TAT-modified nanosilver for combating

multidrug-resistant cancer. Biomaterials. 2012;33(26):6155-61.

54. Hansen MB, van Gaal E, Minten I, Storm G, van Hest J, Löwik DWPM. Constrained and UV-

activatable cell-penetrating peptides for intracellular delivery of liposomes. Journal of Controlled

Release. 2012;164(1):87-94.

55. Bonfanti M, Taverna S, Salmona M, D'Incalci M, Broggini M. p21WAF1-derived peptides

linked to an internalization peptide inhibit human cancer cell growth. Cancer research.

1997;57(8):1442-6.

56. Fahraeus R, Paramio JM, Ball KL, Lain S, Lane DP. Inhibition of pRb phosphorylation and

cell-cycle progression by a 20-residue peptide derived from p16CDKN2/INK4A. Current biology :

CB. 1996;6(1):84-91. Epub 1996/01/01.

57. Morris MC, Vidal P, Chaloin L, Heitz F, Divita G. A new peptide vector for efficient delivery

of oligonucleotides into mammalian cells. Nucleic acids research. 1997;25(14):2730-6.

58. Astriab-Fisher A, Sergueev D, Fisher M, Shaw BR, Juliano RL. Conjugates of antisense

oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular

uptake, binding to target sequences, and biologic actions. Pharmaceutical research.

2002;19(6):744-54.

59. Pooga M, Soomets U, Hallbrink M, Valkna A, Saar K, Rezaei K, et al. Cell penetrating PNA

constructs regulate galanin receptor levels and modify pain. Nature biotechnology. 1998;16.

60. Bloomfield VA. DNA condensation. Current opinion in structural biology. 1996;6(3):334-

41.

61. Liu BR, Lin M-D, Chiang H-J, Lee H-J. Arginine-rich cell-penetrating peptides deliver gene

into living human cells. Gene. 2012;505(1):37-45.

62. Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA. Overcoming multidrug

resistance of small-molecule therapeutics through conjugation with releasable octaarginine

transporters. Proceedings of the National Academy of Sciences. 2008;105(34):12128-33.

Page 92: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

77

63. Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, et al.

Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-

penetrating peptide. Biochemical pharmacology. 2006;71(4):416-25.

64. Aroui S, Brahim S, De Waard M, Bréard J, Kenani A. Efficient induction of apoptosis by

doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the

human breast cancer cell line MDA-MB 231. Cancer letters. 2009;285(1):28-38.

65. Soler M, González-Bártulos M, Soriano-Castell D, Ribas X, Costas M, Tebar F, et al.

Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery

properties. Organic & biomolecular chemistry. 2014;12(10):1652-63.

66. Aroui S, Brahim S, Waard MD, Kenani A. Cytotoxicity, intracellular distribution and uptake

of doxorubicin and doxorubicin coupled to cell-penetrating peptides in different cell lines: a

comparative study. Biochemical and biophysical research communications. 2010;391(1):419-25.

67. Zhao C, Yue B, Liu H, Sun C, Li W, Qu X. SL-01, an oral gemcitabine derivative, inhibited

human cancer growth more potently than gemcitabine. Toxicology and applied pharmacology.

2012;262(3):293-300.

68. Chung W-G, Sandoval MA, Sloat BR, Lansakara-P DSP, Cui Z. Stearoyl gemcitabine

nanoparticles overcome resistance related to the over-expression of ribonucleotide reductase

subunit M1. Journal of Controlled Release. 2012;157(1):132-40.

69. Maksimenko A, Mougin J, Mura S, Sliwinski E, Lepeltier E, Bourgaux C, et al. Polyisoprenoyl

gemcitabine conjugates self assemble as nanoparticles, useful for cancer therapy. Cancer letters.

2013;334(2):346-53.

70. Pili B, Bourgaux C, Amenitsch H, Keller G, Lepêtre-Mouelhi S, Desmaële D, et al.

Interaction of a new anticancer prodrug, gemcitabine–squalene, with a model membrane:

Coupled DSC and XRD study. Biochimica et Biophysica Acta (BBA)-Biomembranes.

2010;1798(8):1522-32.

71. Huang Y, Jiang Y, Wang H, Wang J, Shin MC, Byun Y, et al. Curb challenges of the "Trojan

Horse" approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based

drug delivery. Advanced drug delivery reviews. 2013;65(10):1299-315. Epub 2013/02/02.

Page 93: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

78

72. Cavallaro G, Mariano L, Salmaso S, Caliceti P, Gaetano G. Folate-mediated targeting of

polymeric conjugates of gemcitabine. International journal of pharmaceutics. 2006;307(2):258-

69.

73. Rydberg HA, Matson M, Åmand HL, Esbjörner EK, Nordén B. Effects of tryptophan content

and backbone spacing on the uptake efficiency of cell-penetrating peptides. Biochemistry.

2012;51(27):5531-9.

74. Palm-Apergi C, Lönn P, Dowdy SF. Do cell-penetrating peptides actually “penetrate”

cellular membranes? Molecular Therapy. 2012;20(4):695.

75. Brock R. The Uptake of Arginine-Rich Cell-Penetrating Peptides: Putting the Puzzle

Together. Bioconjugate Chemistry. 2014;25(5):863-8.

76. Mellert K, Lamla M, Scheffzek K, Wittig R, Kaufmann D. Enhancing endosomal escape of

transduced proteins by photochemical internalisation. PloS one. 2012;7(12):e52473.

77. Castex C, Merida P, Blanc E, Clair P, Rees AR, Temsamani J. 2-Pyrrolinodoxorubicin and its

peptide-vectorized form bypass multidrug resistance. Anti-cancer drugs. 2004;15(6):609-17.

78. Amand HL, Bostrom CL, Lincoln P, Norden B, Esbjorner EK. Binding of cell-penetrating

penetratin peptides to plasma membrane vesicles correlates directly with cellular uptake.

Biochimica et biophysica acta. 2011;1808(7):1860-7. Epub 2011/03/31.

79. Rydberg HA, Matson M, Amand HL, Esbjorner EK, Norden B. Effects of tryptophan content

and backbone spacing on the uptake efficiency of cell-penetrating peptides. Biochemistry.

2012;51(27):5531-9. Epub 2012/06/21.

80. Saar K, Lindgren M, Hansen M, Eiriksdottir E, Jiang Y, Rosenthal-Aizman K, et al. Cell-

penetrating peptides: a comparative membrane toxicity study. Analytical biochemistry.

2005;345(1):55-65. Epub 2005/09/03.

81. Stalmans S, Wynendaele E, Bracke N, Gevaert B, D’Hondt M, Peremans K, et al. Chemical-

functional diversity in cell-penetrating peptides. PloS one. 2013;8(8):e71752.

82. Tunnemann G, Ter-Avetisyan G, Martin RM, Stockl M, Herrmann A, Cardoso MC. Live-cell

analysis of cell penetration ability and toxicity of oligo-arginines. Journal of peptide science : an

official publication of the European Peptide Society. 2008;14(4):469-76. Epub 2007/12/12.

Page 94: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

79

83. Verdurmen WP, Wallbrecher R, Schmidt S, Eilander J, Bovee-Geurts P, Fanghänel S, et al.

Cell surface clustering of heparan sulfate proteoglycans by amphipathic cell-penetrating peptides

does not contribute to uptake. Journal of controlled release. 2013;170(1):83-91.

84. Drin G, Cottin S, Blanc E, Rees AR, Temsamani J. Studies on the internalization mechanism

of cationic cell-penetrating peptides. The Journal of biological chemistry. 2003;278(33):31192-

201. Epub 2003/06/05.

85. Maiolo JR, Ferrer M, Ottinger EA. Effects of cargo molecules on the cellular uptake of

arginine-rich cell-penetrating peptides. Biochimica et biophysica acta. 2005;1712(2):161-72.

Epub 2005/06/07.

86. Lorents A, Kodavali PK, Oskolkov N, Langel U, Hallbrink M, Pooga M. Cell-penetrating

peptides split into two groups based on modulation of intracellular calcium concentration. The

Journal of biological chemistry. 2012;287(20):16880-9. Epub 2012/03/23.

87. Aguilera TA, Olson ES, Timmers MM, Jiang T, Tsien RY. Systemic in vivo distribution of

activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integrative

biology : quantitative biosciences from nano to macro. 2009;1(5-6):371-81. Epub 2009/12/22.

88. Liu BR, Lo S-Y, Liu C-C, Chyan C-L, Huang Y-W, Aronstam RS, et al. Endocytic Trafficking of

Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a

Penetration Accelerating Sequence. PloS one. 2013;8(6):e67100.

89. Lee SH, Castagner B, Leroux J-C. Is there a future for cell-penetrating peptides in

oligonucleotide delivery? European Journal of Pharmaceutics and Biopharmaceutics.

2013;85(1):5-11.

90. Kosuge M, Takeuchi T, Nakase I, Jones AT, Futaki S. Cellular internalization and

distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum,

and plasma membrane associated proteoglycans. Bioconjugate chemistry. 2008;19(3):656-64.

Epub 2008/02/14.

91. Hirose H, Takeuchi T, Osakada H, Pujals S, Katayama S, Nakase I, et al. Transient focal

membrane deformation induced by arginine-rich peptides leads to their direct penetration into

cells. Molecular therapy : the journal of the American Society of Gene Therapy. 2012;20(5):984-

93. Epub 2012/02/16.

Page 95: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

80

92. Mager I, Eiriksdottir E, Langel K, El Andaloussi S, Langel U. Assessing the uptake kinetics

and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence

assay. Biochimica et biophysica acta. 2010;1798(3):338-43. Epub 2009/11/17.

93. Palm-Apergi C, Lonn P, Dowdy SF. Do cell-penetrating peptides actually "penetrate"

cellular membranes? Molecular therapy : the journal of the American Society of Gene Therapy.

2012;20(4):695-7. Epub 2012/04/05.

94. Herce HD, Garcia AE, Litt J, Kane RS, Martin P, Enrique N, et al. Arginine-rich peptides

destabilize the plasma membrane, consistent with a pore formation translocation mechanism of

cell-penetrating peptides. Biophysical journal. 2009;97(7):1917-25. Epub 2009/10/07.

95. Langel Ü. Cell-Penetrating Peptides: Methods and Protocols: Humana Press; 2010.

96. Verdurmen WP, Thanos M, Ruttekolk IR, Gulbins E, Brock R. Cationic cell-penetrating

peptides induce ceramide formation via acid sphingomyelinase: implications for uptake. Journal

of controlled release : official journal of the Controlled Release Society. 2010;147(2):171-9. Epub

2010/07/14.

97. Guterstam P, Madani F, Hirose H, Takeuchi T, Futaki S, El Andaloussi S, et al. Elucidating

cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and

translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochimica et biophysica

acta. 2009;1788(12):2509-17. Epub 2009/10/03.

98. Rydberg HA, Carlsson N, Norden B. Membrane interaction and secondary structure of de

novo designed arginine-and tryptophan peptides with dual function. Biochemical and biophysical

research communications. 2012;427(2):261-5. Epub 2012/09/20.

Page 96: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

81

6. Persian part چکیده:

مقدمه:

جمسیتابین یک داروی ضد سرطان بوده که در درمان سرطان های پانکراس، ریه، مثانه و پستان موثر است. با

ناقل جهت عبور از غشا، هیدروفیلیسیته به این وجود این دارو چند عیب از قبیل نیمه عمر پلاسمایی پایین، نیاز

بالا و وجود مقاومت در بعضی سلول های سرطانی دارد. در سال های اخیر نشان داده شده که پپتید های نفوذ گر

سلولی قادر هستند نفوذ پذیری مولکول های اتصال یافته به خود را به درون سلول افزایش دهند.

اهداف:

اسید آمینه آرژنین و تریپتوفان به صورت بلوک و یا 12تا 6پپتید کوچک که حاوی در این مطالعه ابتدا چند

. سپس جمسیتابین به پپتید ها متصل شده و میزان سمیت آن بر روی رده سلولی بود سنتز شدیک در میان

A549 شدپپتید بررسی -در حالت آزاد دارو و کونژوگه دارو.

روش کار:

ا روش سنتز پپتید در فاز جامد ساخته شدند. سپس میزان ورود به سلول و توزیع پپتید ها به صورت دستی ب

ر د به وسیله فلوسیتومتری و میکروسکوپ فلورسنت بررسی شد. FITCدرون سلولی پپتید های لیبل شده با

Page 97: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

82

ژوگه ونن سمیت هر پپتید و کمرحله بعد دارو توسط لینکر سوکسینیک آنهیدرید به هر پپتید متصل شده و میزا

مورد بررسی قرار گرفت. MTT دارو با روش-پپتید

:ایجبحث و نت

-GEM-R5W3R4, GEMدارو شامل -پپتید سنتز شده، سه کونژوگه پپتید 5داده ها نشان دادند که از بین

[RW]6, GEM-[RW]3 25 ,15افزایش سمیت را در مقایسه با دارو در غلظت های µM .ایجاد میکند

نفوذ پذیری دارو را به درون سلول افزایش داده و همچنین خروج آزادانه دارو را نیز ار درون سلول این پپتید ها

کاهش میدهند.

نتیجه گیری:

یافته های این مطالعه نشان داد که استفاده از پپتید های نفوذ گر سلولی باعث افزایش اثر بخشی جمسیتابین بر

ز یافته را نی تروش امکان از بین بردن سلول های سرطانی مقاوم روی سلول های سرطانی می شود. همچنین این

افزایش می دهد.

Page 98: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

83

چکیده فارسی:

یک آنالوگ مهم دئوکسی سیتیدین بوده که به صورت ساختاری مرتبط (Gemcitabine, dFdC)جمسیتابین

قند دئوکسی ریبوز با فلوئور جایگزین شده ′2به دئوکسی سیتیدین بوده که در آن دو اتم هیدروژن در موقعیت

فعال است. این دارو بر روی سرطان های مختلفی از قبیل ریه، پانکراس، مثانه و پستان فعالیت نشان داده است.

لی د توسط دئوکسی سیتیدین کیناز داخل سلودشدن جمسیتابین در درون سلول نیازمند فسفریلاسیون های متع

(dFdCDP)دی و تری فسفات نوکلئوتید می دهد. در میان آنها جمسیتابین دی فسفات بوده که تشکیل مونو،

میتواند باعث مهار dFdCDPمتابولیت های فعال می باشند. (dFdCTP)و جمسیتابین تری فسفات

یک مهار کننده dFdCTPضروری می باشد. DNAو بازسازی ریبونوکلئوتید ردوکتاز شده که برای سنتز

DNA 1راز بوده و منجر به اتمام زنجیره سازی، شکستن رشته و به دام افتادن کمپلکس برش توپوایزومراز پلیم

که برای آپوپتوزیس القا شده توسط جمسیتابین ضروری است، می شود. با این وجود جمسیتابین چند مشکل در

به طور وسیعی در خون و یکسری درمان سرطان دارد. جمسیتابین با توجه به وزن مولکولی پایین آن به سرعت و

ل شده و بنابراین نیمه عمر پلاسمایی یدتب )difluorodeoxyuridine-/, 2/2(از بافت ها به شکل غیر فعال آن

پایینی دارد. بعلاوه انتقال جمسیتابین از غشا سلولی نیازمند ترانسپورتر های نوکلئوزیدی می باشد. بیشترین

عموما خیلی hENT1انجام میشود و سلول هایی با کمبود hENT1ول توسط انتقال جمسیتابین به درون سل

به این دارو مقاوم هستند. همچنین افزایش مقدار مقاومت باعث کاهش اثر دارو شده و بنابراین دارو در دوزهای

Page 99: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

84

استفاده اخیربالا بایستی استفاده گردد که باعث اثرات جانبی مانند سمیت کبدی، آنمی و ... میشود. در سال های

)پپتید های نفوذ گر سلولی( برای افزایش نفوذ پذیری دارو رونق فراوانی یافته است. CPPsاز

CPPs گروهی از پپتیدهای کوچک می باشند که میتوانند از غشا سلولی عبور کرده و در این

راستا قادر به انتقال مولكولهای متصل به خود به داخل سلول هستند. این پپتیدها را با

، توالی گذرنده غشا، پپتید PTDsاسمهای گوناگونی از قبیل دامنه های انتقال پروتئینی

معرفی میکنند. در دو دهه گذشته CPP تروجان یا به طور رایج پپتید نافذ سلولی

عنوان سیستم های دارورسانی جدید راه تازه ای را پیش روی محققین ها بهCPPاستفاده از

گشوده است. تحقیقات گسترده ای در مورد این سیستم های داروسانی، مخصوصا بر روی

داروهای ضدسرطانی انجام شده و در بعضی از حوزه ها به نتایج قابل توجهی دست یافته

کشف (HIV-1) 1از ویروس نقص اکتسابی نوع1982 اند. اولین نمونه این پپتیدها در دهه

پپتید، Tatبعد از کشف نام گذاری کردند Tat وجداسازی شد و آنرا با نام پپتید

مگس سرکه Homeodomain Antennapedia اسید آمینه ای مشتق شده از 16نفوذکننده

کشف و یا ساخته پپتیدی توالیهای خاصهای مختلفی از این و در زمان حاضر گونه آمفی فیلیک جدا سازی شد

.شده است

: شامل که میكنند تقسیم دسته سه به منشا، اساس بر را ها CPP محققین از تعدادی

Page 100: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

85

مشتقات پروتئینی : شامل پپتیدهای طبیعی میباشد که در موجودات وجود دارد و باعث افزایش نفوذ -1

ماکرومولكول های به داخل سلول میشوند.

2- : Chimeric شامل ترکیب مشتقات پروتئینی به همراه پپتیدهای سنتزی میباشند.

و میشوند دتولی صنعتی یا آزمایشگاهی شرایط در ها آمینه اسید از پپتید سنتز بوسیله که: سنتتیک -3

.ندارد وجود آنها برای طبیعی نمونه

یا با سلولها را به ورود اجازه ها پروتئین این که است این هست مسلم آنچه CPP مكانیسم مورد در

ووالانیک ایجاد پیوندهای به قادر پپتیدها این .میكنند میسر غشا به جدی آسیب بدون و رسپتورها بدون

کاهش و اثر افزایش به منجر که هستند داروها قبیل از دیگر مواد با داخلی الكترواستاتیكی نیروهای یا

مکانیسم ورود به سلول این پپتید ها میتواند میشود. مطالعات مختلف نشان داده اند که آنها سمیت

توالی به صورت اندوسیتوز و یا ورود مستقیم باشد. ، وتلف از قبیل نوع سلول، بارخبراساس شرایط م

مواد مختلفی از قبیل انواع نانوذرات )مانند نانوذرات طلا، نقره، کوانتوم دات(، نانوحامل های دارو )مانند

و ... توسط این حامل siRNAو DNAوها )مانند دوکسوروبیسین، تاکسول(، لیپوزوم ها، میسل ها(، دار

ها به صورت موثر به درون سلول ها انتقال داده شده اند.

Page 101: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

86

اهداف

سلولی تبرداش و تنی برون خصوصیات بررسی و پپتید –جمسیتابین های کونژوگه نانو تهیه :کلی هدف

آنها

طرح اختصاصی اهداف

6 محتوی یتوال با آرژنین تریپتوفان، آمینه اسیدهای برمبنای سلولی نفوذگر پپتید ارزیابی و ساخت -1

.اسید امینو 12 الی

شده نتزس اولیگوپپتیدهای سلولی برداشت میزان بررسی و شده سنتز پپتیدهای نمودن فلورسانس -2

. فلوئورسانس میکروسکپی از استفاده با

صوصیاتخ و بارگیری میزان بررسی و نظر مورد اولیگوپپتیدهای به جمسیتابین شیمیایی بارگیری -3

.دارو رهش

MTT روش به ها نانوکونژوگه سلولی سمیت بررسی -4

روش کار

:سنتز نانوذرات پپتیدی -1

که نقش فاز resin AM Amide Rink میلی گرم 125در ابتدا : متورم سازی رزین

اضافه DCM سی سی 2 قرار داده شد و به آن سی سی 25جامد را برای سنتز داشت در داخل یک بشر

Page 102: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

87

دقیقه جهت تورم 30 گردید. بشر مورد نظر در دمای اتاق و تحت شرایط بدون نور به مدت

.رزین نگهداری شد

از رزین بوسیله محلول Fmoc فرایند جدا کردن گروه حفاظت کننده Fmoc:جداکردن

در داخل ظرف واکنش انجام گردید، مدت زمان این (% 20)دی متیل فرمامید و پیپریدین

(DMFبار با 4و DCMبار با 4سپس شستشو انجام میشود ) .فرایند با توجه به تست کایزر میباشد

محاسبه مقادیر مواد لازم برای سنتز پپتید: مقدار اسید آمینه لازم برای اتصال با

.آزاد محاسبه شدبرابر مقدار لودینگ رزین باگروه آمین 3رزین،

پس از وزن TBTU مراحل اتصال اسید آمینه به رزین: اسید آمینه مورد استفاده و

به داخل ظرف واکنش TBTU حل شدند. اسید آمینه به همراه DMF میلی لیتر 2شدن در

ریخته و ظرف روی همزن مغناطیسی قرار داده میشود. این مراحل تحت شرایط اتمسفر خنثی

به ظرف واکنش DIPEA دقیقه ماده 1 گاز آرگون ویا نیتروژن( انجام گرفت و بعد از حدود )

دقیقه بود که برای حصول اطمینان از تست 90 اضافه میگردید. زمان انجام این مرحله حدود

کایزر استفاده شد. چنانچه تست کایزر آزاد بودن گروه های آمین رزین و یا اسید آمینه متصل

رزین را نشان میداد کل این مراحل مجددا تكرار میگردید. بعد از بررسی و مثبت بودن اتصال اسید آمینه به

به گروه های آمین بوسیله تست کایزر مرحله

Page 103: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

88

شستشو را انجام و مراحل اتصال اسید آمینه و شستشو به همین طریق

برای اسید آمینه های دیگر تكرار میگردید.

1 /1های متصل به رزین ابتدا معادل به اسید آمینه FITC جهت اتصال :ی پپتیدیبه توالFITC اتصال

.)دی کلرومتان: دی متیل فرمامید: پیریدن( حل میگردید12:7:5در نسبت حجمی FITCبرابرمولی رزین،

FITC هایی که گروه حل شده در محلول فوق الذکر به رزین و اسید آمینه Fmoc ،اضافه آنها جدا شده بود

ساعت بر روی همزن مغناطیسی در شرایط بدون نور قرار داده شد. بعد از زمان 12و ظرف واکنش برای مدت

به گروه آمین انتهای اسید آمینه FITC مورد نظر جهت حصول از اتصال

.از تست کایزر استفاده میگردید

:پپتید-تهیه کونژوگه دارو

رید و پپتید ها متصل شد. بعد از سنتز پپتید، سوکسینیک آنهید جمسیتابین به وسیله لینکر سوکسینیل به

DIEPA وDMF ساعت هم خوردن با انجام 2ساعت افزوده می شوند. بعد از 2رزین برای -به پپتید

پپیتد شستشو میشوند. برای اتصال پپتید سوکسینه شده به -آزمون کایسر در صورت تکمیل واکنش رزین

افزوده شده و به پپتید سوکسینه DMA/DMFبه جمسیتابین حل شده در مخلوطی از TEAجمسیتابین،

ساعت تحت هم زدن شدید قرار داده میشود. سپس مطابق روش های 48شده افزوده میشود. واکنش برای

جمسیتابین از رزین جدا شد.-مرحله بعد پپتید

Page 104: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

89

ا نیاز به کوکتل برش میباشد. کوکتل برش ه جدا سازی پپتید از رزین: برای جدا کردن این اسید آمینه

phenol /water TIPS / TFA/ (88:2:5:5 v/v/v/v, 3 mL) پپتید مورد-برای جدا سازی رزین

پپتید شستشو داده شد و تحت شرایط خلا به مدت یک شب خشک و -استفاده قرار گرفت. در ابتدا رزین

میلی لیتر 3پپتید -میلی گرم از رزین 30سپس برای محاسبه دقیق مقدار کوکتل برش وزن و به ازای هر

ل کنش ریخته و کوکتپپتید در داخل ظرف وا-محلول کوکتل برش استفاده شد. جهت فرایند جداسازی رزین

ساعت بود که به صورت 2تحت محیط خنثی به آن اضافه گردید. مدت زمان این فرایند حدود

سپس بالن را جهت کاهش حجم محلول درون آن به روتاری متصل به خلا وصل کردیم تا .شدید همزده شد

مزن مغناطیسی قرار داده حجم اولیه برسد. بعد از کاهش حجم محلول بالن روی ه 4/3حجم آن به حدود

ای دی اتیل اتر اضافه گردید. پپتیده TFAبرابر حجم 10شد و تحت اثر گاز آرگون یا نیتروژن، به آن معادل

دقیقه قرار دادیم. این مرحله مجددا سه بارتكرار 4به مدت RPMI 4000 حاصل را در سانتریفیوژ با دور

میگردید.

MTTبررسی سمیت بوسیله ارزیابی

.انجام گرفت MTT دارو بوسیله ارزیابی -بررسی سمیت نانوذرات پپتیدی، دارو و نانوذرات

خانه انتقال یابند که برای دست یافتن به 96ابتدا لازم بود سلولها به پلیت MTT برای انجام

این امر ابتدا سلول های متصل شده به کف فلاسک باید جدا میگردیدند و بعد از شمارش به

Page 105: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

90

یافتند. برای مرحله جداسازی در ابتدا محیط رویی فلاسک بوسیله های پلیت انتقال می خانه

میلی لیتر شستشو داده شدند. جهت 5به مقدار PBS پیپت استریل خارج و دو مرتبه بوسیله

دقیقه 5-3ومدت زمان cm2 25 تریپسین برای هر فلاسک μl 500 جدا کردن سلول ها از

اضافه شد و برای به فلاسک FBSنثی شدن اثرات سمی تریپسین ، محیط کشت حاوی استفاده شد. جهت خ

میلی 15جداسازی تریپسین از محیط کشت، آنها را در داخل فالكن تیوب

.دقیقه قرار داده شد 1و به مدت RPMI 1000 لیتری ریخته و در داخل سانتریفیوژ با سرعت

بعد از سانتریفیوژ، تریپسین همراه با محیط کشت دور ریخته شد و به سلولها، محیط کشت

جهت . جدید اضافه گردید

سلول لحاظ گردید که با توجه به 15000خانه حدود 96کشت سلول در هر خانه از پلیت

.انجام گرفت FBS مقدار سلول شمارش شده و رقیق سازی مقدار آن با محیط کشت حاوی

به هر یک از خانه ها اضافه گردید. بعد از انجام μl 200 محیط کشت وسلولها بوسیله سمپلر

ساعت جهت تیمار 24این مرحله پلیت ها در انكوباتور با شرایط توضیح داده شده برای مدت

دارو از غلظتهای -سازی با نانوذرات و دارو قرارداده شد. جهت تیمارسازی سلولها با نانوذرات پپتیدی

ساعت استفاده شد. 72میكرومولار و در سه پلیت برای زمانهای 25و 15، 10، 5

حیط کشت اضافه شد. پلیت ها به به م MTT ابتدا محیط قبلی خارج گردید و پودر MTT رای انجام ب

ساعت در داخل انكوباتور گذاشته شد تا آنزیم 4مدت

Page 106: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

91

سوکسینات دهیدروژناز کریستال های زرد را به کریستال های آبی فورمازون تبدیل کند. این

کریستال های آبی رنگ قبل از رنگ سنجی نیاز به محلول سازی دارند که این عمل بوسیله

DMSO 200 μl 25و μl برای هر خانه انجام گرفت. در ارزیابی نبافر سورنسو MTT شدت رنگ

.آبی ایجاد شده با مقدار سلول هایی که دارای فعالیت متابولیكی هستند رابطه مستقیم دارند

نانومتر بوسیله دستگاه 570 خانه های پلیت در طول موج رنگ سنجی

صورت گرفت. Tek Bioاسپكتروفتومتر

میکروسکپ فلورسنت:

ساعت در انکوباتور 24خانه به مدت 6سلول در هر خانه در پلیت 510×3با دانسیته 549Aابتدا سلول ها ی

ساعت بر روی سلول ها تیمار شد. سپس 1.5ساعت پپتید های فلورسنته به مدت 24قرار داده شد. بعد از

سه بار شستشو شده و با فرمالدهید فیکس شدند. تصویر برداری توسط میکروسکپ صورت PBSسلول ها با

گرفت.

فلوسیتومتری:

برای بررسی کمی میزان ورود پپتیدها صورت گرفت.

ساعت در انکوباتور 24خانه به مدت 6در هر خانه در پلیت 510×3را با دانسیته A549ابتدا سلول های

PBSساعت با سلول ها تیمار شدند و سه بار با 1.5د های فلورسنته به مدت قرار داده شد. سپس پپتی

Page 107: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

92

بعد از شستشو سلول ها توسط تریپسین از کف پلیت ها جدا شدند و بدنبال آن سانتریفیوژ شستشو شدند.

شدند. سلول ها در دستگاه فلوسیتومتری قرار داده شدند تا بررسی خواص فلورسانس آنها صورت گیرد.

ج و بحث:نتای

پپتید ها با روش فاز جامد سنتز شدند. در هر مرحله از سنتز توسط آزمون کایسر میزان تکمیل کوپلینگ بررسی

شد.

سمیت پپتید های سنتز شده:

و 3[RW]پپتید سنتز شده 6ند. اما از میان دمول سمیتی نشان نداومیکر 10پپتید های سنتز شده در غلظت

[RW]4 اما داشتندنز سمیتی نی 50غلظت های حتی در .R9 ،[RW]6 وR5W3R4 سمیت کمی در غلظت

نشان دادند. 50و سمیت تقریبا قابل توجهی در غلظت 25

اثر توالی پلی گلوتامات بر روی میزان ورود و سمیت پپتید ها:

نتایج نشان داد که اینترکشن پلی گلوتامات با پپتید های کاتیونیک مورد مطالعه در این طرح باعث کاهش سمیت

میکرو مول و بعد از واکنش با گلوتامات به 66برابر بود با R9برای IC50آنها می شوند. به گونه ای که میزان

که بعد از اثر آن به 72ر گلوتامات برابر بود با قبل از اث IC50نیز میزان R5W3R4افزایش یافت. برای 160

میکرولیتر افزایش یافت. 125

Page 108: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

93

مطالعه میکروسکپ فلورسنت:

بوده و این پپتید بعد از ورود به درون 5[RW]عکس های فلورسنت نشان داد که کمترین میزان نفوذ توسط

د از ورود رنگ آمیزی همگنی بع 6[RW]و 4[RW]و R5W3R4سلول در اطراف هسته تجمع پیدا میکند.

بیشتر وارد هسته سلول میشود. 3[RW]در سراسر سلول نشان داد. همچنین

فلوسیتومتری:

داده های آن نشان داد که با افزایش تعداد اسید آمینه، شدت فلورسنت محاسبه شده نیز بیشتر می شود. هماهنگ

بیشترین شدت 3[RW]و R5W3R4داشته و کمترین شدت و میزان ورود را 5[RW]با عکس های فلورسنت

فلورسنت را نشان دادند.

دارو:-سمیت سلولی کونژوگه های پپتید

اثر خاصی بر روی سمیت نداشته است. اما 10داده ها نشان داد که دارو متصل شده به پپتید در غلظت های زیر

و Gem-[RW]6و Gem-R5W3R4دارو شامل -کونژوگه پپتید میکرو مول سه 25و 15در غلظت های

Gem-[RW]3 .میزان سمیت بیشتری را نسبت به خود دارو به تنهایی نشان دادند

در مجموع نتایج به ما نشان داد که پپتید ها نفوذ گر سلولی قادر هستند نفوذ پذیری داروهای ضد سرطانی را به

ت پیدا کرده در مقابل مدید بر سلول های مقاودرون سلول افزایش دهند. در کارهای آینده اثرات این کونژوگه ج

Page 109: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

94

جمسیتابین بررسی خواهد شد. همچنین تاثیر این پپتید ها بر خصوصیات فارماکوکینیتیک جمسیتابین در محیط

in vivo .بررسی خواهد شد

Page 110: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

95

دانشگاه علوم پزشكی تبریز

دانشكده علوم نوین پزشكی

کارشناسی ارشد رشته نانو تكنولوژی پزشكیپایان نامه جهت دریافت درجه

:عنوان

پپتید و بررسی خصوصیات برون تنی و سلولی آنها-تهیه نانوکونژوگه های جمسیتابین

صمد موسی فرخانینگارش:

اساتید راهنما: دکتر هادی ولیزاده ، دکتر جاوید شهبازی مجرد

پروین ذاکری میلانی استاد مشاور: دکتر

دانشكده داروسازی، مرکز ریز فناوری دارویی و مرکزتحقیقات کاربردی داروییمحل اجرا:

دانشگاه علوم پزشكی تبریز

2/93-4/11شماره پایانامه: 1394اردیبهشت

Page 111: Tabriz University of Medical Sciences SYNTHESIS, IN VITRO

96

دانشگاه علوم پزشكی تبریز

دانشكده علوم نوین پزشكی

ارشد رشته نانو تكنولوژی پزشكیپایان نامه جهت دریافت درجه کارشناسی

:عنوان

پپتید و بررسی خصوصیات برون تنی و سلولی آنها-تهیه نانوکونژوگه های جمسیتابین

نگارش:

صمد موسی فرخانی

اساتید راهنما:

دکتر هادی ولیزاده ، دکتر جاوید شهبازی مجرد

استاد مشاور:

دکتر پروین ذاکری میلانی

2/93-4/11شماره پایانامه: 1394اردیبهشت