97
HAL Id: tel-01693259 https://tel.archives-ouvertes.fr/tel-01693259 Submitted on 26 Jan 2018 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Tomoscintigraphie myocardique double-isotope 23 I/99mT c) sur gamma-caméra à semi-conducteur : aspects méthodologiques et applications cliniques Tanguy Blaire To cite this version: Tanguy Blaire. Tomoscintigraphie myocardique double-isotope (¹ 23 I/99mT c) sur gamma-caméra à semi-conducteur : aspects méthodologiques et applications cliniques. Médecine humaine et pathologie. Normandie Université, 2017. Français. NNT : 2017NORMC418. tel-01693259

Tanguy Blaire - TEL

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tanguy Blaire - TEL

HAL Id: tel-01693259https://tel.archives-ouvertes.fr/tel-01693259

Submitted on 26 Jan 2018

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Tomoscintigraphie myocardique double-isotope(¹23I/99mTc) sur gamma-caméra à semi-conducteur :

aspects méthodologiques et applications cliniquesTanguy Blaire

To cite this version:Tanguy Blaire. Tomoscintigraphie myocardique double-isotope (¹23I/99mT c) sur gamma-caméra àsemi-conducteur : aspects méthodologiques et applications cliniques. Médecine humaine et pathologie.Normandie Université, 2017. Français. �NNT : 2017NORMC418�. �tel-01693259�

Page 2: Tanguy Blaire - TEL

THESE

Pourobtenirlediplômededoctorat

SpécialitéRechercheclinique,innovationtechnologique,santépublique

Préparéeauseindel’UniversitédeCaenNormandie

Tomoscintigraphiemyocardiquedouble-isotope(123I/99mTc)sur

gamma-caméraàsemi-conducteur:aspectsméthodologiquesetapplicationscliniques.

Présentéeetsoutenuepar

TanguyBLAIRE

ThèsedirigéeparMonsieurleProfesseurAlainMANRIQUE,laboratoireSignalisation,

électrophysiologieetimageriedeslésionsd’ischémie-reperfusionmyocardique

SEILIRM

Thèsesoutenuepubliquementle26/09/2017

devantlejurycomposéde

MadameClaudeHOSSEIN-FOUCHERMaîtredeConférences,CHULille

UniversitéLille2Examinateurdethèse

MadameLaetitiaIMBERTPhysicienne,PhD,CHUdeNancy

UniversitédeLorraine,INSERM,UMR-947NancyExaminateurdethèse

MonsieurDenisAGOSTINI

ProfesseurdesUniversités,HDR,

CHUdeCaen,EA4650,UniversitéCaenNormandie

Examinateurdethèse

MonsieurAlainMANRIQUEProfesseurdesUniversités,HDR,

GIPCYCERON,UniversitéCaenNormandieDirecteurdethèse

MonsieurDimitriPAPATHANASSIOUProfesseurdesUniversités,HDR,

InstitutGodinot,UniversitédeReimsRapporteurdethèse

MonsieurFrançoisROUZETProfesseurdesUniversités,HDR,

CHUParis-Bichat,UniversitéParis-DiderotRapporteurdethèse

Page 3: Tanguy Blaire - TEL

I

REMERCIEMENTS

Cetravailaétéeffectuédansl’unitéEA4650duGIPCycéronetlesservicesdemédecine

nucléaireduCHUdeCaenetdel’HôpitalPrivéLeBois.Ils’estdérouléenparallèled’uneactivité libéraledemédecinenucléaireàLille. Je tiensà remercier leséquipesquiont

permisetaccompagnéscetravail:MrleProfesseurAlainManrique,Directeurdel’EA4650,Investigationchezl’homme–GIP

Cycéron,MédecinNucléaireauCHUdeCaen,mondirecteurdethèse.Je te remercie sincèrement d’avoir accepté la démarche saugrenue d’un médecin

nucléaire installé en libéral te sollicitant pour commencer une thèse d’université. Tagentillesse, ta mansuétude, ta rigueur intellectuelle, ta disponibilité et tonaccompagnement, ont été un phare tout au long de ce travail. Nous avons créé et

développé des liens amicaux et une confiance réciproque, qui ont éclipsé les raresmomentsdedouteconcernant l’aboutissementdecetravail. J’aiénormémentappris,y

compris sur le plan humain. Ce travail constitue ce jour l’une de mes meilleuresexpériencesprofessionnelles(humainementetintellectuellement),etajetélesbasesdenouveauxtravauxàvenir,entrenosdeuxéquipesrespectives.

MrleProfesseurDenisAgostini,ChefduServicedeMédecineNucléaireduCHUdeCaen,

EA4650,pouravoiracceptéd’êtreexaminateurdecetravail.Tonexpériencesurla123I-MIBG,d’auteuretco-auteuraguerriontétéd’unegrandeaidetoutaulongdecetravail.Jesuiscertainqued’autresprojetscommunsànosdeuxéquipesvontnaîtredecetravail.Mr le Professeur Dimitri Papathanassiou, Chef du Service de Médecine Nucléaire de

l’InstitutGodinotdeReimspouravoiracceptéd’être rapporteuret examinateurde cetravail,sois-enremercié.MrleProfesseurFrançoisROUZET,ServicedeMédecineNucléaireduCHUParis-Bichat,INSERMU698,pourm’avoirfaitl’honneurd’êtrerapporteuretexaminateurdecetravail.

Mme le Docteur Claude Hossein-Foucher, MCU-PH, Service de Médecine Nucléaire àl’HôpitalRogerSalengroduCHUdeLillepouravoiracceptéd’examinercetravail.Notreserviceesttoujoursprêtàaccueillirdesinternes,pourpartagernotreenthousiasmedesgamma-camérasàsemi-conducteurs.

Mme le Docteur Laëtitia Imbert, PhysicienneMédicale à l’Hôpital Brabois du CHU deNancy,INSERMUMR-947IADI,pouravoiracceptéd’examinercetravail.Vosarticlesnousontpermisd’avancerdansnotretravail.Jegardeunexcellentsouvenirdemoninter-CHUàNancy,aucoursduqueljemesuisforméàlacardiologienucléaireetàl’IRMcardiaque.

MrleDocteurFayçalBenBouallègue.Unimmensemercidenousavoirsortidel’ornière

envenantàboutdupost-traitementdesacquisitionsdes2èmeet3èmepartiesdecetravail.

Page 4: Tanguy Blaire - TEL

II

MesMaîtres:

Mr Le Professeur Jean-Jacques Le Jeune. Vous m’avez accueilli dans votre service deMédecineNucléaireauCHUd’Angers.Votremansuétudeetbienveillanceà l’égarddespatientsetdel’équipemédicaleetparamédicaleontétéunmodèle.MrLeProfesseurOlivierCouturier,pourvotredynamisme.MrLeProfesseurFurber,pourvotreinitiationàlarecherchecliniqueenIRMcardiaque.

Mr Les Professeurs Karcher, Olivier, Marie et le Docteur Wassila Djabala pour votreaccueildansleservicedeMédecineNucléaireduCHUdeNancy,etmaformationenTEP-TDM,encardiologienucléaireetenIRMcardiaque.

MrLeProfesseurFranckSemahetleDocteurMarie-OdileHabert,pourvoscoursàSaclayenneurologienucléaire.JememetsàlaNeurologieNucléaireaprèslasoutenance!

Mes associées les Docteurs Sylvie Petit et Mathilde Thélu pour votre patience, votre

gentillesse et votre bienveillance tout au long de ce travail, y compris lors deschangements impromptusdeplanning,pourretourneràCaeneffectuerdesmanipsouterminerunarticle.LeDocteursDimitriBellevrerencontrélorsdenosséjoursCaennais

etseslonguessoiréesde«manips».C’estunréelplaisirdet’avoirretrouvéensuiteàLille,etdet’accueillirdèsseptembredansnotreéquipeLilloise.LeDocteurAlbanBailliezqui

m’a accompagné tout au long de ce travail : dans les trajets Lille-Caen, les premièresacquisitionsmêmenocturnesdefantômes,lescongrès(mêmeàSNMdeDenver2017!)etlarédactiondenospapiers.Travaillerauquotidienàvoscôtésestunréelplaisir.

Un immense merci aux équipes de Caen et de Lille, plus particulièrement les

manipulateurs radios Lillois (Magalie, Pierre-François, Paolo, Grégory, Clément, sansoublier Aurélie et Christelle, Cindy, Sarah et Clément), les secrétaires (Carole, Sabine,SéverineetVanessa,CarmelaetAudrey)etlescadres(Dominique,Dorothée,MicheletJordane).Vousnousavezaidéàpréparerlesdosesderadiopharmaceutique,programmerlesprotocolesd’acquisitiondesgamma-caméras,lesrecommencer,lesrecommencer,et

encore,aveccuriositéparfois,maistoujoursdanslabonnehumeur.Vousavezsurassurerlesfantômesetnospatients,toujoursavecpatienceetprofessionnalisme.

MerciégalementauxéquipesduGH-ICL,Jean-PhilippeWillem,LaurentPascal,GauthierCalais,SylvestreMaréchaux,Jean-LouisBonnal,FrançoisGrateauetLaurentDelabyetà

l’équipederecherchecliniquepourleurprécieuxconseilsetleuraccompagnement,leDrAmélieLansiaux,LaurèneNoberciak,Jean-JacquesVitiglianoetlePrPierreGosset.

Merci àmes amis de promos : lesDocteurs Emmanuelle Chambenoit-Grardel,HuguesCoevoet,François-XavierGadroyetGauthierDéfossez.

MerciégalementàSébastienHapdey,AdrienRobicetNathanielRoth.

Ettousceuxquej’auraispuoublier…

Page 5: Tanguy Blaire - TEL

III

Mesparentsetgrands-parents,parfaitementaimantetmoralementirréprochables.

Vousm’avezdonnélesensdel’effortetdudépassementdesoi.Masœur,Caroline.Tuascontribuéàmavocationdemédecin.Mon frère, le compagnon de toujours. Merci pour tous ces bons moments passés

ensemble,etceuxàvenir,pourtonépouseCarolineetvosadorablesenfants,BaptisteetCamille.

Lesamis,toujoursprésentspourdécompresser,etplusparticulièrementGeo&Delphine,AudeetMax, SylvainetClaire,NicoetSido,HuguesetAlice,Rémi,Antoineet Juliette,

Antho&Babara,OliveetElo,AlexetAurèle,EricetSonia,OlivieretPerrine,AmauryetMarie,Alexandre,sansoublierApplepoursesordinateursrobustes,ASICS,OdloetXsocks

pourlerunning,LesGlénanspourlavoile,NorthpourlekiteetDécathlonpourlesportengénéral.

Parcequ’iln’estpasdebeauxprojetssansêtrebienaccompagné:Nathalie,monépouse,formidable,dèsnotrerencontre.Tugères,dansl’ombre,notrequotidien(ycomprisles

absences répétées à Caen, en congrès ou lors de réunions), ton travail passionnant,l’éducation de nos enfants, les ami(e)s,mes sautes d’humeur et nos congés (liste nonexhaustive)…Nostroisenfants;Madeleine,AugustinetAdèle.C’estunbonheurquotidien

devousvoirgrandiretvousépanouir.Jesuistrèsfierdevous.

Toutseulonvaplusvite;ensemble,onvaplusloin(proverbeafricain)

Page 6: Tanguy Blaire - TEL

IV

Tabledesmatières

I. :Introduction..............................................................................................................11. Gamma-caméras:évolution(sensibilité,résolutionspatialeetenénergie)...................12. Scintigraphiemyocardiquedeperfusion...........................................................................13. Scintigraphiemyocardiqued’innervation..........................................................................24. Notreprojetdethèse............................................................................................................4

II. :Semi-conducteurs,gamma-camérasetacquisitionsdouble-isotope..........................6A. LeCZT:delaconversionindirecteàlaconversiondirecte...................................................6B. LaDNM530c.....................................................................................................................10C. LaDSPECT.........................................................................................................................13D. Acquisitionsendouble-isotope.........................................................................................151. Principes.............................................................................................................................152. Artefactsdel’acquisitiondouble-isotope.........................................................................15

III. :Etudesurfantômedynamiquedelafonctionventriculairegauche(99mTc)enprésenced’123I..................................................................................................................18

A. Résumé.............................................................................................................................18B. Publicationcorrespondante(EJNMMIPhysics,2016)........................................................20

IV. :Etudesurfantômeanthropomorphedetorsedelaperfusionmyocardique(99mTc)enprésenced’123I(innervation)........................................................................................30

A. Résumé.............................................................................................................................30B. Publicationcorrespondante(JNuclCardiol,2017).............................................................31

V. :Déterminationdurapportcardiomédiastinaldelafixationd’123I-MIBGlorsd’acquisitionsTEMPdouble-isotope(123I-MIBG/99mTc-tétrofosmine)surunegamma-caméraCZTàcollimationmulti-sténopéechezlespatientsporteursd’insuffisancecardiaque.........................................................................................................................44

A. Résumé.............................................................................................................................44B. Publicationcorrespondante(JNuclMed,2017).................................................................46

VI. :PremièredéterminationdurapportcardiomédiastinalenimagerieCZTcardiaquedouble-isotope(123I-MIBG/99mTc-tétrofosmine)chezlespatientsporteursd’insuffisancecardiaque:l’étudeADRECARD(EurJNuclMedMolImaging2015)..................................64

VII. :Discussion...........................................................................................................65A. Principauxrésultats..........................................................................................................651. EvaluationdelaFEVGenconditiondouble-isotope........................................................652. Evaluationdelaperfusion(99mTc)enconditiondouble-isotope(99mTcet123I)............653. EvaluationduRCMaveclaDNM530c..............................................................................664. EvaluationduRCMaveclaDSPECT..................................................................................67

B. Discussiongénérale...........................................................................................................681. Intérêtdesacquisitionsendouble-isotope......................................................................682. Champd’acquisitionlimitédesgamma-camérasCZT.........................................................69

3. Rapportsdeconcentrationdesisotopes123Iet99mTcenacquisitiondouble-isotope...704. Post-traitementdesacquisitionsdouble-isotope:particularitésdesartefacts............705. Contaminationcroiséedu99mTcdanslephotopicdu123I................................................716. Comparaisondesduréesd’acquisition:gamma-caméraconventionnellevsCZT........71

C. Limitesdenostravaux......................................................................................................721. Valeurréelledesvolumescavitairesinconnue................................................................722. Différencedepost-traitemententrelesdeuxgamma-camérasCZT..............................723. Champd’acquisitionlimitédescamérasCZT...................................................................72

Page 7: Tanguy Blaire - TEL

V

4. Irradiationsupplémentairedel’acquisitiondouble-isotope..........................................73

VIII. :Autrestravaux:Évaluationdelafonctionventriculairesurgamma-camérasàsemi-conducteurs.............................................................................................................74

1. EtudesurfantômeetvalidationcliniquevsIRMdel’évaluationdesfonctionsventriculaires

gauchessegmentaireetglobaleutilisantunegamma-caméraàsemi-conducteurCZT(JNucl

Cardiol2014;21:712-22)...............................................................................................................74

2. Etudesurfantômedynamiqueetvalidationcliniquedel’évaluationdelafonction

ventriculairegaucheutilisantdeuxgamma-camérasCZTdifférentesetunegamma-caméraà

collimationcardiofocale(JNuclMed.2016;57:1370-75).............................................................75

3. Etudedelafonctionetdel’asynchronismeventriculairedroitetgauche:comparaisonde

latomoventriculographieisotopiqueàlaventriculographieisotopiqueplanaireavecune

gamma-caméraàsemi-conducteurCZTetavecunegamma-caméraconventionnelle.(Encours

desoumissionauJNC)..................................................................................................................77

IX. :Conclusionetperspectives..................................................................................78A. Conclusion........................................................................................................................78B. Perspectives......................................................................................................................801. Soumissiond’unesynthèsedecetravailencours...........................................................802. Améliorerlepost-traitementdesdeuxgamma-camérasCZT........................................803. Optimiserl’irradiationsupplémentairedel’acquisitiondouble-isotope.......................804. Champd’acquisitionlimitédesgamma-camérasdédiéesauxexplorationscardiaques 80

5. Gamma-caméraàsemi-conducteurCZTgrandchamp....................................................816. PoursuitedelacollaborationLillo-Caenaise....................................................................81

X. :Bibliographie..........................................................................................................82

Page 8: Tanguy Blaire - TEL

VI

Listedestableaux

TABLEAU1COMPARAISONDELADNM530CETDELADSPECT................................................................................14

Listedesfigures

FIGURE1PRINCIPESDECONVERSIONINDIRECTEETDIRECTE........................................................................................7FIGURE2SPECTRESENERGETIQUESSURLADNM530C...............................................................................................8FIGURE3IMAGEETSCHEMADELACAMERADNM530C.............................................................................................10FIGURE4CONFIGURATIONDESDETECTEURSCZTDELADNM530C...........................................................................11FIGURE5SPECTREENERGETIQUED’UNESOURCEPONCTUELLED’123I...........................................................................12FIGURE6CAMERADSPECT....................................................................................................................................13FIGURE7FENETRESENERGETIQUESD'ACQUISITIONENTRIPLEFENETRAGE(TEW)......................................................16

Listedesabréviations

g.gammaCZT.tellururedecadmium-zincDNM530c.DiscoveryNM530cFEVG.fractiond’éjectionventriculairegauchekeV.kilo-électron-voltMBq.mégabecquerelMIBG.métaiodobenzylguanidineMLEM.maximumlikelihoodexpectationmaximizationNaI.ioduredesodiumRCM.rapportcardiomédiastinalTEMP.tomoscintigraphied’émissionmono-photoniqueTEW.tripleenergywindowoutriplefenêtrageVTD.volumetélédiastoliqueVTS.volumetélésystolique

Page 9: Tanguy Blaire - TEL

1

I. :Introduction

1. Gamma-caméras:évolution(sensibilité,résolutionspatialeetenénergie).

En évolution constante depuis les années 60, les gamma-caméras

conventionnelles,baséessurleprincipedelaconversionindirectemisaupointparHal

Anger,utilisentuncristalscintillant,desphotomultiplicateursetuntraitementdusignal

pourconvertirl’énergieduphotonincidentensignalélectrique.Leursprogrèscontinus

ontaboutiàuncompromisoptimalentresensibilité,résolutionspatiale,etrésolutionen

énergie.

En 2010, les semi-conducteurs utilisant le tellurure de cadmium-zinc (CZT)

révolutionnentlesgamma-camérasenpermettantlaconversiondirectedesphotons.Ces

caméras à semi-conducteurs, dédiées aux explorations cardiaques, possèdent une

résolutionenénergieaméliorée(4à5%versus10%pourlescamérasdeAnger)(1,2).De

nouvellesperspectivesd’acquisitionssimultanéesendouble-isotopedel’123Ietdu99mTc

seprésentent,dontlespicsénergétiquessontproches.Ils’agitrespectivementdel’étude

simultanéedel’innervation,delaperfusion,etdesfonctionsglobaleetsegmentairedu

ventriculegauche.

2. Scintigraphiemyocardiquedeperfusion

Latomoscintigraphied’émissionmono-photonique(TEMP)myocardiqueestune

technique d’imagerie fonctionnelle non invasive qui permet d’étudier, en trois

dimensions,larépartitiondelafixationdanslemyocarded’unradiopharmaceutique.

La synchronisation des acquisitions à l’électrocardiogramme permet une analyse

concomitante de la fonction ventriculaire gauche. C’est-à-dire l’étude de la cinétique

segmentaire,desvolumestélésystolique(VTS)ettélédiastolique(VTD),etdelafraction

d’éjection (FEVG)du ventricule gauche (3,4). Leurs études respectives (FEVG,VTD, et

VTS)utilisantlaTEMPmyocardiqueontétélargementvalidéesetcomparéesàd'autres

techniquesd'imagerie(5,6).

Lesméta-analysesrécentesontconfirmélesexcellentesvaleursdiagnostique(7)

et pronostique de la TEMP myocardique de perfusion (utilisant des

radiopharmaceutiquesmarquésau99mTcoule201Th)(8-10).Lepronosticestfonctionde

Page 10: Tanguy Blaire - TEL

2

l’étenduedudéfautdeperfusionmyocardiqueenpost-effort.Au-delàdeuxsegments(sur

dix-sept) d’ischémie, le bénéfice est plus important avec une revascularisation

myocardiquequ’avecuntraitementmédicaloptimal(9,11).

3. Scintigraphiemyocardiqued’innervation

La relation entre la dysfonction du système nerveux cardiaque autonome, la

myocardiopathieetlasurvenued’épisodesd’arythmiecardiaquegraveestétabliedepuis

longtemps (12,13). Les zones « gâchettes », substrat anatomique et mécanisme

déclencheur les plus fréquents d'arythmies ventriculaires sont la présence respective

d’untissucicatriciel(uneséquelled’infarctusdumyocardeoudemyocardite)auseinde

myocarde viable (perfusé), et d’une anomalie du tonus sympathique cardiaque

(dysinnervé) (14-19). Ces zones représentent les cibles idéales d’ablation par radio-

fréquence(20).

L'innervationsympathiquecardiaquepeutêtredirectementétudiée,demanière

non-invasive, avec l’123I-meta-iodobenzylguanidine (123I-MIBG), un analogue de

norépinephrine radiomarqué (21) qui reflète l'intégrité neuronale en visualisant la

recaptureetlarétentiondanslesterminaisonssympathiquescardiaques(22).Desétudes

antérieures,utilisantdesacquisitionsensérieàl’123I-MIBGetau201Tl,ontrapportéque

l'innervationsympathiquemyocardiqueétaitaltéréeaprèsuninfarctusdumyocarde(23-

25). En raison d’une sensibilité élevée du tissu nerveux à l'ischémie, la dénervation

sympathiquerégionaleexcèdel'étenduedudéfautdeperfusion(26).

Le déficit d'innervation sympathique cardiaque évalué par le rapport

cardiomédiastinal tardif (RCM) de fixation de 123I-MIBG (27) est un facteur pronostic

majeur indépendant demort subite et de survenued’événements cardiaques chez les

patientssouffrantd'insuffisancecardiaque,quellequ’ensoitl’étiologie(28-33).UnRCM

inférieur à 1,6 est associé à un risque accru (28). À l'heure actuelle, le calcul duRCM

nécessiteuneimagestatiqueplanaireduthorax.Cettetechniqueestbienstandardiséeet

reproductibleavecunegamma-caméraconventionnelledeAnger(34,35).

Récemment, les gamma-caméras à semi-conducteurs dédiées aux explorations

cardiaquesutilisantdesdétecteursCZTontconsidérablementtransformélaroutinede

Page 11: Tanguy Blaire - TEL

3

l'imagerie de perfusion myocardique chez les patients atteints d'une maladie

coronarienneconnueousoupçonnée(36).Cescamérasontunemeilleuresensibilitéde

détection, ce qui entraîne une diminution des temps d'acquisition et des doses

radiopharmaceutiquesinjectées,etunerésolutionenénergieaméliorée,permettantune

meilleure discrimination de l'énergie des photons en imagerie double-isotope.

Cependant,seulesquelquesétudesontévaluéleurexactitudeenimageriedel'innervation

sympathiquedumyocarde(16,17,37,38)etdelaperfusionventriculairegaucheparTEMP

(39-41).

LesdeuxcamérasCZTdisponiblesdanslecommercediffèrentdansleursensibilité

(4foisamélioréesaveclaDNM530cetpresque7foisaveclaDSPECT)etleurrésolution

spatiale(6,7mmavecDNM530cet8,6mmaveclaDSPECT)conduisantàdesimagesde

netteté, de contraste et de rapport signal-sur-bruit différentes (1,40,42) (Tableau 1

ComparaisondelaDNM530cetdelaDSPECT).

Afindeprévenirlamortsubiteetdeprolongerl’espérancedevie,l’implantation

prophylactique d'un défibrillateur automatique implantable est recommandée

(recommandation de classe IB) (43) chez les patients porteurs (i) d’une insuffisance

cardiaqueasymptomatiqueàdysfonctionsystolique(FEVG≤30%)d’origineischémique

(44-47)àplusde40joursaprèsunIDM(48),ou(ii)d’unemyocardiopathiedilatée(FEVG

≤ 30%) asymptomatique d’origine non-ischémique (49,50), sous traitement médical

optimal.Lestauxdemortsubitepararythmieventriculaireetdemortalitétotalesont(i)

significativementréduitsquandl’ischémieestàl’originedel’insuffisancecardiaque(44-

47) ; mais (ii) non significativement réduits dans les autres étiologies d’insuffisance

cardiaque(étudeDANISH(51)).

L’équipeCaennaiseestimpliquéedelonguedatedansl’imageriedel’innervation

adrénergique du myocarde par la scintigraphie à la 123I-MIBG, puissant facteur

pronostique indépendant qui reflète l’activation neuro-hormonale du myocarde

(28,29,52,53,54).

Page 12: Tanguy Blaire - TEL

4

4. Notreprojetdethèse.

La disponibilité en routine clinique de deux modèles de gamma-caméra à semi-

conducteursCZTpixélisés,différents,dédiésauxexplorationscardiaques,degéométrie

d’acquisitiondifférente,amotivéetpermiscetravail:

– LacaméraDSPECT(42)(BiosensorsInternational,Caesarea,Israel),installéedans

le service de médecine nucléaire du CHU de Caen, utilise des colonnes de

détecteursCZTmobilesbalayantlevolumeexploré,équipésd’unecollimationde

typeparallèle.

– La caméra Discovery NM 530c (55) (DNM 530c, General Electric Healthcare,

Milwaukee, Wisconsin), installée dans le service de médecine nucléaire de

l’HôpitalPrivéLeBoisdeLille,utilisedesdétecteursCZTimmobiles,équipésd’une

collimationsténopée,convergentversunellipsoïde(axes:18x16cm).

L’objectif de notre travail de thèse, était de répondre à la question suivante :

« l’amélioration de la résolution en énergie des nouvelles gamma-caméras à semi-

conducteur CZT permet-elle, en condition de routine clinique, l’étude simultanée de

l’innervation(123I-MIBG)etdelaperfusion(radiopharmaceutiquesmarquésau99mTc)en

TEMPmyocardiquechezlespatientsporteursd’uneinsuffisancecardiaque?».

Enconditionderoutinecliniqueavec lesdeuxcamérasCZTdisponiblesdans le

commerce(laDNM530cetlaDSPECT),notretravails’estdérouléentroisparties:

(i) Evaluer l'impactde l'acquisitiondouble-isotopesimultanée (123I/ 99mTc)

surl’étudedelafonctionventriculairegaucheglobaleetrégionaledansle

photopicdu99mTc,enutilisantunfantômecardiaquedynamique.

(ii) Comparer les acquisitions cardiaques séparées de 123I (innervation) et

99mTc(perfusion)auxacquisitionsdouble-isotopesimultanées,enutilisant

unfantômeanthropomorphedetorseéquipéd’uninsertcardiaque.

Page 13: Tanguy Blaire - TEL

5

(iii) Comparer le RCM tardif de la fixation de l’123I-MIBG, déterminé en

acquisition CZT double-isotope, à celui déterminé en imagerie planaire

conventionnellechezlespatientsporteursd’uneinsuffisancecardiaque.

Afindefaciliterlalecturedecemémoire,lesprincipesdedétection,dereconstruction

etdetraitementdesacquisitionsdeMédecineNucléaireconventionnellesontconsidérés

acquis.

Lapremièrepartieseraconsacréeauxrappelssurlesdétecteursàsemi-conducteurs

CZT équipant les gamma-caméras, à une présentation rapide des gamma-caméras

étudiéesetauxprincipesdereconstructiondesacquisitionsendouble-isotope.

Chaqueétudedenotretravaildethèseseraensuiteintroduitedanssaproblématique,

comporteralesméthodesutiliséesetserasuiviedelapublicationcorrespondante.

Ensuite, une discussion générale détaillera les principaux résultats obtenus dans

chacundesvolets.

Uneconclusiongénéraleouvriravers lesprojetset lesperspectivesquipourraient

fairesuiteàcetravail.

Page 14: Tanguy Blaire - TEL

6

II. :Semi-conducteurs,gamma-camérasetacquisitions

double-isotope

A. LeCZT:delaconversionindirecteàlaconversiondirecte

Rappel sur les semi-conducteurs, leurs caractéristiques et les avantagesde leur

utilisationdanslesgamma-caméras

Lesgamma-camérasmisesaupointparAngersontbaséessurdesdétecteursà

scintillationetutilisentlaconversionindirecte.Développéesetperfectionnéesdepuisles

années60,ellesontpermisl’essordelaMédecineNucléaire.Leurslimitesthéoriquesde

sensibilité de détection, de résolution spatiale et en énergie ont été atteintes. Les

industriels ont proposé une nouvelle technologie de détection grâce aux semi-

conducteurs:laconversiondirecte.

Cecourtchapitrerappellelescaractéristiquesdesdétecteursàsemi-conducteurs

disponiblespourlamédecinenucléaire,leursavantagesetleurslimites.

Lesgamma-camérasd’Angersontbaséessurleprincipedeconversionindirecte:

lephotongamma incidentest converti enphotons lumineuxpuisen signal électrique.

Cette méthode utilise un cristal scintillant d’iodure de sodium (NaI) et des tubes

photomultiplicateurs.

Les gamma-caméras à semi-conducteurs (Figure 1 Principes de conversion

indirecteetdirecte)sontbaséessurleprincipedeconversiondirecteduphotongamma

(g)incidentenpaires«électron–trou»(signalélectrique)proportionnelàsonénergie.

Sous l’action d’un champ électrique appliqué entre les électrodes, les charges se

déplacent:lesélectronsversl’anodeetlestrousverslacathode.

Lesignalélectriquedesortie,récupérésurchaqueélectrode,possèdealorsune

amplitudeproportionnelleàl’énergieduphotongammaincident.

Page 15: Tanguy Blaire - TEL

7

Figure1Principesdeconversionindirecteetdirecte

Conversionindirecte(NaI)àgauche,etconversiondirecte(CZT)(56)àdroite.

Laconversiondirected’unphotongammadansunmatériausemi-conducteursans

étapeintermédiaireprésenteschématiquementtroisavantages(42):

- (i)Améliorationdelasensibilitédedétection:contrairementauprincipede

conversion indirecte des gamma-caméras conventionnelles (conversion du

photon gamma incident en photons lumineux puis en signal électrique),

l’interactiond’unphotongammad’énergie140kilo-électron-volts(keV)dansun

matériauCZTproduit environ30000paires électron-trou, soit environ20 fois

plusqu’avecuncristalscintillantdeNaI(57).

- (ii)Améliorationde la résolution spatiale : les charges créées à l’endroit de

l’interaction sont entraînées sous l’action d’un champ électrique en conservant

l’informationspatiale.Lematériausemi-conducteurpeutdoncavoiruneépaisseur

importantesansdégraderlarésolutionspatiale.

- (iii)Améliorationdelarésolutionenénergied’unfacteurdeuxparrapportau

détecteurNaIpourdesphotonsgammad’énergie140keV(5%versus10%)(1,2)

permettantunemeilleurediscriminationdel'énergiedesphotons(99mTcet123I)

enimageriedouble-isotope.Lesignalétantdirectementexploitableparlescircuits

électroniques,ilyauneréductiondubruitliéautraitementdusignal.

Page 16: Tanguy Blaire - TEL

8

Le détecteur semi-conducteur idéal enmédecine nucléaire devrait posséder les

caractéristiquesphysiquessuivantes:

– Unbonpouvoird’arrêtetdedétectiondesphotonsgammaincidents,permispar

uncoefficientd’absorption,unnuméroatomiqueetunedensitéélevés,

– Un fonctionnement à température ambiante, permis par une grande résistivité

pourquelebruitdûauxfluctuationsducourantd’obscuritésoitfaible,

– Une bonne sensibilité et une résolution en énergie améliorée par une bande

interditedefaiblelargeurpourunebonnecollectedecharges,

– Uneénergied’ionisationfaiblepourquelenombredepairesélectron-troucréées

parphotongammaincidentsoitleplusélevépossible,

– Un cristal de bonne qualité pour limiter la collection imparfaite de charges,

responsable d’un effet de trainée (« tailing effect ») vers les basses énergies

(Figure2SpectresénergétiquessurlaDNM530c).

Figure2SpectresénergétiquessurlaDNM530c

0

5

10

15

20

25

30 50 70 90 110 130 150 170 190

No

rmal

ised

co

un

ts

Energy (keV)

123I 99mTc 123Iand99mTc

123I and 99mTc99mTcI

0

20

40

60

80

100

30 80 130 180

Coups n

orm

alis

és

Energie (keV)

99mTc123I 123I and 99mTc

Page 17: Tanguy Blaire - TEL

9

Les spectres énergétiquesobtenuspar sourcesponctuelles (absencedediffusé)de1,7mégabecquerels

(MBq)de99mTc,d’123Ipuisendoubleisotope(99mTcet123I)montrentdeuxpicsénergétiquesdistinctset

l’effetdetraînée(58)verslesbassesénergies

Lesprincipauxsemi-conducteursutiliséspourladétectiondephotonsgammasontle

germanium(Ge),lafamilledestellururesdecadmium(CdTeetCdZnTe),lesilicium(Si)

etl’ioduredemercure(HgI2).

Le matériau semi-conducteur utilisé dans les applications médicales pour cette

nouvelle génération de gamma-caméras est le tellurure de cadmium-zinc (CZT). Il

présente les meilleurs compromis (59). Le CZT fonctionne à température ambiante,

possède une meilleure sensibilité sans perte de résolution, un rapport signal/bruit

nettementsupérieuràceluidesdétecteursconventionnelsutilisantuncristalscintillant.

Sonnuméroatomiqueetsadensitésontélevés,assurantunebonneefficacitédedétection

desphotonsgammaavecunefaibleépaisseur.Lepouvoird’arrêtde5mmdeCZTetde9

mmdeNaI(gamma-caméraconventionnelle)estrespectivementde80%vs100%pour

desphotonsd’énergie140keV(99mTc)etde78%vs84%pourdesphotonsde159keV

(123I).

Sespropriétésdetransportdechargessontbonnespuisquelamobilitéetladuréede

viedeschargespermettentl’obtentiond’unerésolutionenénergiedel’ordrede5%à

140keV(Figure2SpectresénergétiquessurlaDNM530c)vs9%pourlesgamma-caméras

conventionnelles.Lesméthodesdeproductiondecematériausontoptimiséeset ilest

désormaisdisponiblesurlemarché.Lesdétecteursàsemi-conducteursCZTprésentent

cependantdeslimites:

– (i) La faible épaisseur du détecteur (5 mm (60)) est responsable d’une faible

efficacité de détection des photons gamma d’énergie élevée (actuellement,

l’acquisitionen131I,dontlepicd’énergieestde364keV,n’estpaspossible),

– (ii)LesnombreuxdéfautsdumatériauCZTsontresponsablesd’uneffetdetraînée

vers les basses énergies (et d’un élargissement du spectre énergétique) : la

collection imparfaite de charge par piégeage des trous entraîne une sous-

estimationdel’énergiedesphotonsdétectés(Figure2Spectresénergétiquessurla

DNM530c).Ilexisteainsiunnombreimportantdephotonsnon-diffusés(photons

primaires)détectésavecuneénergieréduite.Lasegmentationenpetitspixelsdu

Page 18: Tanguy Blaire - TEL

10

détecteur CZT est responsable d’un effet de diffusé inter-cristal et participe

égalementàl’effetdetrainée(61).

– (iii)Fragile,soncoûtdefabricationetderevientplusimportantquelecristalà

scintillationlimitelasurfaceetl’épaisseurdudétecteurCZT.

Lesdeuxgamma-camérasayantpermiscetravail(laDNM530cetlaDSPECT)utilisent

lemêmesemi-conducteursCZT,produitparlemêmeindustriel:laDNM530cutilise76

détecteurs(19x4)alorsquelaDSPECTenutilise36(9×4).

B. LaDNM530c

LaDNM530cutilise19détecteursàsemi-conducteursCZT(1,56,62).L’acquisition

eststationnaire,entroisdimensions,sur180°.Chacundes19détecteursestéquipéd’un

collimateur sténopé, immobile et convergent vers un ellipsoïde (axes de 18 x 16 cm)

(Figure3ImageetschémadelacaméraDNM530c).Lasynchronisationàl’ECGencours

d’acquisition permet une acquisition stationnaire en quatre dimensions (Le volume

d’acquisitiontridimensionnelleetl’informationdelasynchronisationcardiaque).

Figure3ImageetschémadelacaméraDNM530c

Statif identique à celui d’une gamma-caméra conventionnelle (56) (à gauche) et représentationschématiquedumodededétection(63)(àdroite).

La résolution spatiale intrinsèque élevée (taille des voxels de 4 mm) permet

d’avoir de petits détecteurs tout en maintenant une bonne sensibilité. Chacun des

Page 19: Tanguy Blaire - TEL

11

détecteursCZTmesure8x8cmetsecomposedequatremodulesde40×40x5mm,

d’unematricede32×32pixels,dedimension2,46×2,46mm(56,62).Uneacquisition

tridimensionnelle stationnaire avec synchronisation à l’ECG permet l’obtention d’une

sensibilitédedétectionetdeséchantillonnagesangulairessuffisants.L’examendupatient

peutêtreeffectuéendécubitusventraloudorsal.

LesdétecteursCZT sontdisposés en trois rangées avec les rangées extérieures

contenantmoinsdedétecteursquelarangéedumilieu,soit19détecteursautotal(Figure

4 Configuration des détecteurs CZT de la DNM 530c). La collimation sténopée de ces

détecteursconvergeverslemêmepointfocal.Levolumed’acquisitionestunellipsoïde

d’environ18× 16 cm. La sensibilité varie dans ce volume en raisonde la collimation

sténopée(1).Cettesensibilitévariableconduitàuneréductiondutauxdecomptagedes

photonsémisparlesorganesvoisins,ceux-ciétantsituésplusloindupointfocal(64).Cet

effetestcompenséparl’acquisitionsimultanéedes19projections.

Figure4ConfigurationdesdétecteursCZTdelaDNM530c

(A) Collimation multi-sténopée (19) couvrant le volume cardiaque. (B) Collimation sténopée etminiaturisationdudétecteurCZTpixélisé permettant une acquisitionprochedu cœur, dont l’image estréduite.(C)Photomultiplicateurclassiqued’unegamma-caméraconventionnellecomparéàundétecteurCZT(40×40x5mm).(D)BoîtededétecteursCZTavecsesconnexionsélectroniques.(E)DétecteursCZTpixélisés avec résolution spatiale intrinsèque d’environ 2,5 mm quelle que soit l’énergie des photonsincidents(1).

Cette configuration est responsable d’une inhomogénéité du champ

d’acquisition et d’un artéfact de troncature, non présents sur les gamma-caméras

conventionnelles,àcollimationparallèle(65).

Page 20: Tanguy Blaire - TEL

12

Chaque pixel CZT a sa propre unité de traitement électronique, réduisant

considérablementletempsmortàdestauxdecomptageélevés(66).

LareconstructiondesimagestomographiquesesteffectuéesurunestationXeleris

(General ElectricHealthcare,Milwaukee,Wisconsin) par un logiciel de reconstruction

propriétaire. Cet algorithme de reconstruction prend en compte la géométrie

d’acquisition des collimateurs sténopés (Figure 5 Spectre énergétique d’une source

ponctuelle d’123I), sans correction d’atténuation, des effets de diffusé (scatter), de

contaminationcroisée(crosstalk)oudetrainéeverslesbassesénergies(tailingeffect)

(Tableau1ComparaisondelaDNM530cetdelaDSPECT).

Figure5Spectreénergétiqued’unesourceponctuelled’123I

Sourcede1,5MBq:acquisitionparles19collimateurssténopés(enhaut)etspectreénergétiqueaveceffetdetrainéeverslesbassesénergies(enbas)

Les détails complets de la procédure de reconstruction sont protégés par des

droits et restrictions commerciales. La reconstruction est réalisée avec une méthode

itérativestatistiquedetypeMLEM(maximumlikelihoodexpectationmaximization)(67)

adaptée avec une correction de type Green’s One-Step-Late (OSL) (55,68). Le voxel

reconstruitestisotropique(4x4x4mmvs4,92x4,92x4,92mmvssurlaDSPECT).

Page 21: Tanguy Blaire - TEL

13

C. LaDSPECT

LacaméraDSPECTutiliselesmêmesdétecteursàsemi-conducteursCZTpixélisés

que ceux de la DNM 530c, mais la géométrie du système d’acquisition est différente

(Tableau1ComparaisondelaDNM530cetdelaDSPECT).

Le système est composé de 9 colonnes de détectrices mobiles. Chacune est

constituéed’unematricedepixelsCZT,comportant1024pixels(64pixelsenhauteuret

16pixelsenlargeur).Chaquepixelmesure2,46x2,46mmetsonépaisseurestde5mm

(2).Unecollimationparallèleentungstène(vsconvergentefocaliséesurlecœurpourla

DNM 530c), de taille identique à lamatrice de cristaux CZT, est disposée sur chaque

détecteur.Lestrousdececollimateurparallèlesontalignésenfacedechaquepixeldu

détecteurCZTetl’épaisseurdesseptaestde0,2mm.Chaquephotonγquiinteragitdans

un pixel CZT bénéficie d’une détection directe et d’une localisation automatique. Les

colonnesdedétecteurssontmotorisées,réalisantdesmouvementsderotationautourde

leuraxecentralpendant l’acquisitionexplorant120projectionssur levolumeexploré.

Pendantl’examen,lepatientestenpositiondedécubitusdorsaloupeutêtreinstalléen

positionsemi-assise(Figure6CaméraDSPECT).

Figure6CaméraDSPECT

CaméraDSPECT,équipéed’unsystèmedeneufdétecteursmobiles(2).

L’acquisitionsedérouleendeuxétapes:

- une«pré-acquisitioncourte» (appelée«pre-scan»)durant20à30 secondes.

Cettepremièrepartiepermetàl’opérateurdedéfinirunerégiond’intérêt(ROI)

centréesurlecœur.

Page 22: Tanguy Blaire - TEL

14

- ladeuxièmepartieest l’acquisition tomoscintigraphiqueproprementdite.Cette

acquisitionestobtenuepardeuxsériesde60projectionspardétecteur.Entreces

2séries,les9colonnesdedétectioneffectuentunmouvementdetranslationafin

de couvrir l’ensemble du volume à étudier. Au niveau du volume de l’aire

cardiaquedéfinieparlaROIdel’étapeprécédente,un«sur-échantillonnage»est

réaliséendiminuantlesanglesdeprojection(augmentationdelastatistiquede

comptagedanscetteROI)(69)

Nostravauxontutilisélesméthodesdereconstructionsproposéesenroutineparles

constructeurs.L’algorithmedereconstructionest«propriétaire»,basésuruneméthode

itérative OSEM 3D (pour « Ordered Subsets Expectation Maximization ») (70) qui

correspondàuneméthodeMLEMaccéléréeparletridesprojectionsensous-ensembles,

avec32sous-ensemblesetunnombred’itérationschoisiparl’opérateur.Cetalgorithme,

appeléBroadview®,estdéveloppéspécifiquementpourlacaméraDSPECT.Ilintègrela

géométrie de détection du système permettant une compensation de la perte de

résolutionspatialeaveclaprofondeur.Ilintègreunecorrectiondeseffetsdediffusé,de

contamination croisée, et de trainée vers les basses énergies uniquement lors des

acquisitions double-isotope (et non simple-isotope), selon laméthode Kacperski et al

(71).Iln’yapasdecorrectiond’atténuation(2).Levoxelreconstruitestisotropique(4,92

x4,92x4,92mmvs4x4x4mmsurlaDNM530c).

Tableau1ComparaisondelaDNM530cetdelaDSPECT

DNM530c DSPECTNombrededétecteursCZT 19x4(76) 9x4(36)Compositiond’undétecteurCZT

modules(40x40x5mm)pourunematricede32x32pixelsdedimension2,46x2,46mm

Géométried’acquisitioncollimationmulti-sténopée,statique,convergente

collimationparallèle,mobile

Sensibilité x4 x7Résolutionenénergie 4à5%Résolutionspatiale(mm) 6,7 8,6Tailleduvoxelreconstruit 4x4x4mm 4,92x4,92x4,92mmCorrectiondeseffetsdediffusé,contaminationcroisée,etdetrainéeverslesbassesénergies(post-traitement)

absencedecorrectioncorrectionenacquisition

double-isotope

Inhomogénéitéduchampd’acquisition

oui non

Artefactdetroncature oui non

Page 23: Tanguy Blaire - TEL

15

D. Acquisitionsendouble-isotope

1. Principes

Lafaisabilitéd’imageriemulti-isotopesimultanéesembleunavantageprometteur

des acquisitions TEMP. Cette imagerie permettrait d’obtenir des études multi-

fonctionnellessanserreurdelocalisationoudedifférencedetemps.(72).

Malgréunemeilleurerésolutionenénergie,lafractiondediffuséresteélevéeavec

les gammas-caméras à semi-conducteur (30% vs 34% avec les gamma-caméras

conventionnelles)(2).Deplus,l’effetdetrainéeverslesbassesénergiesobservédansle

spectre énergétique, en raison d’une collection imparfaite de charge (58) affecterait

particulièrementlastatistiquedecomptagedescamérasCZT.

Cesdeuxphénomènesimpacteraientl’acquisitiondesimagesauseinduphotopic

du99mTclorsd’uneacquisitiondouble-isotope99mTc/123I,compromettantl’exactitudede

l’étude99mTc.

2. Artefactsdel’acquisitiondouble-isotope

a) Artéfactsdel’imageriedouble-isotope

L’unedesparticularitésdesacquisitionsscintigraphiquesestdepouvoirétudier

simultanémentdeuxfonctionsd’unmêmeorgane.Leprincipaldéfipourlesacquisitions

endouble-isotopesimultanéesestlacorrectiondeseffetsdudiffusé(«scatter»)etdela

contaminationcroisée(«crosstalk»)entrelesisotopespossédantuneénergiedifférente

d’émission gamma, responsables d’un contraste d’image dégradé et d’une étude

quantitativealtérée.Denombreusesméthodesdecorrectionsdeseffetsdudiffuséetde

la contamination croisée ont été proposées pour les acquisitions en double-isotope.

Citonsparexemplelafenêtred’énergieasymétriqueduphotopicdel’123I(73),quiréduit

l’efficacitédu comptage en comparaison àune fenêtred’énergie symétrique (74).Une

autreméthodedecorrectionestlaméthodedecorrectionendoublefenêtrageoutriple

fenêtrage(tripleenergywindow;TEW)(75)(Figure7Fenêtresénergétiquesd'acquisition

entriplefenêtrage(TEW)).

Page 24: Tanguy Blaire - TEL

16

Figure7Fenêtresénergétiquesd'acquisitionentriplefenêtrage(TEW)

Pourchaquephotopic,unefenêtreprincipaleetdeuxsous-fenêtressontpositionnées.Cl,Cm,etCrindiquentrespectivement le nombre de coups de la fenêtre gauche, centrale et droite. Wl, Wm, et Wr indiquentrespectivementlalargeurdelafenêtredegauche,centrale,etdroite(75).

De nombreuses autres méthodes de correction des effets du diffusé et de la

contaminationcroiséeontétédéveloppéespourreconstruirelesacquisitionsendouble-

isotopedesgamma-camérasconventionnelles,notammentcérébrales(76-80).D’autres

modélisationsdecorrectiondeseffetsdudiffuséetdelacontaminationcroiséeétaient

basées sur l’estimation de diffusé de la source (Effective Source Scatter Estimation ;

ESSE)(81),ladétectionforcéedeconvolution(ConvolutionForcedDetection;CFD)basée

surlessimulationsrapidesMonte-Carlo(77).Cesmodélisationsontétésouventutilisées

etontprouvéleurprécisiondansl’estimationdudiffusé.

b) Particularitésdudiffuséetdelacontaminationcroiséedansles

gammas-camérasCZT:

Malgréuneaugmentationde lasensibilitéetde larésolutionenénergie, lapartde

diffusé dans les caméras CZT reste élevée, supérieure à 30%, versus 34% pour les

camérasconventionnelles(2).Lesméthodesdecorrectiondelacontaminationcroiséeet

dudiffuséenimageriedouble-isotopesontpluscompliquéespourlesraisonssuivantes:

Page 25: Tanguy Blaire - TEL

17

– (i) La collection de charges imparfaite et le diffusé inter-cristal (82) sont

responsablesd’uneffetdetraînée(«tailingeffect»)verslesbassesénergiesdans

le spectre énergétique des gamma-caméras CZT,même en l’absence de diffusé

intra-objet(Figure2SpectresénergétiquessurlaDNM530c).Ceteffetdetraînée

est responsable d’une contamination croisée additionnelle entre les différents

isotopes.Lediffuséseraitsurestimésilaméthodedetriplefenêtragedecorrection

dudiffuséétaitutilisée(83).

– (ii)Cesgamma-camérasdédiéesauxexplorationscardiaquespossèdentunpetit

volume d’acquisition et l’activité hors de ce volume d’acquisition ne peut être

correctementreconstruite.Ainsi,lesmodèlesdecorrectiondesgamma-caméras

conventionnelles(parexempleEffectiveSourceScatterEstimation,ESSE(81))ne

peuventêtreappliquéssurcettegamma-caméracarilsnécessitentdeconnaître

précisémentladistributiondel’activitédansl’objetentier.

Récemment,Fanetal(84)pourlaDNM530cetHolstenssonetal(84)pourlaDSPECT

ontdéveloppéunmodèle sophistiquédecorrectionadaptéà lagéométriedusystème

d’acquisition de chaque gamma-caméra CZT. Lors d’acquisition simultanée double-

isotope(123Iet99mTc),cesalgorithmesdecorrectioncorrigedeseffetsdediffuséetdela

contamination croisée, et extrait les photons primaires utiles du 99mTc et de l’123I des

donnéesdeprojection,en tenantcomptede l’effetde trainéevers lesbassesénergies.

Leursapprochesontpermisunebonneprécisiondecorrectionetsemblentprometteuses.

Cependant,enraisondel'algorithmedereconstructionrequis(MLEM),etdesparamètres

àoptimiser(72),cesdeuxméthodesdereconstruction(84)récentesetprometteusesne

sontpasinstalléesparlesconstruteurssurleursconsolesenconditionderoutine.

Danscetravail,toutelesreconstructionsontétéeffectuéesenutilisantlesconsoles

des constructeurs et les logiciels disponibles pour les deux caméras. En routine, les

méthodesdecorrectiondudiffusé,delacontaminationcroiséeetdel’effetdetrainée(84)

nesontpasinstalléesparGEpourlaDNM530c.

LesacquisitionseffectuéessurlaDSPECTontétécorrigées,lorsd’acquisitiondouble-

isotope,dudiffusé,delacontaminationcroiséeetdel’effetdetrainéeselonlaméthodede

Kacperskietal.(71),installéeenroutinesurlesstationsdepost-traitementdelaDSPECT,

maisnond’Holstenssonetal.(84).

Page 26: Tanguy Blaire - TEL

18

III. :Etudesurfantômedynamiquedelafonction

ventriculairegauche(99mTc)enprésenced’123I

A. Résumé

Contexte : L’apportde l’améliorationde la résolutionenénergiedes camérasà semi-

conducteur CZT sur l'évaluation de la fonction ventriculaire gauche en conditions

d’acquisitionsdouble-isotope(99mTcet123I)resteinconnu.

Le fantôme cardiaque dynamique-Amsterdam (AGATE, Vanderwilt techniques, Boxtel,

Pays-Bas)aété rempli successivementd'unesolutiond’123I seul,de 99mTcseuletd’un

mélanged’123Ietde99mTc.Autotal,12jeuxdedonnéesontétéacquisavecchaquecaméra

CZTdisponibledanslecommerce(DNM530cetDSPECT)enutilisantlesdeuxfenêtres

d'énergie(99mTcou123I)etunefractiond'éjectionrégléeà33,45puis60%.Lesvolumes

ventriculaires (VTDetVTS), laFEVG, lemouvementrégionalde laparoi (modèleà17

segments)ontétéévaluésàl'aidedulogicielQGS(Cedars-Sinaï).Laconcordanceentreles

acquisitionssimple-etdouble-isotopeaététestéeàl'aideducoefficientdecorrélationde

concordancedeLin(CCC)etdesdiagrammesdeBland-Altman.

Résultats : Il n'y avait pas de différence significative entre l'acquisition simultanée

double-isotope(123Iet99mTc)pourleVTD,leVTS,laFEVG,oulemouvementsegmentaire

de la paroi. Les volumes myocardiques en simple- (123I, 99mTc) et double-isotope

(reconstruitsaveclesdeuxfenêtresd’énergie123Iet99mTc)ontétérespectivement:VTD

(mL)88±27vs89±27vs92±29vs90±26pourlaDNM530c(p=NS)et82±20vs83

±22vs79±19vs77±20pourlaDSPECT(p=NS);VTS(mL)40±1vs41±2vs41±2

vs42±1pourlaDNM530c(p=NS)et37±5vs37±1vs35±3vs34±2pourlaDSPECT

(p=NS);FEVG(%)52±14vs51±13vs53±13vs51±13pourlaDNM530c(p=NS)et

52±16vs54±13vs54±14vs54±13pourlaDSPECT(p=NS);mouvementrégional

(mm)6,72±2,82vs6,58±2,52vs6,86±2,99vs6,59±2,76pourlaDNM530c(p=NS)

et6,79±3,17vs6,81±2,75vs6,71±2,50vs6,62±2,74pourlaDSPECT(p=NS).Letype

decaméran'aeuqu’unimpactsignificatifsurleVTS(p<0,001).

Conclusions : Les nouvelles caméras CZT ont donné des résultats similaires pour

l'évaluationdelaFEVGetlemouvementrégionaldanslesdifférentesfenêtresd'énergie

(123I ou 99mTc) et les types d'acquisition (simple- vs double-isotope). Avec les deux

camérasCZT, laprésenced’123In'apaseud'impactsurl'évaluationdelaFEVGdansla

fenêtred'énergiedu99mTcenacquisitionssimultanéesdouble-isotope.

Page 27: Tanguy Blaire - TEL

19

Communicationsorales:

*EANM2013,Lyon*EANM2015,Hamburg

Publication:publiéeparl’EJNMMIPhysics2016,dec

Page 28: Tanguy Blaire - TEL

20

ORIGINAL RESEARCH Open Access

Left ventricular function assessment using123I/99mTc dual-isotope acquisition with twosemi-conductor cadmium–zinc–telluride(CZT) cameras: a gated cardiac phantomstudyTanguy Blaire1,2,3*, Alban Bailliez1,2,3, Fayçal Ben Bouallegue4, Dimitri Bellevre4, Denis Agostini2,4

and Alain Manrique2,4

* Correspondence:

[email protected] Medicine, UF 5881,

Groupement des Hôpitaux de

l’Institut Catholique de Lille,

Lomme, France2Normandie Univ, UNICAEN,

Signalisation, électrophysiologie et

imagerie des lésions

d’ischémie-reperfusion

myocardique, 14000 Caen, France

Full list of author information is

available at the end of the article

Abstract

Background: The impact of increased energy resolution of cadmium–zinc–telluride

(CZT) cameras on the assessment of left ventricular function under dual-isotope

conditions (99mTc and 123I) remains unknown.

The Amsterdam-gated dynamic cardiac phantom (AGATE, Vanderwilt techniques,

Boxtel, The Netherlands) was successively filled with a solution of 123I alone, 99mTc

alone, and a mixture of 123I and 99mTc. A total of 12 datasets was acquired with each

commercially available CZT camera (DNM 530c, GE Healthcare and DSPECT,

Biosensors International) using both energy windows (99mTc or 123I) with ejection

fraction set to 33, 45, and 60 %. End-diastolic (EDV) and end-systolic (ESV) volumes,

ejection fraction (LVEF), and regional wall motion and thickening (17-segment

model) were assessed using Cedars-Sinai QGS Software. Concordance between single-

and dual-isotope acquisitions was tested using Lin’s concordance correlation coefficient

(CCC) and Bland–Altman plots.

Results: There was no significant difference between single- or simultaneous

dual-isotope acquisition (123I and 99mTc) for EDV, ESV, LVEF, or segmental wall

motion and thickening. Myocardial volumes using single- (123I, 99mTc) and dual-isotope

(reconstructed using both 123I and 99mTc energy windows) acquisitions were,

respectively, the following: EDV (mL) 88 ± 27 vs. 89 ± 27 vs. 92 ± 29 vs. 90 ± 26

for DNM 530c (p = NS) and 82 ± 20 vs. 83 ± 22 vs. 79 ± 19 vs. 77 ± 20 for DSPECT

(p = NS); ESV (mL) 40 ± 1 vs. 41 ± 2 vs. 41 ± 2 vs. 42 ± 1 for DNM 530c (p = NS)

and 37 ± 5 vs. 37 ± 1 vs. 35 ± 3 vs. 34 ± 2 for DSPECT (p = NS); LVEF (%) 52 ± 14

vs. 51 ± 13 vs. 53 ± 13 vs. 51 ± 13 for DNM 530c (p = NS) and 52 ± 16 vs. 54 ± 13

vs. 54 ± 14 vs. 54 ± 13 for DSPECT (p = NS); regional motion (mm) 6.72 ± 2.82 vs.

6.58 ± 2.52 vs. 6.86 ± 2.99 vs. 6.59 ± 2.76 for DNM 530c (p = NS) and 6.79 ± 3.17 vs.

6.81 ± 2.75 vs. 6.71 ± 2.50 vs. 6.62 ± 2.74 for DSPECT (p = NS). The type of camera

significantly impacted only on ESV (p < 0.001).

(Continued on next page)

EJNMMI Physics

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 InternationalLicense (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, andindicate if changes were made.

Blaire et al. EJNMMI Physics (2016) 3:27

DOI 10.1186/s40658-016-0163-2

B. Publicationcorrespondante(EJNMMIPhysics,2016)

Page 29: Tanguy Blaire - TEL

21

Methods

Gated phantom studies

We used the Amsterdam gated (Agate) dynamic phantom (Vanderwilt techniques,

Boxtel, The Netherlands) as a reference for volume and LVEF measurements [15]. This

phantom is a realistic 3-D water-filled torso with two thin membranes simulating endo-

cardial and epicardial walls with known ejection fraction (Fig. 2). The compartment

between these membranes was successively filled with a solution of 123I alone, 99mTc

alone, and a mixture of 123I and 99mTc (22/44 kBq/mL, respectively) simulating the

myocardial wall. The cardiac phantom stroke volume was controlled by a

programmable adjustable pumping system, and an ECG-triggered signal was produced

at a constant heart rate. Four datasets (single 123I, single 99mTc, dual 123I, and 99mTc)

were acquired using three different ejection fractions (33 and 45 % to mimic LV dys-

function and 60 % to simulate normal LV function) on each camera (DNM 530c and

DSPECT) with the following parameters: 10-min acquisition and 70-bpm contraction

Fig. 1 Energy spectra using DNM 530c. Typical single 123I, single 99mTc, and simultaneous (123I and 99mTc)

point source (1.7 MBq) energy spectra using DNM 530c without in-object scatter. Notice the low tailing

effect and the down-scatter of 123I towards 99mTc in the dual isotope condition

Fig. 2 The AGATE dynamic gated phantom. The AGATE dynamic gated phantom with fillable cardiac set,

successively filled with a solution of 123I alone, 99mTc alone, and a mixture of 123I and 99mTc

Blaire et al. EJNMMI Physics (2016) 3:27 Page 3 of 11

Page 30: Tanguy Blaire - TEL

22

rate. EDV, ESV, LVEF, and regional wall thickening and motion (17-segment model)

were assessed using Quantitative Gated SPECT software (QGS, Cedars-Sinai Medical

Center, Los Angeles, CA). The acquisition parameters were as follows: 70 × 70 matrix

for the DNM 530c system and 64 × 64 for the DSPECT with a total of 120 projections

recorded by each block in the heart area defined on a short prescan acquisition [13].

The energy window was asymmetric for both cameras, 140 keV (−10 + 5 %) for 99mTc

and 159 keV (−5 + 10 %) for 123I, for each acquisition.

CZT cameras

We successively used (i) a DNM 530c equipped with a multiple pinhole collimator and

19 stationary CZT detectors that simultaneously image 19 cardiac views, each detector

being composed of four 5-mm-thick elements of 32 × 32 pixels (pixel size 2.46 ×

2.46 mm) [16] and (ii) a DSPECT operating with nine mobile blocks of pixelated CZT

detectors (pixel size 2.46 × 2.46 mm) associated with a wide-angle square-hole tungsten

collimator, recording a total of 120 projections by each block [13]. All SPECT data were

acquired and reconstructed using the parameters currently recommended for clinical

routine and provided by each manufacturer, leading to a reconstructed pixel size of

4 × 4 × 4 and 4.92 × 4.92 × 4.92 mm for DNM 530c and DSPECT, respectively. No

attenuation correction was performed.

Statistical analysis

Values are presented as mean ± SD. A linear model analysis evaluated the effect of

camera, acquisition type (single- vs. dual-isotope), isotope (123I vs. 99mTc), and the

interaction between camera type and isotope. Continuous mean values were compared

using the Wilcoxon signed-rank test or Mann–Whitney U test when appropriate.

Relationship between DNM 530c and DSPECT results were assessed using Pearson’s

(r) correlation coefficient, Bland–Altman limit-of-agreement, and Lin’s concordance

correlation coefficient (CCC), a measure of both precision and bias [17, 18]. Lin’s CCC

measures the equivalence of two measurement methods. The accuracy (i.e. the

deviation of the best fit line from the line of identity) was assessed using the bias cor-

rection factor calculated as C.b = CCC/r, r being Pearson’s correlation coefficient. The

values of r and CCC were characterised using the Landis and Koch scale (0.2–0.4: fair;

0.4–0.6: moderate; 0.6–0.8: substantial; 0.8–1.0: almost perfect) [19]. A p value <0.05

was considered statistically significant.

Statistical analyses were performed using R software (R Foundation for Statistical

Computing, version 3.2.4, Vienna, Austria) except the linear model analysis performed

using JMP 11 (SAS institute, Cary, NC).

Results

The mean values of overall cardiac volumes (EDV and ESV), LVEF, and regional wall

motion and thickening using single- and dual-isotope acquisitions with DNM 530c and

DSPECT are shown in Table 1 and illustrated in Figs. 3 and 4.

Linear model analysis demonstrated that the type of camera but not the acquisition

mode (i.e. single- or dual-isotope) impacted on volume measurements. Post hoc

Mann–Whitney test showed that this impact was only observed for the ESV

Blaire et al. EJNMMI Physics (2016) 3:27 Page 4 of 11

Page 31: Tanguy Blaire - TEL

23

measurements (p < 0.0001) whereas EDV, LVEF, and segmental wall motion were

similar for the two cameras.

Lin’s concordance correlation coefficient and Bland–Altman plots (see Tables 2 and 3

and Fig. 5) revealed an almost perfect agreement between single- and dual-isotope

acquisitions for assessing segmental wall motion and thickening with 99mTc with both

CZT cameras. Conversely, using 123I, the agreement was weaker with both CZT

cameras, with a decreased CCC and an increased 95 % CI of the difference between the

two measurements on Bland–Altman plots. Pearson’s correlation (r) and CCC were

similar, also indicating that no systematic bias was present (C.b > 0.97) between the two

cameras and the acquisition mode.

Discussion

Our results demonstrated the feasibility of LVEF evaluation using gated perfusion

SPECT with CZT cameras. On simultaneous dual radionuclide acquisitions, the 99mTc

photopeak was unaffected by 123I scatter and crosstalk. To our knowledge, this is the

first dual-isotope gated phantom study evaluating ventricular function using the two

commercially available CZT cameras (DNM 530c and DSPECT).

Table 1 Results for each camera

Camera DNM 530c DSPECT

Energywindow

123I 99mTc 123I 99mTc

Acquisitiontype

Single Dual Single Dual Single Dual Single Dual

EDV (mL) 88 ± 27 92 ± 29 89 ± 27 90 ± 26 82 ± 20 79 ± 19 83 ± 22 77 ± 20

ESV (mL) 40 ± 1* 41 ± 2* 41 ± 2* 42 ± 1* 37 ± 5 35 ± 3 37 ± 1 34 ± 2

LVEF (%) 52 ± 14 53 ± 13 51 ± 13 51 ± 13 52 ± 16 54 ± 14 54 ± 13 54 ± 13

Motion (mm) 6.72 ± 2.82 6.86 ± 2.99 6.58 ± 2.52 6.59 ± 2.76 6.79 ± 3.17 6.71 ± 2.50 6.81 ± 2.75 6.62 ± 2.74

Thickening(%)

47.7 ± 30.6 47.1 ± 29.9 45.4 ± 27.7 44.3 ± 29.2 44.2 ± 28.8 42.7 ± 23.6 42.2 ± 24.5 41.5 ± 26.7

Phantom study results for each camera model expressed as mean ± SD. EDV, ESV, LVEF, and thickening and motion mean

values for 99mTc and 123I isotope in two acquisition types (single or dual), for both energy windows (123I and 99mTc) on

each camera (DNM 530c and DSPECT). *p < 0.0001 vs. DSPECT

Fig. 3 DNM 530c and DSPECT 99mTc and 123I uptake. Single 123I (a) and single 99mTc (b). Simultaneous 123I

(c) and 99mTc (d) end-systolic apical short axis uptake for DNM 530c (upper row) and DSPECT (lower row) for

LVEF 50%

Blaire et al. EJNMMI Physics (2016) 3:27 Page 5 of 11

Page 32: Tanguy Blaire - TEL

24

Dual-isotope acquisition with CZT cameras remains a challenging technique.

Impaired myocardial innervation leads to low myocardial 123I-mIBG uptake, requiring

a dual-isotope protocol to localise the heart [12]. Due to the small field-of-view of the

dedicated CZT cardiac cameras, a scout view is mandatory to localise the heart and

correctly centre the field-of-view prior to SPECT acquisition. In addition, most of the

patients referred for 123I-mIBG assessment have an ischemic cardiomyopathy with

heart failure (66 % in the ADMIRE-HF study [20]). In this clinical setting, the dual-

isotope protocol allows a simple and efficient co-registration of innervation and perfu-

sion studies and thus a robust assessment of innervation-perfusion mismatch. The

measurement of LV function is a key step of prognosis assessment and may potentially

be altered when using CZT cameras with a simultaneous dual-isotope protocol due to

the down-scatter, crosstalk, and tailing effect of 123I in the 99mTc photopeak.

Fig. 4 DNM 530c and DSPECT end-systolic volume rendering, volume (mL), and filling (mL/s). End-systolic

volume rendering, volume (mL), and filling (mL/s) in single 99mTc (a) and dual 99mTc (b) condition using

DNM 530c (upper row) and DSPECT (lower row)

Table 2 DNM 530c and DSPECT concordance correlation coefficients for motion

Motion Pearson’s Bland Altman

r [95 % CI] CCC [95 % CI] C.b Mean diff. [95 % CI] Regression R2

Acquisition Isotope

Single 123I 0.94 [0.89–0.96] 0.93 [0.89–0.96] 0.99 0.06 [−2.15;2.28] y = 0.123x − 0.764 0.107

99mTc 0.95 [0.92–0.97] 0.94 [0.91–0.97] 0.99 0.23 [−1.48;1.94] y = 0.088x − 0.354 0.071

Dual 123I 0.90 [0.83–0.94] 0.88 [0.81–0.93] 0.98 −0.15 [−2.8;2.5] y = −0.188x + 1.13 0.144

99mTc 0.94 [0.90–0.97] 0.94 [0.9–0.97] 1 0.03 [−1.81;1.87] y = −0.007x + 0.076 0

Camera

DSPECT 123I 0.91 [0.86–0.95] 0.89 [0.83–0.93] 0.98 0.08 [−2.57;2.72] y = 0.248x − 1.599 0.271

99mTc 0.97 [0.95–0.98] 0.97 [0.95–0.98] 1 0.22 [−1.74; 2.18] y = −0.003x + 0.239 0

DNM530c

123I 0.94 [0.90–0.97] 0.94 [0.9–0.97] 1 −0.14 [−2.11;1.84] y = −0.061x + 0.276 0.031

99mTc 0.97 [0.96–0.99] 0.97 [0.95–0.98] 1 −0.01 [−1.29;1.26] y = −0.089x + 0.576 0.135

Bland–Altman mean difference (mean diff), regression, and R2

r, Pearson’s correlation (precision); CCC, Lin’s concordance correlation; C.b, r/CCC = bias factor (trueness)

Blaire et al. EJNMMI Physics (2016) 3:27 Page 6 of 11

Page 33: Tanguy Blaire - TEL

25

Our results demonstrated that DNM 530c provided higher systolic volumes com-

pared to the DSPECT camera. This camera effect on volume assessment is likely related

to spatial resolution. Imbert et al. [21] reported the following classification of measured

central spatial resolution: DNM 530c (6.7 mm) and DSPECT (8.6 mm). These results

are concordant with previous findings by Bailliez et al. [22] showing in both phantom

and patients that LV volumes were higher using the DNM 530c model compared to

DSPECT and to Anger camera equipped with cardiofocal collimators.

Our results also demonstrated that, in comparison with single 99mTc acquisition, dual123I/99mTc acquisition did not compromise the assessment of ventricular function using

the 99mTc photopeak. In some patients with severe heart failure, the sole use of 123I-

mIBG SPECT can lead to suboptimal localisation of the heart because of the CZT cam-

era’s narrow field-of-view, particularly when cardiac mIBG uptake is very low and the

left ventricle is dilated. A dual-isotope protocol acquisition using both perfusion and

innervation tracers provides a clear perfusion image and a perfect registration that

allows the definition of the heart contours and thus an accurate measurement of123I-mIBG uptake [12].

In the clinical setting, simultaneous dual-radionuclide acquisition provides perfectly

registered functional images leading to a reduced imaging time. In cardiac SPECT,

several dual-radionuclide imaging protocols have been proposed. Simultaneous99mTc-sestamibi/123I-BMIPP imaging was proposed for assessing rest perfusion and

fatty acid metabolism at the same time in patients with recent myocardial infarction

[23, 24]. The dual-isotope acquisition protocol using 201Tl and 123I-mIBG is well docu-

mented on conventional Anger cameras, using the triple-energy window [25] for scatter

and crosstalk correction. Simultaneous perfusion and sympathetic innervation imaging

with 123I-mIBG and 99mTc-labelled tracers enables the evaluation of innervation-flow

mismatch and may provide valuable information to target the trigger zone in the

setting of ventricular arrhythmia [4, 26]. In a recent study, Gimelli et al. [11, 27] using

sequential 123I-mIBG and 99mTc-tetrofosmin myocardial SPECT demonstrated a

relevant association between innervation derangement (123I-mIBG) and myocardial

synchronicity (99mTc-tetrofosmin).

Table 3 DNM 530c and DSPECT concordance correlation coefficients for thickening

Thickening Pearson’s Bland Altman

r [95 % CI] CCC [95 % CI] C.b Mean diff. [95 % CI] Regression R2

Acquisition Isotope

Single 123I 0.93 [0.88–0.96] 0.92 [0.86–0.95] 0.99 −3.59 [−26.45;19.28] y = −0.063x − 0.694 0.026

99mTc 0.94 [0.90–0.97] 0.93 [0.89–0.96] 0.99 −3.14 [−21.65;15.38] y = −0.125x + 2.331 0.121

Dual 123I 0.87 [0.79–0.93] 0.84 [0.75–0.9] 0.97 −4.35 [−33.78;25.08] y = −0.248x + 6.801 0.191

99mTc 0.94 [0.90–0.97] 0.94 [0.89–0.96] 1 −2.84 [−22.04;16.35] y = −0.09x + 1.009 0.067

Camera

DSPECT 123I 0.88 [0.80–0.93] 0.88 [0.81–0.93] 1 1.43 [−23.87;26.74] y = 0.208x − 7.608 0.177

99mTc 0.96 [0.93–0.98] 0.96 [0.93–0.98] 1 0.78 [−14.06;15.63] y = −0.088x + 4.449 0.09

DNM530c

123I 0.91 [0.85–0.95] 0.91 [0.85–0.95] 1 0.67 [−24.38;25.71] y = 0.026x − 0.588 0.004

99mTc 0.96 [0.94–0.98] 0.96 [0.93–0.98] 1 1.08 [−14.5;16.65] y = −0.053x + 3.446 0.037

Bland–Altman mean difference (mean diff), regression, and R2

r, Pearson’s correlation (precision); CCC, Lin’s concordance correlation; C.b, r/CCC = bias factor (trueness)

Blaire et al. EJNMMI Physics (2016) 3:27 Page 7 of 11

Page 34: Tanguy Blaire - TEL

26

a b

c d

e f

g h

Fig. 5 Lin’s CCC and Bland–Altman motion for DNM 530c and DSPECT. Lin’s CCC for DSPECT 123I (a) and99mTc (c), DNM 530c 123I (e), and 99mTc (g) motion and Bland–Altman plots for DSPECT 123I (b) and 99mTc

(d), DNM 530c 123I (f), and 99mTc (h) motion for single and dual acquisitions

Blaire et al. EJNMMI Physics (2016) 3:27 Page 8 of 11

Page 35: Tanguy Blaire - TEL

27

Despite a significant increase in energy resolution and sensitivity, the scatter fraction

with the CZT camera is still high, evaluated up to 30 vs. 34 % with conventional Anger

cameras [13]. Due to incomplete charge collection and intercrystal scatter, the CZT

detectors are subjected to a tailing effect below the photopeak that may lead to an

overcorrection of photon scatter when using a conventional triple-energy window

method [28]. Recently, Fan et al. for the DNM 530c [29] and Holstensson et al. for the

DSPECT [30] presented a model-based correction algorithm which extracts the useful

primary counts of 99mTc and 123I from projection data, taking into account the tailing

effect to correct the scatter and crosstalk in 99mTc–123I dual imaging. In the present

study, we did not apply any tailing effect correction and observed no significant impact

on ventricular function assessment.

All reconstructions were performed using the vendor’s workstation and available

software for both cameras. Routinely, scatter and crosstalk correction is not performed on

the DNM 530c camera. Image data from DSPECT were corrected for scatter and

crosstalk but not for the tailing effect. In our study, the ratio between 123I and 99mTc

concentration was set to 1:2, which is representative of the low 123I-mIBG myocardial

uptake, observed in severe heart failure. Under these specific conditions, the absence of

scatter and crosstalk correction using the DNM 530c did not affect ventricular function

assessment using 99mTc acquisitions. In severe heart failure, 123I-mIBG myocardial uptake

is low and we assumed that the crosstalk and scatter of 123I in the 99mTc photopeak had

no consequences.

Limitations of the study

Due to the design of the phantom, EDV and ESV were not predetermined. The

phantom was filled under static equilibrium conditions at atmospheric pressure to

provide a reproducible ejection fraction. Based on this equilibrium, ejection fraction

was imposed by injecting a stroke volume into the ventricular cavity [15, 22]. As a

consequence, true EDV and ESV were not known and thus could not be compared with

measured volumes.

As we used only commercially available software, scatter and crosstalk were corrected

with DSPECT but not with DNM 530c. However, our results displayed no critical

differences between the single-isotope and dual-isotope 99mTc window, even with the

DNM 530c. At best, the demonstration could be made by comparing the results

obtained with and without scatter and crosstalk corrections. However, the aim of our

study was to compare the results obtained with the two CZT cameras using the

dedicated commercially available software to mimic routine clinical conditions.

Conclusions

In this phantom study, the two CZT cameras (DNM 530c and DSPECT) provided

similar results for ventricular function assessment (EDV, ESV, and LVEF) with single-

(separate 123I and 99mTc acquisitions) and simultaneous dual-isotope (123I and 99mTc)

acquisitions. Further studies are needed to evaluate perfusion match and mismatch

using 123I-mIBG and 99mTc-labelled tracers.

Acknowledgements

The authors thank Nathaniel Roth for his technical assistance. This work was conducted as part of the FHU

REMOD-VHF project.

Blaire et al. EJNMMI Physics (2016) 3:27 Page 9 of 11

Page 36: Tanguy Blaire - TEL

28

Authors’ contribution

TB and AM: design of the study, data acquisition, analysis and interpretation of data, drafting of manuscript. AB and

DB: data acquisition, analysis of data, and drafting of manuscript. FBB: statistical analysis, analysis of data and critical

revision. DA: interpretation of data, drafting of manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details1Nuclear Medicine, UF 5881, Groupement des Hôpitaux de l’Institut Catholique de Lille, Lomme, France. 2Normandie

Univ, UNICAEN, Signalisation, électrophysiologie et imagerie des lésions d’ischémie-reperfusion myocardique, 14000

Caen, France. 3Nuclear Medicine, IRIS, Hôpital Privé Le Bois, 144 avenue de Dunkerque, 59000 Lille, France. 4Nuclear

Medicine, CHU Cote de Nacre, Caen, France.

Received: 29 June 2016 Accepted: 1 November 2016

References

1. Hachamovitch R, Berman DS, Kiat H, Cohen I, Friedman JD, Shaw LJ. Value of stress myocardial perfusion single

photon emission computed tomography in patients with normal resting electrocardiograms: an evaluation of

incremental prognostic value and cost-effectiveness. Circulation. 2002;105(7):823–9.

2. Marcassa C, Bax JJ, Bengel F, Hesse B, Petersen CL, Reyes E, et al. Clinical value, cost-effectiveness, and safety of

myocardial perfusion scintigraphy: a position statement. Eur Heart J. 2008;29(4):557–63.

3. Thomas GS, Miyamoto MI, Morello 3rd AP, Majmundar H, Thomas JJ, Sampson CH, et al. Technetium 99m

sestamibi myocardial perfusion imaging predicts clinical outcome in the community outpatient setting. The

Nuclear Utility in the Community (NUC) Study. J Am Coll Cardiol. 2004;43(2):213–23.

4. Carrio I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure.

JACC Cardiovasc Imaging. 2010;3(1):92–100.

5. Morozumi T, Kusuoka H, Fukuchi K, Tani A, Uehara T, Matsuda S, et al. Myocardial iodine-123-

metaiodobenzylguanidine images and autonomic nerve activity in normal subjects. J Nucl Med. 1997;38(1):49–52.

6. McGhie AI, Corbett JR, Akers MS, Kulkarni P, Sills MN, Kremers M, et al. Regional cardiac adrenergic function using I-123

meta-iodobenzylguanidine tomographic imaging after acute myocardial infarction. Am J Cardiol. 1991;67(4):236–42.

7. Bengel FM, Barthel P, Matsunari I, Schmidt G, Schwaiger M. Kinetics of 123I-MIBG after acute myocardial infarction

and reperfusion therapy. J Nucl Med. 1999;40(6):904–10.

8. Simoes MV, Barthel P, Matsunari I, Nekolla SG, Schomig A, Schwaiger M, et al. Presence of sympathetically

denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute

myocardial infarction. Eur Heart J. 2004;25(7):551–7.

9. Matsunari I, Schricke U, Bengel FM, Haase HU, Barthel P, Schmidt G, et al. Extent of cardiac sympathetic neuronal

damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation.

2000;101(22):2579–85.

10. Bax JJ, Kraft O, Buxton AE, Fjeld JG, Parizek P, Agostini D, et al. 123I-mIBG scintigraphy to predict inducibility of

ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc

Imaging. 2008;1(2):131–40.

11. Gimelli A, Liga R, Giorgetti A, Genovesi D, Marzullo P. Assessment of myocardial adrenergic innervation with a

solid-state dedicated cardiac cadmium-zinc-telluride camera: first clinical experience. Eur Heart J Cardiovasc

Imaging. 2014;15(5):575–85.

12. Bellevre D, Manrique A, Legallois D, Bross S, Baavour R, Roth N, et al. First determination of the heart-to-mediastinum

ratio using cardiac dual isotope (123I-MIBG/99mTc-tetrofosmin) CZT imaging in patients with heart failure: the

ADRECARD study. Eur J Nucl Med Mol Imaging. 2015;42(12):1912–9.

13. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: a novel SPECT system

for nuclear cardiology. Phys Med Biol. 2009;54(9):2635–49.

14. Leo W. Techniques for nuclear and particle physics experiments. 2nd ed. Berlin: Spinger; 1994.

15. Visser JJ, Sokole EB, Verberne HJ, Habraken JB, van de Stadt HJ, Jaspers JE, et al. A realistic 3-D gated cardiac

phantom for quality control of gated myocardial perfusion SPET: the Amsterdam gated (AGATE) cardiac phantom.

Eur J Nucl Med Mol Imaging. 2004;31(2):222–8.

16. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic

SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging. 2010;37(10):1887–902.

17. Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255–68.

18. Morgan CJ, Aban I. Methods for evaluating the agreement between diagnostic tests. J Nucl Cardiol. 2016;23(3):

511–3.

19. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

20. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-

iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView

Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55(20):2212–21.

21. Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity

cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J

Nucl Med. 2012;53(12):1897–903.

22. Bailliez A, Lairez O, Merlin C, Piriou N, Legallois D, Blaire T, et al. Left ventricular function assessment using 2

different cadmium-zinc-telluride cameras compared with a gamma-camera with cardiofocal collimators: dynamic

cardiac phantom study and clinical validation. J Nucl Med. 2016;57(9):1370–5.

Blaire et al. EJNMMI Physics (2016) 3:27 Page 10 of 11

Page 37: Tanguy Blaire - TEL

29

23. Kumita S, Cho K, Nakajo H, Toba M, Kijima T, Mizumura S, et al. Simultaneous assessment of Tc-99m-sestamibi and

I-123-BMIPP myocardial distribution in patients with myocardial infarction: evaluation of left ventricular function

with ECG-gated myocardial SPECT. Ann Nucl Med. 2000;14(6):453–9.

24. Ouyang J, Zhu X, Trott CM, El Fakhri G. Quantitative simultaneous 99mTc/123I cardiac SPECT using MC-JOSEM.

Med Phys. 2009;36(2):602–11.

25. Ogawa K. Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT. Ann

Nucl Med. 1994;8(4):277–81.

26. Abdulghani M, Duell J, Smith M, Chen W, Bentzen SM, Asoglu R, et al. Global and regional myocardial innervation

before and after ablation of drug-refractory ventricular tachycardia assessed with 123I-MIBG. J Nucl Med.

2015;56 Suppl 4:52S–8S.

27. Gimelli A, Liga R, Genovesi D, Giorgetti A, Kusch A, Marzullo P. Association between left ventricular regional

sympathetic denervation and mechanical dyssynchrony in phase analysis: a cardiac CZT study. Eur J Nucl Med

Mol Imaging. 2014;41(5):946–55.

28. Kacperski K, Erlandsson K, Ben-Haim S, Hutton BF. Iterative deconvolution of simultaneous 99mTc and 201Tl

projection data measured on a CdZnTe-based cardiac SPECT scanner. Phys Med Biol. 2011;56(5):1397–414.

29. Fan P, Hutton BF, Holstensson M, Ljungberg M, Hendrik Pretorius P, Prasad R, et al. Scatter and crosstalk

corrections for (99m)Tc/(123)I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators. Med

Phys. 2015;42(12):6895.

30. Holstensson M, Erlandsson K, Poludniowski G, Ben-Haim S, Hutton BF. Model-based correction for scatter and

tailing effects in simultaneous 99mTc and 123I imaging for a CdZnTe cardiac SPECT camera. Phys Med Biol.

2015;60(8):3045–63.

Submit your manuscript to a journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

Submit your next manuscript at 7 springeropen.com

Blaire et al. EJNMMI Physics (2016) 3:27 Page 11 of 11

Page 38: Tanguy Blaire - TEL

30

IV. :Etudesurfantômeanthropomorphedetorsedela

perfusionmyocardique(99mTc)enprésenced’123I

(innervation)

A. Résumé

Contexte.Nous avons étudié et comparé l'impact de l'acquisition simultanée double-

isotopesurl'évaluationdeladiscordance123I/99mTcenutilisantdeuxcamérasCZT(la

DNM530c,etlaDSPECT).

Méthodes. Nous avons utilisé un fantôme anthropomorphe de torse (rempli

respectivementd'unesolutiond’123Iseul,de99mTcseuletd’unmélanged’123Ietde99mTc)

et son insert cardiaque équipé de deux compartiments imitant deux défauts, l’un

concordantetl’autrediscordant.L'étenduedeladiscordanceetlecontrastedel'image

reconstruiteontétéévalués.

Résultats. Le mode d'acquisition (simple- vs double-isotope) a considérablement

impacté (i) l’activitésegmentairereconstruitede99mTc(maispasd’123I)pour lesdeux

caméras (P<0,001)et (ii) le contrastede l'image (enutilisant l’123Iet laDNM530c,P

<0,0001;etenutilisantl’123Ietle99mTcaveclaDSPECT,P<0,0001).Cependant,ledéfaut

etlatailledeladiscordancen'ontpasétéaffectésparletyped'acquisition.AveclaDNM

530c et laDSPECT, le coefficient de corrélationde concordancedeLin et l'analysede

Bland-Altmanontdémontréuneconcordanceetunagrémentpresqueparfaitsentreles

activités segmentaires des acquisitions simple- et double-isotope simultanée (123I et

99mTc).

Conclusions. Cette étude n'a révélé aucun impact du mode d'acquisition (simple- vs

double-isotope)oudutypedecaméra(DSPECTvsDNM530c)surlatailledesdéfautset

la discordance en 123I et 99mTc, ce qui constitue une nouvelle étape vers l'acquisition

double-isotopesimultanéepourl'évaluationcombinéed’innervationetdeperfusion.

Publication:publiéeparleJNC2017

Page 39: Tanguy Blaire - TEL

31

B. Publicationcorrespondante(JNuclCardiol,2017)

ORIGINAL ARTICLE

First assessment of simultaneous dual isotope(123I/99mTc) cardiac SPECT on two different CZTcameras: A phantom study

Tanguy Blaire, MD,a,b,c Alban Bailliez, MD, PhD,a,b,c Faycal Ben Bouallegue,

PhD,d Dimitri Bellevre, MD,e Denis Agostini, MD, PhD,b,e and Alain Manrique,

MD, PhDb,e

a Department of Nuclear Medicine, UF 5881, Groupement des Hopitaux de l’Institut Catholique

de Lille, Lomme, Franceb Normandie Univ, UNICAEN, Signalisation, electrophysiologie et imagerie des lesions

d’ischemie-reperfusion myocardique, FHU REMOD-VHF, Caen, Francec Department of Nuclear Medicine, IRIS, Hopital Prive Le Bois, Lille, Franced Department of Nuclear Medicine, CHU de Montpellier, Montpellier, Francee Department of Nuclear Medicine, CHU Cote de Nacre, Caen, France

Received Dec 5, 2016; accepted Feb 23, 2017

doi:10.1007/s12350-017-0841-z

Background. We studied the impact of simultaneous dual-isotope acquisition on 123I/99mTc

mismatch assessment using two CZT cameras (DNM 530c, GE Healthcare and DSPECT,

Biosensors International).

Methods. We used an anthropomorphic torso phantom (respectively filled with a solution

of 123I alone, 99mTc alone, and a mixture of 123I and 99mTc) and its cardiac insert with two

defects mimicking two matched and mismatched defects. Mismatch extent and reconstructed

image contrast were evaluated.

Results. The acquisition mode (single vs dual) significantly impacted (i) 99mTc (but not 123I)

reconstructed segmental activities using both camera (P < .001), and (ii) image contrast (using123I and DNM 530c, P < .0001; and using both 123I and 99mTc with DSPECT, P < .0001).

However, the defect and mismatch size were not impacted by the type of acquisition. With both

DNM 530c and DSPECT, Lin’s concordance correlation coefficient and Bland–Altman analysis

demonstrated an almost perfect concordance and agreement between single- and simultaneous

dual-isotope segmental activity (123I and 99mTc).

Conclusions. This study found no impact of the acquisition mode (single vs dual) or the

type of camera (DSPECT vs DNM 530c) on 123I and 99mTc defect size and mismatch, providing

a new step toward simultaneous dual-isotope acquisition for combined innervation and per-

fusion assessment. (J Nucl Cardiol 2017)

Key Words: CZT Æ DSPECT Æ DNM 530c Æ mIBG Æ dual isotope Æ mismatch

Electronic supplementary material The online version of this

article (doi:10.1007/s12350-017-0841-z) contains supplementary

material, which is available to authorized users.

The authors of this article have provided a PowerPoint file, available

for download at SpringerLink, which summarizes the contents of the

paper and is free for re-use at meetings and presentations. Search for

the article DOI on http://SpringerLink.com.

Reprint requests: Tanguy Blaire, MD, Department of Nuclear Medi-

cine, UF 5881, Groupement des Hopitaux de lInstitut Catholique de

Lille, Lomme, France; [email protected]

1071-3581/$34.00

Copyright ! 2017 American Society of Nuclear Cardiology.

Author's personal copy

Page 40: Tanguy Blaire - TEL

32

Abbreviations123I-mIBG 123I-meta-iodobenzylguanidine

CCC Concordance correlation coefficient

CZT Cadmium-zinc-telluride

kCnts Kilo-counts

ROI Region of interest

VOI Volume of interest

BACKGROUND

The relationships between cardiac autonomic ner-

vous system dysfunction, cardiomyopathy, and cardiac

arrhythmias have been long established.1 Cardiac sym-

pathetic innervation can be directly imaged with 123I-

meta-iodobenzylguanidine (123I-mIBG), a radiolabeled

norepinephrine analog2 that reflects neuronal integrity

by visualizing reuptake and retention in cardiac sympa-

thetic terminals.3 A large number of clinical studies have

demonstrated the independent role of 123mIBG imaging

in prognosis assessment and risk stratification irrespec-

tive of the etiology of heart failure.4-6 The new solid-

state cardiac cameras based on cadmium-zinc-telluride

(CZT) detectors offer higher photon sensitivity and

spatial resolution compared with standard cameras.7

However, only a few studies have evaluated their

accuracy for myocardial sympathetic innervation imag-

ing8-11 and left ventricular perfusion assessment using

perfusion-gated SPECT.12-14

Due to their dramatically increased energy resolu-

tion, these dedicated cardiac cameras potentially enable

combined assessment of myocardial innervation and

perfusion within a single-imaging session, and with a

limited radiation burden.15 Using successive perfusion

and innervation imaging, Gimelli et al8,9 demonstrated a

Figure 1. Anthropomorphic torso phantom (Data Spectrum, Hillsborough, NC) with two fillablecardiac defects: one (13 mL) always filled with cold water (mimicking a matched defect) and one(5.4 mL) filled with 99mTc when 99mTc solution was in the cardiac insert (mimicking a mismatcheddefect).

correlation between the impairment of innervation, rest

perfusion, and mechanical dyssynchrony. Bellevre

et al11 using 99mTc-tetrofosmin to localize the heart

within the thorax, recently demonstrated the feasibility

of determining the late heart-to-mediastinum ratio of123I-mIBG uptake using dual-isotope imaging with a

CZT camera (DSPECT) in patients with heart failure.

Despite their increased energy resolution, the scatter

fraction remains high with CZT cameras.16 In addition,

the tailing effect in the energy spectrum toward lower

energies due to incomplete charge collection17 may

specifically affect count statistics with CZT cameras.

These two phenomena may impact image acquisition

within the 99mTc photopeak during 123I/99mTc dual-

isotope acquisition, further compromising the accuracy

of left ventricular perfusion assessment using the 99mTc-

labeled tracer. There is a lack of data about the use of

CZT SPECT cameras for simultaneous assessment of

left ventricular innervation and perfusion using123I/99mTc dual-isotope acquisition.

Using an anthropomorphic torso phantom with a

cardiac insert, we aimed to compare cardiac dual-isotope

imaging with separate 123I and 99mTc acquisitions with

simultaneous dual-isotope acquisitions performed using

two commercially available CZT cameras, Discovery

NM 530c (DNM 530c, GE Healthcare, Milwaukee, WI,

USA) and DSPECT (Biosensors International, Caesarea,

Israel).

METHODS

Phantom Studies

We used an anthropomorphic torso phantom (Data

Spectrum, Hillsborough, NC) containing a cardiac insert

(Figure 1). Two fillable defects were used inside the cardiac

Blaire et al. Journal of Nuclear Cardiology!

A phantom study

Author's personal copy

Page 41: Tanguy Blaire - TEL

33

insert to mimic a matched and a mismatched defect, respec-

tively, in the septum and the lateral wall. The phantom was

successively filled with a solution of 123I alone, 99mTc alone,

and a mixture of 123I and 99mTc. The characteristics and

activities of each cardiac phantom are presented in Table 1.

The liver and mediastinum compartments were filled with 123I

and/or 99mTc solutions as previously described.18 Radioactivity

concentrations were chosen to mimic known myocardial

activities of 123I-mIBG and 99mTc-tetrofosmin. Three datasets

(single 123I, single 99mTc, and dual 123I and 99mTc) were

acquired using four different acquisition times (7, 11, 22, and

33 minutes) on each camera (DNM 530c and DSPECT). In

addition, a normal phantom database was built using ten

single-isotope (separate 123I and 99mTc) acquisitions performed

with the anthropomorphic torso phantom including the cardiac

insert without any defect for both cameras. The acquisition

times were 5, 7, 10, 11, 12, 15, 17, 20, 22, and 33 minutes,

respectively. The activities were 11 kBq/mL for 123I and 22

kBq/mL for 99mTc.

CZT Cameras

We successively used (i) a DNM 530c equipped with a

multiple pinhole collimator and 19 stationary CZT detectors

that simultaneously image 19 cardiac views, each detector

being composed of four 5-mm-thick elements of 32x32 pixels

(pixel size 2.46 x 2.46 mm)19 and (ii) a DSPECT operating

with 9 mobile blocks of pixelated CZT detectors (pixel size

2.46 x 2.46 mm) associated with a wide-angle square-hole

tungsten collimator, recording a total of 120 projections by

each block.16 The energy window was asymmetric for both

cameras, 140 keV (-10% ? 5%) for 99mTc and 159 keV (-5%

? 10%) for 123I, for each acquisition. No attenuation correc-

tion was performed.

Image Reconstruction

Image reconstruction was performed using dedicated

commercially available software to mimic the routine clinical

conditions. Scatter, crosstalk, and tailing effect were corrected

using the DSPECT solely for dual (and not single)-isotope

acquisitions, according to a validated method.20 No correction

was applied when using the DNM 530c. Reconstruction was

performed using a specific iterative reconstruction algorithm

according to each vendor’s recommendation for clinical use,

leading to a reconstructed pixel size of 4 x 4 x 4 and 4.92 x

4.92 x 4.92 mm, respectively, for DNM 530c and DSPECT,

respectively. Short-axis reconstructed images were analyzed

off-line with commercially available software21 (QPS, Cedars-

Sinai Medical Center, Los Angeles, CA), using the dedicated

normal phantom databases and a 17-segment model of the left

ventricle.

Image Analysis

The segmental activity (expressed in percent of the

maximal myocardial activity) for 123I and 99mTc in separate Table

1.Anthropomorphic

torsophantom

withtw

ofillable

cardiacdefects:activitiesforsingle

123I(row

#1),single

99mTc(row

#2),and

simultaneousdual123Iand

99mTcacquisitions(row

#3)

Phanto

mCard

iac

insert

Septaldefect

(13mL)

Lateral

defect(5.4

mL)

Liver

Mediastinum

#1

123I

(11kBq/m

L)

Cold

water

Cold

water

123I

(17.5

kBq/m

L)

123I

(0.6

kBq/m

L)

#2

99mTc

(22kBq/m

L)

Cold

water

99mTc

(22kBq/m

L)

99mTc

(35kBq/m

L)

99mTc

(1.2

kBq/m

L)

#3

123I/99mTc

(11/2

2kBq/m

L)

Cold

water

99mTc

(22kBq/m

L)

123I/99mTc

(17.5/3

5kBq/m

L)

123I/99mTc

(0.6/1

.2kBq/m

L)

Journal of Nuclear Cardiology! Blaire et al.

A phantom study

Author's personal copy

Page 42: Tanguy Blaire - TEL

34

and simultaneous dual-isotope (123I and 99mTc) acquisitions

was analyzed. The results provided are related to the average

of the four acquisition times.

The extent of 123I and 99mTc activity defects was

delineated on bull’s eye polar maps using a 50% level

isocontour and was quantified as a percentage of the ventric-

ular surface. The mismatch extent was assessed as the

proportion of the myocardial surface with a 123I relative

uptake below the 50% threshold and a 99mTc relative uptake

above the 50% threshold.

Finally, contrast (%) was measured in one reconstructed

midventricular small-axis slice using the imageJ software22 by

use of the count ratio (i) between the defect and the normal

myocardium [Defect contrast = 100*|Cdefect - Cnormal|/(Cde-

fect ? Cnormal)] and (ii) between the normal myocardium and

the ventricular cavity [Image contrast = 100*|Cnormal - Ccav-

ity|/(Cnormal ? Ccavity)], where Cdefect, Cnormal, and Ccavity stand

for the mean reconstructed counts in a 2 9 2-pixel region of

interest (ROI), respectively, traced within the myocardial

defect (septal and lateral), the normal myocardial wall, and the

ventricular chamber.

Statistical Analysis

Continuous variables are presented as mean ± standard

deviation (mean ± SD). The effect of camera (DNM 530c vs

DSPECT), acquisition mode (single vs dual isotope), isotope

(123I and 99mTc), and the interaction between camera type and

isotope was evaluated using a linear model analysis with a

least squares fit. Concordance and agreement between single-

isotope activity (separate 123I and 99mTc acquisitions) and

simultaneous dual-isotope activity (123I and 99mTc) on DNM

530c and DSPECT were tested using Lin’s concordance

correlation coefficient (CCC)23 and Bland–Altman analysis,24

respectively. Lin’s CCC is essentially equivalent to the kappa

coefficient but is applicable to continuous data. It evaluates

both accuracy and precision, indicating how far the measure-

ment pairs are away from the line of identity. Paired

continuous data were compared using a paired t-test. A two-

tailed P value B .01 was considered as statistically significant.

Statistical analysis was performed using R software version

3.2.4 (R Foundation for Statistical Computing, Vienna, Aus-

tria) and JMP! version 11.0 (SAS Institute Inc., Cary, NC).

RESULTS

Assessment of Tracer Activity

The mean segmental activities obtained from sin-

gle- (separate 123I and 99mTc acquisitions) and

simultaneous dual-isotope (123I and 99mTc) acquisitions

for both energy windows (123I and 99mTc) are presented

in Figure 2. The 99mTc activity value was significantly

impacted by the acquisition mode (single vs dual) for

both DNM 530c (P\ .0001) and DSPECT (P\ .001),

but not the 123I activity value (NS). Comparing the two

cameras, the mean 123I activity value was significantly

increased using the DSPECT compared to DNM 530c

with both single- (P\ .0001) and simultaneous dual-

isotope acquisition (P\ .0001).

With both DNM 530c and DSPECT (Figure 3),

Lin’s CCC demonstrated an almost perfect concordance

between reconstructed segmental activities from serial

single-isotope and simultaneous dual-isotope acquisi-

tions. Bland–Altman analysis confirmed the excellent

agreement between single- and dual-isotope acquisitions

for each camera type. When comparing the results

between DNM 530c and DSPECT (Figure 4), Lin’s

Figure 2. Segmental relative activities on DNM 530c (A) and DSPECT (B) using a 17-segmentmodel with single (separate 123I and 99mTc) acquisitions compared with simultaneous dual-isotope(123I and 99mTc) acquisitions for both energy windows (123I and 99mTc) expressed as mean value ±standard deviation. *P\ .001 vs dual, **P\ .0001 vs DSPECT.

Blaire et al. Journal of Nuclear Cardiology!

A phantom study

Author's personal copy

Page 43: Tanguy Blaire - TEL

35

0 20 40 60 80 100

-40

-20

02

04

0

Mean uptake DSPECT [(123I+dual123I)/2] (%)

Diffe

ren

ce

up

take

DS

PE

CT

[1

23

I-d

ua

l12

3I]

(%

)

Mean difference : -1.65 (95% CI: -16.7 ; 13.41)

+/- 2SD

y = 0.082 x + -6.042 ; R2 = 0.044

0 20 40 60 80 100

-40

-20

02

04

0

Mean uptake [(DNM 123I+ DNM Dual 123I)/2] (%) D

iffe

ren

ce

up

take

[D

NM

12

3I-

DN

M D

ua

l 1

23

I] (

%)

Mean difference : -1.54 (95% CI: -13.78 ; 10.69)

+/- 2SD

y = -0.06 x + 1.271 ; R2 = 0.038

DNM 123I uptake (%)

DN

M D

ual 123I upta

ke (

%)

Line of perfect concordance

Reduced major axis

CCC: 0.95 (95% CI 0.92 - 0.97)

020

40

60

80

100

020

40

60

80

100

02

04

06

08

01

00

DNM 99mTc uptake (%)

DN

M D

ua

l 9

9m

Tc u

pta

ke

(%

)

Line of perfect concordance

Reduced major axis

CCC: 0.97 (95% CI 0.96 - 0.98)

0 20 40 60 80 100

-40

-20

02

04

0

Mean uptake [(DNM 99mTc+ DNM Dual 99mTc)/2] (%)

Diffe

ren

ce

up

take

[D

NM

99

mT

c-D

NM

Du

al 9

9m

Tc]

(%)

Mean difference : -2.09 (95% CI: -10.37 ; 6.19)

+/- 2SD

y = 0.051 x + -4.853 ; R2 = 0.056

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

DSPECT 123I uptake (%)

DS

PE

CT

Du

al 1

23

I u

pta

ke

(%

)

Line of perfect concordance

Reduced major axis

CCC: 0.92 (95% CI 0.88 - 0.95)

A

B

C

Figure 3. Lin’s concordance correlation coefficients and Bland–Altman analysis for the compar-ison between simultaneous dual-isotope acquisition and single separate acquisition for each isotope(123I and 99mTc) using DNM 530c (A, B) and DSPECT (C, D), respectively. All P values = NS.

Journal of Nuclear Cardiology! Blaire et al.

A phantom study

Author's personal copy

Page 44: Tanguy Blaire - TEL

36

CCC and Bland–Altman analysis also demonstrated

strong agreement between the two cameras for both

single- and simultaneous dual-isotope acquisition.

Mismatch Between 123I and 99mTc Activities

Defect and mismatch size delineated on bull’s eye

polar maps comparing single separate acquisition and

simultaneous dual-isotope acquisition for each isotope

(123I and 99mTc) using DNM 530c and DSPECT are

presented in Figure 5 and Table 2. As illustrated in

Table 2, the mismatch was larger using DNM 530c

compared to DSPECT. However, this difference was not

statistically significant using linear model analysis that

showed no impact of camera type and acquisition time

on the size of activity defects and mismatch (P = NS).

Image Contrast

Image and defect contrasts comparing single- and

simultaneous dual-isotope acquisition for each isotope

(123I and 99mTc) using both cameras are illustrated,

respectively, in Figure 6A and B. As shown in Fig-

ure 6A, there was a significant decrease of 123I image

contrast using dual-isotope acquisition with the DNM

530c (P\ .0001) compared to single-isotope acquisi-

tion. On the other hand, using the DSPECT, image

contrast significantly increased with both 99mTc and 123I

using dual-isotope acquisition (P\ .0001). However,

there was no significant difference between single- and

dual-isotope acquisitions regarding defect contrast for

both camera and both isotope (Figure 6B, all P

values = NS).

DISCUSSION

This phantom study was designed to mimic the

combined evaluation of left ventricular perfusion and

innervation by means of an anthropomorphic torso

phantom with a cardiac insert, imaged using the two

commercially available CZT cameras. Although there

was a significant effect of dual-isotope acquisition on

estimates of 99mTc activity, our results demonstrated that

the size of both 123I and 99mTc defects as well as their

mismatch was impacted neither by the type of camera

(DSPECT vs DNM 530c), nor by the acquisition mode

(single vs dual) or by the acquisition time. To our

knowledge, this is the first dual-isotope torso phantom

study assessing perfusion (99mTc) and innervation (123I)

using two commercially available CZT cameras (DNM

530c and DSPECT). Our results also suggested that a

dual 123I-99mTc acquisition does not compromise the

assessment of ventricular perfusion using the 99mTc

photopeak in comparison with a single 99mTc

acquisition.

In the clinical setting, simultaneous dual-radionu-

clide acquisition provides perfectly registered functional

images within a reduced imaging time. Using conven-

tional Anger cameras, several dual-radionuclide SPECT

imaging protocols have been proposed. Simultaneous99mTc-sestamibi/123I-BMIPP imaging was used for

DSPECT 99mTc uptake (%)

DS

PE

CT

Du

al 9

9m

Tc u

pta

ke

(%

)

Line of perfect concordance

Reduced major axis

CCC: 0.96 (95% CI 0.94 - 0.97)

0 20 40 60 80 100

-40

-20

02

04

0 Mean uptake

[(DSPECT 99mTc+ DSPECT Dual 99mTc)/2] (%)

D

iffe

ren

ce

up

take

[DS

PE

CT

99

mT

c-D

SP

EC

T D

ua

l 9

9m

Tc] (%

) Mean difference : -2.43 (95% CI: -13.56 ; 8.7)

+/- 2SD

y = 0.002 x + -2.531 ; R2 = 0

D

02

04

06

08

01

00

0 20 40 60 80 100

Figure 3. continued.

Blaire et al. Journal of Nuclear Cardiology!

A phantom study

Author's personal copy

Page 45: Tanguy Blaire - TEL

37

A

B

C

0 20 40 60 80 100

-40

-20

02

04

0

Diffe

rence u

pta

ke [D

SP

EC

T D

ual 123I-

DN

M D

ual 123I]

(%

)

Mean difference : 6.53 (95% CI: -11.95 ; 25.01)

+/- 2SD

y = -0.106 x + 11.933 ; R2 = 0.048

DN

M D

ua

l 1

23

I u

pta

ke

(%

)

Line of perfect concordance

Reduced major axis

CCC: 0.84 (95% CI 0.77 - 0.9)

0 20 40 60 80 100

-40

-20

02

04

0

Mean uptake [(DSPECT 99mTc+ DNM 99mTc)/2] (%)

Diffe

rence u

pta

ke [

DS

PE

CT

99m

Tc-D

NM

99m

Tc] (%

)

Mean difference : 2.32 (95% CI: -18.37 ; 23.01)

+/- 2SD

y = 0.078 x + -1.934 ; R2 = 0.023

DSPECT 99mTc uptake (%)

DN

M 9

9m

Tc u

pta

ke (

%)

Line of perfect concordance

Reduced major axis

CCC: 0.87 (95% CI 0.8 - 0.92)

0 20 40 60 80 100

-40

-20

02

04

0

Mean uptake [(DSPECT 123I+ DNM 123I)/2] (%) D

iffe

ren

ce

up

take

[D

SP

EC

T 1

23

I-D

NM

12

3I]

(%

)

Mean difference : 6.43 (95% CI: -9.79 ; 22.65)

+/- 2SD

y = 0.039 x + 4.496 ; R2 = 0.009

DSPECT 123I uptake (%)

DN

M 1

23

I u

pta

ke

(%

)

Line of perfect concordance

Reduced major axis

CCC: 0.87 (95% CI 0.81 - 0.92)

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

020

40

60

80

100

020

40

60

80

100

020

40

60

80

100

Mean uptake [(DSPECT Dual 123I+ DNM Dual 123I)/2] (%) DSPECT Dual 123I uptake (%)

Figure 4. Lin’s concordance correlation coefficients and Bland–Altman analysis for the compar-ison between the 2 CZT cameras for both isotope (123I and 99mTc) and acquisition mode (singleseparate acquisitions (A, B) and simultaneous dual-isotope acquisition (C, D), respectively). All Pvalues = NS.

Journal of Nuclear Cardiology! Blaire et al.

A phantom study

Author's personal copy

Page 46: Tanguy Blaire - TEL

38

assessing rest perfusion and fatty acid metabolism at the

same time in patients with recent myocardial infarc-

tion.25,26 Using the conventional Anger camera, the

simultaneous dual-isotope acquisition using 201Tl and123I-mIBG is well documented and widely used, with

possible scatter and crosstalk correction.27 A combined

perfusion and sympathetic innervation imaging with

serial 123I-mIBG and 99mTc-labeled tracers enables the

evaluation of innervation-perfusion mismatch and may

provide valuable information to assess the extension of

the trigger zone as a prognostic factor of the ventricular

arrhythmia in infarcted myocardium.2,28 In addition,

Gimelli et al,8,9 using the DNM 530c camera and a

sequential 123I-mIBG and 99mTc-tetrofosmin myocardial

SPECT, demonstrated a relevant association between

innervation derangement, impaired myocardial perfu-

sion, and mechanical dyssynchrony. Dual-isotope

acquisition with CZT cameras remains a challenging

technique. Impaired myocardial innervation leads to low

myocardial 123I-mIBG uptake, requiring a dual-isotope

protocol to localize the heart.11 Due to the small field-of-

view of the dedicated CZT cardiac cameras, a scout

view is mandatory to localize the heart and correctly

center the field-of-view prior to SPECT acquisition. In

addition, most of the patients referred for 123I-mIBG

assessment have an ischemic cardiomyopathy with heart

failure (66% in the ADMIRE-HF study6). In this clinical

setting, the dual-isotope protocol allows a simple and

efficient co-registration of innervation and perfusion

studies, and thus a robust assessment of innervation-

perfusion mismatch. The measurement of myocardial

innervation and perfusion is a key step of prognosis

assessment and may potentially be altered when using

CZT cameras with a simultaneous dual-isotope protocol

due to down-scatter, crosstalk, and tailing effect of 123I

in the 99mTc photopeak.

Despite a significant increase in energy resolution

and sensitivity, the scatter fraction remains high with

CZT cameras (30% vs 34% with conventional Anger

gamma cameras).16 Due to incomplete charge collection

and inter-crystal scatter, the CZT detectors are subjected

to a tailing effect at the lower part of the photopeak that

may lead to an over-correction of photon scatter, when

using multiple energy windows methods.20 Recently,

Fan et al with a DNM 530c29 and Holstensson et al with

a DSPECT30 presented a model-based correction algo-

rithm which extracts the useful primary counts of 99mTc

and 123I from projection data, taking into account the

tailing effect to correct for scatter and crosstalk in99mTc-123I dual imaging. In our study, all reconstruc-

tions were performed using the vendor’s workstation

and commercially available software for both cameras.

Routinely, scatter, crosstalk, and tailing effect correc-

tions29 were not available for the DNM 530c. On the

other hand, image data from DSPECT were corrected

for scatter, crosstalk, and tailing effect using a previ-

ously described method.20 The ratio between 123I and99mTc activity concentrations was set to 1:2, which is

representative of the low 123I-mIBG myocardial uptake

observed in patients with heart failure. Under these

conditions, the absence of corrections when using the

DNM 530c did not affect the assessment of 99mTc defect

size with simultaneous dual 99mTc-123I acquisition

compared to single 99mTc acquisition.

D

0 20 40 60 80 100

-40

-20

02

04

0 Mean uptake

[(DSPECT Dual 99mTc+ DNM Dual 99mTc)/2] (%)

D

iffe

ren

ce

up

take

[D

SP

EC

T D

ua

l 9

9m

Tc-D

NM

Du

al 9

9m

Tc]

(%)

Mean difference : 2.66 (95% CI: -22.2 ; 27.53)

+/- 2SD

y = 0.134 x + -4.942 ; R2 = 0.043

DSPECT Dual 99mTc uptake (%)

DN

M D

ua

l 9

9m

Tc u

pta

ke

(%

)

Line of perfect concordance

Reduced major axis

CCC: 0.8 (95% CI 0.7 - 0.87)

0 20 40 60 80 100

02

04

06

08

01

00

Figure 4. continued.

Blaire et al. Journal of Nuclear Cardiology!

A phantom study

Author's personal copy

Page 47: Tanguy Blaire - TEL

39

D’Estanque et al31 recently reported the impact of

scatter correction in dual-isotope (201Tl/123I-mIBG)

cardiac SPECT protocols for trigger zone assessment

with the DNM 530c. This correction improved the

accuracy of myocardial SPECT for mapping the seg-

mental myocardial sympathetic denervation. In their

study, perfusion was assessed using Thallium, which

energy window was centered at 67 keV ± 10%, right in

the 123I down-scatter and crosstalk window. The contri-

bution of tailing and down-scatter photons from the

photopeak of 123I, detected as primary photons in the99mTc energy window is less important than in the 201Tl

energy window, as depicted in Figure 7. According to

D’Estanque et al, scatter correction is required when

using 201Tl/123I-mIBG.

Although only the possible evaluation with and

without scatter correction could help better understand

the need or not to use scatter for the DNM 530c, our

results suggest that correction for crosstalk, scatter, and

tailing effect of 123I in the 99mTc photopeak may likely

have only limited clinical relevance in patients with

ischemic heart disease.

The availability of tailing effect correction using the

DSPECT camera only for dual (and not single)-isotope

acquisitions20 may explain the difference in terms of

image contrast between single-isotope (separate 123I and99mTc acquisitions) and simultaneous dual-isotope (123I

and 99mTc) acquisitions with the DSPECT. This led to a

higher image contrast for both 123I and 99mTc images

when using a simultaneous dual-isotope acquisition with

the DSPECT compared to single-isotope acquisition.99mTc crosstalk into the 123I window is negligible when

performing a simultaneous CZT acquisition.20

LIMITATIONS OF THE STUDY

As reconstructions were performed according to

each manufacturer’s recommendations, scatter, cross-

talk, and tailing effect corrections were available with

the DSPECT but not with the DNM 530c camera.

However, our results showed no critical differences

between the single- and dual-isotope conditions for the

assessment of 99mTc images, even with the DNM 530c.

At best, the demonstration could be made by comparing

the results obtained with and without corrections.29,30

However, the aim of our study was to compare the

results obtained with the two CZT cameras using the

dedicated commercially available software to mimic

routine clinical conditions. Finally, our results were

obtained using specific reconstruction and filtering

algorithms recommended by the manufacturers for

clinical use and cautions are required in case of using

different algorithms in order to achieve successful

assessment.Table

2.Defectandmismatchsizedelineatedonbull’s

eyepolarmapsusinga50%

levelisocontourandquantifiedasapercentageof

theventricularsu

rfacewithsingle-iso

topecompared

withsimultaneousdual-isotopeacquisitionsforboth

energywindows(1

23Iand

99mTc)onDNM

530candDSPECT

Camera

DNM

530c

DSPECT

Acquisitiontype

Single

Dual

Single

Dual

Energywindow

123I

99mTc

Mismatch

123I

99mTc

Mismatch

123I

99mTc

Mismatch

123I

99mTc

Mismatch

7-M

inacquisition

26

21

528

20

826

20

626

20

6

11-m

inacquisition

27

20

726

21

526

20

624

20

4

22-M

inacquisition

27

19

828

19

927

22

526

20

6

33-M

inacquisition

27

19

827

20

725

21

426

21

5

Mean±SD

(%)

26.8

±0.5

19.8

±0.9

7.0 ±1.4

27.3

±0.9

20

±0.8

7.3 ±1.7

26.0

±0.8

20.8

±1.0

5.3 ±1.0

25.5

±1.0

20.3

±0.5

5.3 ±0.9

AllPvalues=

NS

Journal of Nuclear Cardiology! Blaire et al.

A phantom study

Author's personal copy

Page 48: Tanguy Blaire - TEL

40

Figure 5. Single-isotope (separate 123I and 99mTc) acquisitions and mismatch on DNM 530c (A)and DSPECT (C) and simultaneous dual-isotope (123I and 99mTc) acquisitions and mismatch onDNM 530c (B) and DSPECT (D) presented as the bull’s eye polar maps of the 22-min acquisitions.

Blaire et al. Journal of Nuclear Cardiology!

A phantom study

Author's personal copy

Page 49: Tanguy Blaire - TEL

41

NEW KNOWLEDGE GAINED

With an increased energy resolution, the CZT

cameras may allow, under routine conditions, a simul-

taneous and accurate segmental study of myocardial

innervation and perfusion (match and mismatch).

CONCLUSION

In this phantom study, the two CZT cameras (DNM

530c and DSPECT) provided similar results in the

evaluation of regional myocardial innervation and per-

fusion match and mismatch with single- (separate 123I

BA

*

*

*

60

65

70

75

80

85

90

95

100

single dual

Imag

e co

ntr

ast

(%)

60

65

70

75

80

85

90

95

100

single dual

Def

ect

contr

ast

(%)

Figure 6. Image (A) and defect (B) contrasts with single (separate 123I and 99mTc) acquisitionscompared with simultaneous dual-isotope (123I and 99mTc) acquisitions for both energy windows(123I and 99mTc) on DNM 530c and DSPECT expressed as mean value ± standard deviation.*P\ .0001 vs dual.

a

Energy (keV)

b

Energy (keV)

0

20

40

60

80

100

30 80 130 180

0

20

40

60

80

100

30 80 130 180

No

rmal

ised

cou

nts

No

rmal

ised

cou

nts

123I and 99mTc99mTc123IA B

Figure 7. Single-isotope (separate 123I and 99mTc) and simultaneous dual-isotope (123I and 99mTc)acquisitions on DNM 530c (A) and DSPECT (B) presented as the energy spectra of the 7-minacquisitions.

Journal of Nuclear Cardiology! Blaire et al.

A phantom study

Author's personal copy

Page 50: Tanguy Blaire - TEL

42

and 99mTc acquisitions) and simultaneous dual-isotope

(123I and 99mTc) acquisitions. These findings may have

diagnostic and therapeutic implications in heart failure

patients referred for a combined assessment of perfusion

and innervation.

Acknowledgment

Nathaniel Roth, Rafael Baavour, Sylvie Petit, Mathilde

Thelu, and the nuclear medicine technicians at Caen and Lille

for their technical assistance.

Disclosures

The authors have indicated that they have no financial

conflict of interest.

References

1. Zipes DP (1991) Sympathetic stimulation and arrhythmias. N Engl

J Med 325:656-657

2. Carrio I, Cowie MR, Yamazaki J, Udelson J, Camici PG (2010)

Cardiac sympathetic imaging with mIBG in heart failure. JACC

Cardiovasc Imaging 3:92-100

3. Morozumi T, Kusuoka H, Fukuchi K, Tani A, Uehara T, Matsuda

S et al (1997) Myocardial iodine-123-metaiodobenzylguanidine

images and autonomic nerve activity in normal subjects. J Nucl

Med 38:49-52

4. Merlet P, Benvenuti C, Moyse D, Pouillart F, Dubois-Rande JL,

Duval AM et al (1999) Prognostic value of MIBG imaging in

idiopathic dilated cardiomyopathy. J Nucl Med 40:917-923

5. Manrique A, Bernard M, Hitzel A, Bauer F, Menard JF, Sabatier R

et al (2008) Prognostic value of sympathetic innervation and

cardiac asynchrony in dilated cardiomyopathy. Eur J Nucl Med

Mol Imaging 35:2074-2081

6. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS,

Lopez VA et al (2010) Myocardial iodine-123 meta-iodobenzyl-

guanidine imaging and cardiac events in heart failure. Results of

the prospective ADMIRE-HF (AdreView Myocardial Imaging for

Risk Evaluation in Heart Failure) study. J Am Coll Cardiol

55:2212-2221

7. Agostini D, Marie PY, Ben-Haim S, Rouzet F, Songy B, Giordano

A et al (2016) Performance of cardiac cadmium-zinc-telluride

gamma camera imaging in coronary artery disease: A review from

the cardiovascular committee of the European Association of

Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging

43:2423-2432

8. Gimelli A, Liga R, Genovesi D, Giorgetti A, Kusch A, Marzullo P

(2014) Association between left ventricular regional sympathetic

denervation and mechanical dyssynchrony in phase analysis: A

cardiac CZT study. Eur J Nucl Med Mol Imaging 41:946-955

9. Gimelli A, Liga R, Giorgetti A, Genovesi D, Marzullo P (2014)

Assessment of myocardial adrenergic innervation with a solid-

state dedicated cardiac cadmium-zinc-telluride camera: First

clinical experience. Eur Heart J Cardiovasc Imaging 15:575-585

10. Tinti E, Positano V, Giorgetti A, Marzullo P (2014) Feasibility of

[(123)I]-meta-iodobenzylguanidine dynamic 3-D kinetic analysis

in vivo using a CZT ultrafast camera: Preliminary results. Eur J

Nucl Med Mol Imaging 41:167-173

11. Bellevre D, Manrique A, Legallois D, Bross S, Baavour R, Roth N

et al (2015) First determination of the heart-to-mediastinum ratio

using cardiac dual isotope (123I-MIBG/99mTc-tetrofosmin) CZT

imaging in patients with heart failure: The ADRECARD study.

Eur J Nucl Med Mol Imaging 42:1912-1919

12. Cochet H, Bullier E, Gerbaud E, Durieux M, Godbert Y, Lederlin

M et al (2013) Absolute quantification of left ventricular global

and regional function at nuclear MPI using ultrafast CZT SPECT:

Initial validation versus cardiac MR. J Nucl Med 54:556-563

13. Bailliez A, Blaire T, Mouquet F, Legghe R, Etienne B, Legallois D

et al (2014) Segmental and global left ventricular function

assessment using gated SPECT with a semiconductor Cadmium

Zinc Telluride (CZT) camera: Phantom study and clinical vali-

dation vs cardiac magnetic resonance. J Nucl Cardiol 21:712-722

14. Bailliez A, Lairez O, Merlin C, Piriou N, Legallois D, Blaire T

et al (2016) Left ventricular function assessment using 2 different

cadmium-zinc-telluride cameras compared with a gamma-camera

with cardiofocal collimators: Dynamic cardiac phantom study and

clinical validation. J Nucl Med 57:1370-1375

15. Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel

F, De Bondt P et al (2015) EANM procedural guidelines for

radionuclide myocardial perfusion imaging with SPECT and

SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 42:1929-

1940

16. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF (2009)

Performance evaluation of D-SPECT: A novel SPECT system for

nuclear cardiology. Phys Med Biol 54:2635-2649

17. Leo W (1994) Techniques for nuclear and particle physics

experiments, 2nd edn. Spinger, Berlin

18. Verberne HJ, Feenstra C, de Jong WM, Somsen GA, van Eck-Smit

BL, Busemann Sokole E (2005) Influence of collimator choice and

simulated clinical conditions on 123I-MIBG heart/mediastinum

ratios: A phantom study. Eur J Nucl Med Mol Imaging 32:1100-

1107

19. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G,

Volokh L (2010) A fast cardiac gamma camera with dynamic

SPECT capabilities: Design, system validation and future poten-

tial. Eur J Nucl Med Mol Imaging 37:1887-1902

20. Kacperski K, Erlandsson K, Ben-Haim S, Hutton BF (2011)

Iterative deconvolution of simultaneous 99mTc and 201Tl pro-

jection data measured on a CdZnTe-based cardiac SPECT scanner.

Phys Med Biol 56:1397-1414

21. Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes

SW et al (2009) Quantitative assessment of myocardial perfusion

abnormality on SPECT myocardial perfusion imaging is more

reproducible than expert visual analysis. J Nucl Cardiol 16:45-53

22. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to

ImageJ: 25 years of image analysis. Nat Methods 9:671-675

23. Morgan CJ, Aban I (2016) Methods for evaluating the agreement

between diagnostic tests. J Nucl Cardiol 23:511-513

24. Bland JM, Altman DG (1986) Statistical methods for assessing

agreement between two methods of clinical measurement. Lancet

1:307-310

25. Kumita S, Cho K, Nakajo H, Toba M, Kijima T, Mizumura S et al

(2000) Simultaneous assessment of Tc-99m-sestamibi and I-123-

BMIPP myocardial distribution in patients with myocardial

infarction: Evaluation of left ventricular function with ECG-gated

myocardial SPECT. Ann Nucl Med 14:453-459

26. Ouyang J, Zhu X, Trott CM, El Fakhri G (2009) Quantitative

simultaneous 99mTc/123I cardiac SPECT using MC-JOSEM.

Med Phys 36:602-611

27. Flotats A, Carrio I, Agostini D, Le Guludec D, Marcassa C,

Schafers M et al (2010) Proposal for standardization of 123I-

metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging

Blaire et al. Journal of Nuclear Cardiology!

A phantom study

Author's personal copy

Page 51: Tanguy Blaire - TEL

43

by the EANM Cardiovascular Committee and the European

Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging

37:1802-1812

28. Abdulghani M, Duell J, Smith M, Chen W, Bentzen SM, Asoglu R

et al (2015) Global and regional myocardial innervation before and

after ablation of drug-refractory ventricular tachycardia assessed

with 123I-MIBG. J Nucl Med 56(Suppl 4):52S-58S

29. Fan P, Hutton BF, Holstensson M, Ljungberg M, Hendrik Preto-

rius P, Prasad R et al (2015) Scatter and crosstalk corrections for

(99m)Tc/(123)I dual-radionuclide imaging using a CZT SPECT

system with pinhole collimators. Med Phys 42:6895

30. Holstensson M, Erlandsson K, Poludniowski G, Ben-Haim S,

Hutton BF (2015) Model-based correction for scatter and tailing

effects in simultaneous 99mTc and 123I imaging for a CdZnTe

cardiac SPECT camera. Phys Med Biol 60:3045-3063

31. D’Estanque E, Hedon C, Lattuca B, Bourdon A, Benkiran M, Verd

A et al (2016) Optimization of a simultaneous dual-isotope 201Tl/

123I-MIBG myocardial SPECT imaging protocol with a CZT

camera for trigger zone assessment after myocardial infarction for

routine clinical settings: Are delayed acquisition and scatter cor-

rection necessary? J Nucl Cardiol. doi:10.1007/s12350-

016-0524-1

Journal of Nuclear Cardiology! Blaire et al.

A phantom study

Author's personal copy

Page 52: Tanguy Blaire - TEL

44

V. :Déterminationdurapportcardiomédiastinaldela

fixationd’123I-MIBGlorsd’acquisitionsTEMPdouble-isotope

(123I-MIBG/99mTc-tétrofosmine)surunegamma-caméraCZTà

collimationmulti-sténopéechezlespatientsporteurs

d’insuffisancecardiaque

A. RésuméLebutdecetteétuderétrospectiveétaitdedéterminerleRCMdelafixationdel’123I-MIBG

obtenu à l'aide d'une gamma-caméra à semi-conducteurs CZT à collimation multi-

sténopée (la DNM 530c) et de le comparer aux RCM obtenus en utilisant l'imagerie

planaireconventionnelle(Infinia,GEHealthcare,Milwaukee,WI,USA).

Méthode:Quarantepatientsconsécutifssouffrantd'insuffisancecardiaqueontbénéficié

d’uneacquisitionplanaire4haprèsinjectiond’123I-MIBG(191±41MBq).Pourlocaliser

lecœurenutilisantlaDNM530c,uneactivitéde99mTc-tétrofosmine(358±177MBq)a

étéadministréeetuneacquisitiondouble-isotopeaétéeffectuée.LesRCMontétécalculés

(i) avec une imagerie planaire conventionnelle (HMRplanar), (ii) avec des images de

reprojectionantérieure(HMRreproj)et(iii)avecdesimagesreconstruitestransaxiales

enutilisantlaDNM530c(HMRtransaxial).Dansuneétudesurfantômeanthropomorphe

detorse,nousavonsdéfiniunmodèle linéaireadaptant lesrésultatsCZTauxdonnées

planaires.CemodèleaensuiteétéappliquépourfournirlesvaleursdeRCMCZTcorrigées

chezlespatients(respectivementcHMRreprojetcHMRtransaxial).

Résultats:Trente-quatrehommeset6femmes(71±9ans)souffrantd’uneinsuffisance

cardiaque d’origine ischémique (22 patients) et non ischémique (18 patients) ont été

inclusdansl'étude.Vingt-deuxdes40patients(55%)présentaientuneclasseIIdelaNew

York Heart Association et la fraction d'éjection était de 35 ± 9%. En comparaison à

HMRplanar(1,44±0,14),HMRreproj(1,12±0,19)etHMRtransaxial(1,35±0,34)étaient

diminué (p <0,0001 et p <0,01 respectivement). cHMRreproj (1,54 ± 0,09) et

cHMRtransaxial (1,45 ± 0,14) étaient significativement différents (p <0,0001). Le

coefficient de corrélation de concordance de Lin et l'analyse de Bland-Altman ont

démontréuneconcordancepresqueparfaiteetunagrémentélevéentreHMRplanaret

cHMRtransaxial(p=NS)enutilisantlesimagestransaxialesreconstruitesmaispasavec

cHMRreprojenutilisantdesimagesdereprojectionplanaire(p<0,0001).

Page 53: Tanguy Blaire - TEL

45

Conclusion:CetteétudeadémontréqueladéterminationduRCMtardifdelafixation

cardiaque d’123I-MIBG en utilisant l'acquisition double-isotope (123I et 99mTc) sur une

caméra CZT à collimationmulti-sténopée (DNM-530c) est réalisable chez les patients

souffrantd'insuffisancecardiaque.Cependant,cettedéterminationdoitêtreeffectuéeen

utilisant les images transaxiales reconstruites etune correction linéairebasée surdes

donnéesd’acquisitionsdefantômes.

Communicationsorales:

*SNM2017,Denver

Publication:acceptéeparleJNM2017

Page 54: Tanguy Blaire - TEL

46

Doi: 10.2967/jnumed.117.194373Published online: June 23, 2017.J Nucl Med.

Tanguy Blaire, Alban Bailliez, Fayçal Ben Bouallègue, Dimitri Bellevre, Denis Agostini and Alain Manrique heart failure

Tc-tetrofosmin) multi-pinhole CZT SPECT in patients with99mI-MIBG/123dual-isotope (I-MIBG uptake using123Determination of the heart-to-mediastinum ratio of

http://jnm.snmjournals.org/content/early/2017/06/22/jnumed.117.194373This article and updated information are available at:

http://jnm.snmjournals.org/site/subscriptions/online.xhtml

Information about subscriptions to JNM can be found at:

http://jnm.snmjournals.org/site/misc/permission.xhtmlInformation about reproducing figures, tables, or other portions of this article can be found online at:

and the final, published version.proofreading, and author review. This process may lead to differences between the accepted version of the manuscript

ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting,JNM

copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the . They have not beenJNM ahead of print articles have been peer reviewed and accepted for publication in JNM

(Print ISSN: 0161-5505, Online ISSN: 2159-662X)1850 Samuel Morse Drive, Reston, VA 20190.SNMMI | Society of Nuclear Medicine and Molecular Imaging

is published monthly.The Journal of Nuclear Medicine

© Copyright 2017 SNMMI; all rights reserved.

by Tanguy Blaire on June 29, 2017. For personal use only. jnm.snmjournals.org Downloaded from

B. Publicationcorrespondante(JNuclMed,2017)

Page 55: Tanguy Blaire - TEL

47

1

Determination of the heart-to-mediastinum ratio of 123

I-MIBG uptake using dual-

isotope (123

I-MIBG/99m

Tc-tetrofosmin) multi-pinhole CZT SPECT in patients with

heart failure.

Tanguy Blaire1,2,3

, Alban Bailliez1,2,3

, Fayçal Ben Bouallegue4, Dimitri Bellevre

5, Denis Agostini

2,5, Alain Manrique

2,5

1 Department of Nuclear Medicine, UF 5881, Groupement des Hôpitaux de l’Institut Catholique de Lille, Lomme, France

2 Normandie Univ, UNICAEN, Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, 14000

Caen, France

3 Department of Nuclear Medicine, IRIS, Polyclinique du Bois, Lille, France

4 Department of Nuclear Medicine, CHU de Montpellier, France

5 Department of Nuclear Medicine, CHU Cote de Nacre, Caen, France

Corresponding Author, scientist in training: Tanguy Blaire, MD, Department of Nuclear Medicine, UF 5881, Groupement des

Hôpitaux de l’Institut Catholique de Lille, Lomme, France

Tel: (+33) 320 001 655, Fax: (+33) 320 098 010,

Email: [email protected]

Word counts: Abstract: 285 words; Article: 5029

Running title: 123

I-MIBG HMR using CZT SPECT

Financial support: No

Page 56: Tanguy Blaire - TEL

48

2

ABSTRACT

The aim of this retrospective study was to determine the heart-to-mediastinum ratio (HMR) of

123I-metaiodobenzylguanidine (MIBG) uptake obtained using a multi-pinhole cadmium-zinc-

telluride (CZT)-based camera (Discovery NM 530c, DNM-530c, GE Healthcare, Milwaukee, WI,

USA) in comparison with that obtained using conventional planar imaging (Infinia, GE

Healthcare, Milwaukee, WI, USA). Methods: Forty consecutive heart failure patients underwent

planar acquisition 4 h after 123

I-MIBG injection (191±41 MBq). To localize the heart using DNM-

530c, 99m

Tc-tetrofosmin (358±177 MBq) was administered and a dual-isotope acquisition was

performed. The HMRs were calculated (i) with conventional planar imaging (HMRplanar), (ii) with

anterior reprojection images (HMRreproj) and (iii) with transaxial reconstructed images using

DNM-530c (HMRtransaxial). In a phantom study, we estimated a linear model fitting the CZT to the

planar data that was further applied to provide corrected CZT HMR values in patients (cHMRreproj

and cHMRtransaxial respectively). Results: Thirty-four men and 6 women (71±9 y/o) with ischemic

(22 patients) and nonischemic (18 patients) heart failure completed the study. Twenty-two of the

40 patients (55%) were New York Heart Association class II, and ejection fraction was 35±9 %.

Compared to HMRplanar (1.44±0.14), HMRreproj (1.12±0.19) and HMRtransaxial (1.35±0.34) were

decreased (p<0.0001 and p<0.01 respectively). Corrected cHMRreproj (1.54±0.09) and

cHMRtransaxial (1.45±0.14) were different (p<0.0001). Lin’s concordance correlation and Bland-

Altman analysis demonstrated an almost perfect concordance and a high agreement between

HMRplanar and cHMRtransaxial (p=NS) using transaxial reconstructed images but not with cHMRreproj

using reprojection images (p<0.0001). Conclusion: This study demonstrated that determination

of late HMR of cardiac 123

I-MIBG uptake using dual-isotope (123

I and 99m

Tc) acquisition on a

multi-pinhole CZT camera (DNM-530c) is feasible in patients with heart failure. However, this

determination should be performed using transaxial reconstructed images and a linear correction

based on phantom data acquisitions.

Keywords CZT, DNM-530c, MIBG, Heart-to-mediastinum ratio, heart failure, dual-isotope

Page 57: Tanguy Blaire - TEL

49

3

INTRODUCTION

Impairment of cardiac sympathetic innervation assessed with 123

I-MIBG is recognized as an

independent prognostic factor in patients with heart failure (1-6). The late HMR of 123

I-MIBG is

a major predictor of sudden death and cardiac events in patients with heart failure. A HMR below

1.6 is associated with an increased risk. (6). Currently, the calculation of HMR requires a planar

static image of the thorax. This technique is well-standardized and reproducible using a

conventional Anger camera (7,8). Recently, dedicated cardiac single photon emission computed

tomography (SPECT) cameras using CZT detectors have dramatically transformed the routine of

myocardial perfusion imaging in patients with known or suspected coronary artery disease. These

cameras have a better count detection sensitivity resulting in decreased acquisition times and

injected radiopharmaceutical doses, and improved energy resolution, permitting better photon

energy discrimination for dual-isotope imaging.

Myocardial perfusion imaging obtained using cardiac CZT cameras is well validated

against the conventional Anger camera for the diagnosis of coronary artery disease (9-12). Only a

few studies have evaluated myocardial sympathetic innervation imaging with these new

generation detectors (13-16). With DNM-530c, Gimelli et al. (13,14) assessed regional left

ventricular denervation, while D’Estanque et al. (15) reported the impact of scatter correction in

dual-isotope (201

Tl/123

I-MIBG) cardiac SPECT protocols for trigger zone assessment defined as

areas of autonomic nervous system dysfunction in viable myocardium that may contribute to the

genesis of ventricular arrhythmia. In the Adrecard study, Bellevre et al. (16) recently demonstrated

that the determination of late HMR of 123

I-MIBG was feasible in patients with heart failure using

a parallel collimator CZT camera (DSPECT, Biosensors International, Caesarea, Israel). The two

commercially available CZT cameras differ for sensitivity (4-fold improved with DNM-530c, and

nearly 7-fold with DSPECT), and spatial resolution (6.7 mm with DNM-530c, and 8.6 mm with

DSPECT) leading to images with different sharpness and contrast-to-noise ratios (11,17,18). Until

now, there have been no reports on the use of the DNM-530c, a multi-pinhole CZT SPECT

camera, for determining HMR of 123

I-MIBG uptake. As previously emphasized (19,20),

quantification of HMR is influenced by the type of collimators used and the number of scattered

photons. Consequently, the value of HMR is expected to depend on the type of CZT camera used,

hence the need for a study to validate the multi-pinhole dedicated cardiac CZT camera.

The aim of this study was to compare the late HMR of 123

I-MIBG uptake determined using

dual-isotope CZT acquisition (DNM-530c) with that determined using conventional planar

imaging in patients with heart failure.

Page 58: Tanguy Blaire - TEL

50

4

MATERIALS AND METHODS

Phantom Studies

To estimate the effectiveness of the DNM-530c camera in measuring HMR, we performed

several phantom acquisitions using an anthropomorphic torso phantom (Data Spectrum,

Hillsborough, NC) with a cardiac insert. The liver and mediastinum compartments were filled with

20 MBq (17.5 kBq/mL) and 5 MBq (0.6 kBq/mL) 123

I activities, respectively. Ten consecutive

acquisitions were performed over 10 min using a conventional Anger camera (Infinia) and a CZT-

camera (DNM-530c). The cardiac insert was repeatedly unloaded from 1.75 (11 kBq/mL), to1.5,

1.25, 1.1, 0.94, 0.75, 0.5, 0.35, 0.25 and 0.1 MBq respectively to obtain a wide range of HMRs of

123I , as previously described (16,20).

Patient Population

This retrospective study was approved by our Hospital Ethics Committee for Medical

Research (CIER # 03/01/2016, France). Informed signed consent was obtained from all patients.

Data from 40 consecutive patients with clinically stable ischemic or nonischemic heart failure (left

ventricular ejection fraction, LVEF, <45 %) referred to our institution from May 2011 to May

2016, were retrospectively evaluated. Patients with a recent (<21 days) history of unstable angina

or acute myocardial infarction were excluded from the study.

Conventional Anger Camera Protocol (Planar)

The imaging protocol (Figure 1) was performed according to the recommendations of the

EANM Cardiovascular Committee and the European Council of Nuclear Cardiology (7). 123

I-

MIBG (191±29 MBq depending on the patient’s weight) was administered 30 min after blockade

of the thyroid by oral administration of Lugol solution. Four hours after injection, the late planar

image was first obtained on the conventional gamma camera system, a dual head gamma camera

(Infinia) equipped with low-energy high-resolution collimators. Planar images were acquired in

the anterior view over 10 min (128 × 128 matrix), using a symmetric energy window (159 ± 10

keV).

Dual-isotope (123

I-MIBG/99m

Tc-tetrofosmin) CZT Acquisition Protocol (DNM-530c)

99mTc-tetrofosmin (358±177 MBq) was administered for myocardial perfusion imaging in

order to localize the heart within the thorax. After 15 min, the 99m

Tc image helped to focus the

Page 59: Tanguy Blaire - TEL

51

5

detectors on the cardiac area. A 10-min list-mode simultaneous dual radionuclide (99m

Tc and 123

I)

gated scan was then performed using a dedicated CZT cardiac SPECT camera (DNM-530c).

DNM-530c is equipped with 19 stationary CZT detectors, each equipped with a pinhole

collimator, that simultaneously image 19 cardiac views, each detector being composed of four 5-

mm-thick elements of 32x32 pixels (pixel size 2.46 x 2.46 mm) (17). List-mode acquisition

permits the retrospective selection of 99m

Tc and 123

I energy windows, respectively set to 140 keV

(-10 to +5 %) and 159 keV (-5 to +10 %). No scatter correction was performed. Previous studies

using phantom data acquired separately for 99m

Tc and 123

I showed that 99m

Tc crosstalk into the 123

I

window was negligible when performing a simultaneous CZT SPECT acquisition (21,22). To

make sure that different 99m

Tc:123

I ratios do not impact on energy resolution, a set of energy spectra

(single 123

I, single 99m

Tc, dual 123

I-99m

Tc) was acquired using linear sources with three 99m

Tc:123

I

ratios (0.5:1, 1:1, and 5:1), with a constant activity of 123

I (24 MBq) (see Figure 2).

Heart-to-mediastinum 123

I-MIBG Uptake Ratio (HMR) Analysis

A HMRplanar was calculated on the planar images. Myocardial and mediastinal counts were

obtained by drawing regions of interest (ROI) manually on the left ventricle and over the upper

mediastinum area (7).

Using SPECT data, two different methods were tested for assessing the heart-to-

mediastinum 123

I-MIBG uptake ratio. First, a HMRreproj was calculated on a reprojected anterior

view from the SPECT images reconstructed using the vendor’s console. The reprojection of

tomographic data assumed an ideal parallel hole collimation and did not simulate attenuation or

scatter. A ROI encompassing the left ventricle was drawn manually on the 99m

Tc-tetrofosmin

images and automatically copied to the 123

I-MIBG images. A mediastinum ROI (42 pixels) was

then drawn on the 123

I-MIBG images.

Second, a HMRtransaxial was calculated using the transaxial reconstructed SPECT images.

A myocardial elliptic volume of interest (VOI) was drawn manually to encompass the whole heart

on the 99m

Tc-tetrofosmin images. This VOI was automatically copied from the 99m

Tc-tetrofosmin

images to the 123

I-MIBG images. A mediastinum VOI (300 voxels) was manually drawn on the

123I-MIBG images.

Heart-to-mediastinum Ratio Correction Factor

Many factors affecting the HMR of 123

I-MIBG uptake differ between the Infinia and

Page 60: Tanguy Blaire - TEL

52

6

DNM-530c cameras, including the type of collimator (parallel-hole low-energy high-resolution

with Infinia vs. multi-pinhole with DNM-530c), energy window, energy resolution which is better

with DNM-530c (approximatively 9% with Infinia vs. about 5% with DNM-530c), and detector

material stopping power (84% for 9.5 mm NaI(Tl) vs. 78% for 5 mm CZT for 159 keV photons).

To take into account the difference between DNM-530c and Infinia, a correction factor was

applied to HMR quantification, based on phantom acquisitions. To extract a correction factor from

the analysis, a linear regression equation obtained in the phantom study was used and the

corrected-HMRreproj (cHMRreproj) and the corrected-HMRtransaxial (cHMRtransaxial) calculated for each

patient in the validation group for further comparison with the HMRplanar values (16,23).

LVEF 99m

Tc-tetrofosmin SPECT with DNM-530c

As previously reported (22), the presence of 123

I does not impact on LVEF assessment

within the 99m

Tc energy window in the dual-isotope condition using DNM-530c. Accordingly,

LVEF was assessed using Quantitative Gated SPECT software (QGS, Cedars-Sinai Medical

Center, Los Angeles, CA).

Statistical Analysis

The normal distribution of data was tested with the Shapiro-Wilk test. Paired HMR values

determined using Infinia and DNM-530c were compared using Student’s t test for paired samples.

Correlations between HMRplanar, HMRreproj and HMRtransaxial were assessed using linear regression

and Pearson’s correlation. Concordance between HMRplanar, HMRreproj and HMRtransaxial values was

tested using Lin’s concordance correlation coefficient (CCC) (24) and Bland-Altman analysis

(25). Lin’s CCC is essentially equivalent to the kappa coefficient but is applicable to continuous

data. It evaluates both accuracy and precision, indicating how far the measurement pairs are away

from the line of identity. Lin’s CCC scale ranges from 0 (no agreement) to +1 (perfect agreement),

where 0.21 – 0.40 indicates fair concordance, 0.41 – 0.60 moderate concordance, 0.61 – 0.80

substantial concordance and 0.81 – 1.00 almost perfect concordance. A two-tailed p value ≤0.05

was considered statistically significant. Statistical analysis was performed using R version 3.3.2

(R Foundation for Statistical Computing, Vienna, Austria).

Page 61: Tanguy Blaire - TEL

53

7

RESULTS

Phantom Study

The HMR values obtained from the phantom acquisitions are listed in Table 1. The

HMRreproj (2.82±1.5) and HMRtransaxial (3.51±1.94) were increased compared with HMRplanar

(2.34±0.8, p=NS and p=0.01 respectively). However, Bland-Altman plots demonstrated that

HMRreproj and HMRtransaxial values were underestimated for low HMR and overestimated for high

HMR values. The corrections used for the calculation of cHMRreproj and cHMRtransaxial were

determined by linear regression between CZT and planar HMR in the phantom study: cHMRreproj

= 0.4715×HMRreproj + 1.0416 (r= 0.98) and cHMRtransaxial = 0.4106×HMRtransaxial + 0.8987 (r= 0.99)

respectively.

Population

Among the 40 consecutive patients (34 male, 6 female, mean age 71±9 years, mean LVEF:

35%±9) with heart failure included in the study, 22 (55%) had ischemic heart failure, and 18 (45%)

had nonischemic heart failure. Patient characteristics are presented in Table 1. According to the

New York Heart Association functional classification, 13 patients were class I, 22 class II, and 5

class III. End-diastolic and end-systolic volumes, and LVEF obtained using 99m

Tc-tetrofosmin

SPECT were 171±87 mL, 117±67 mL and 36%±17, respectively.

HMR Quantification in Patients: DNM-530c vs. Planar

In our population, the HMRreproj (1.12±0.19) and HMRtransaxial (1.35±0.34) were

significantly lower than HMRplanar (1.44±0.14, p<0.0001 and p<0.05 respectively). Figures 3A and

4A show Lin’s concordance correlation between HMRreproj and HMRplanar (Figure 3A) and between

HMRtransaxial and HMRplanar (Figure 4A), and demonstrate only a fair concordance between

HMRreproj and HMRplanar (CCC= 0.24) and a substantial concordance between HMRtransaxial and

HMRplanar (CCC= 0.61). Bland-Altman plots (Figure 3B and 4B) further demonstrated a poor

agreement between HMRreproj and HMRplanar (3B) and between HMRtransaxial and HMRplanar (4B)

leading to underestimation of values by DNM-530c. Figure 5 displays a case imaged with Infinia

and DNM-530c.

HMR Quantificationin Patients: Corrected DNM-530c vs. Planar

Corrected cHMRreproj (1.54±0.09) but not cHMRtransaxial (1.45±0.14) was significantly

Page 62: Tanguy Blaire - TEL

54

8

higher than HMRplanar (1.44±0.14, p<0.0001 and p=NS respectively). As shown in Figure 3C, there

was a moderate concordance between cHMRreproj and HMRplanar (CCC= 0.49) and Bland’s Altman

plots (Figure 3D) showed a moderate agreement between cHMRreproj and HMRplanar. The mean

difference between the HMR values from the two techniques was 0.11, but significantly increased

as a function of the mean HMR value.

In contrast, as shown in Figure 4C, there was an almost perfect concordance between

cHMRtransaxial and HMRplanar (CCC= 0.92). Bland’s Altman plots (Figure 4D) showed high

agreement between cHMRtransaxial and HMRplanar values. The mean difference between the HMR

values from the two techniques was 0.01, with a narrow 95 % confidence interval, and was stable

over the whole range of HMR values.

Page 63: Tanguy Blaire - TEL

55

9

DISCUSSION

Late HMR determination using the Anger camera is well standardized and its prognostic

value is widely recognized. In this retrospective study, we determined the HMR of 123

I-MIBG

uptake using a multi-pinhole dedicated cardiac CZT camera (DNM-530c) in patients with heart

failure and low LVEF. To our knowledge, this is the first dual-isotope study combining 123

I-MIBG

and 99m

Tc-tetrofosmin with a multi-pinhole CZT camera in order to assess cardiac neuronal

function in heart failure. Late HMRs (HMRreproj and HMRtransaxial) were significantly lower in

patients compared with planar imaging, but with high agreement with cHMRtransaxial. Our

results are consistent with previous findings from the Adrecard study (16) conducted using another

model of the dedicated cardiac CZT camera with different spatial resolution and sensitivity

(17,26).

Difference Between Planar and CZT SPECT HMR

Firstly, in order to better understand the camera responses in 123

I-MIBG imaging, we

compared planar and DNM-530c phantom acquisitions, and found that the non-corrected HMRs

obtained with the DNM-530c underestimated the low values and overestimated high values of 123

I-

MIBG uptake. Accordingly, HMRs values in patients were significantly lower with the DNM-

530c compared with the Anger camera, as these patients with heart failure had decreased 123

I-

MIBG uptake.

The collimators used and the stopping power of the detector material may impact on the

quantification of 123

I-MIBG HMR (20,27). Inoue et al. (23) found that a correction factor is

necessary to improve exchangeability between the HMR values calculated using ME and low-to-

medium energy collimators. Nakajima et al. demonstrated that the linear regression equation

between low-energy and ME collimators obtained in a phantom study can be used for

standardizing the measurement of HMR in 123

I-MIBG imaging (28-30). In our study, after

correction, there was still a significant difference between cHMRreproj and HMRplanar (p<0.0001),

but there was no difference between cHMRtransaxial and HMRplanar (p=NS).

Using a different model of camera with mobile CZT detector columns and parallel

tungsten collimators (DSPECT), Bellevre et al. extracted a planar equivalent image by projecting

and summing all the elementary 2-D images that shared the same angle onto one large field of

view virtual plane (16). After applying a similar correction based on linear regression between

SPECT and planar phantom acquisitions, they found a high agreement between 123

I-MIBG HMR

Page 64: Tanguy Blaire - TEL

56

10

obtained using CZT and that obtained using planar imaging. In contrast, the moderate concordance

between cHMRreproj and HMRplanar we found using anterior reprojection images is likely related to

the multi-pinhole collimation, which is responsible for (i) a truncation artifact (31) that interferes

with the mean counts of the myocardial ROI (see Figure 5) and for (ii) a larger non-uniformity

with the DNM-530c compared with Anger camera (31). This limitation was overcome by using

reconstructed transaxial images instead of reprojection images for the measurement of corrected

123I-MIBG HMR with the DNM-530c in our population.

Dual-isotope Acquisition

In our study, we performed simultaneous dual-isotope DNM-530c acquisitions with

99mTc-tetrofosmin (358±177 MBq) and

123I-MIBG(191±29 MBq). This dual-isotope acquisition

allowed the simultaneous assessment of cardiac innervation and function. A previous phantom

study demonstrated that under simultaneous dual-isotope condition, the presence of 123

I did not

impact on LVEF assessment within the 99m

Tc energy window for both dedicated CZT cameras

(22). In addition, a simultaneous dual-isotope protocol provides a clearer 99m

Tc-tetrofosmin image

and a perfect registration to define the heart contours on the 99m

Tc-tetrofosmin image and then

accurately measure 123

I-MIBG heart uptake (16). As shown in Figure 2, the amount of 99m

Tc

activity impacts on 99m

Tc/123

I ratio but does not interfere with the energy resolution of the detector,

modifying only the magnitude but not the width of the photopeak.

Finally, acquisition of both SPECT and planar images using Anger camera usually

requires 30-45 min compared with 10 min using CZT cameras, which is much more convenient

in patients with heart failure.

Study Limitations

Because of the narrow field of view, the cardiac acquisition does not encompass the upper

mediastinum. Consequently, the mediastinal ROI/VOI is positioned in the middle mediastinum on

DNM-530c images, while the mediastinal ROI is set on the upper mediastinum when using a

conventional Anger camera (7). On the other hand, the size and placement (manual or automated)

of the left ventricular ROI does not affect the delayed HMR of 123

I-MIBG using conventional

planar imaging (8). Therefore, further studies are needed to standardize the placement of the

mediastinal ROI or VOI using the different models of available cardiac CZT cameras, at best with

standardized HMR using cross-calibrated conversion coefficients (30). Finally, dual-isotope

acquisition increases the radiation burden. In this retrospective study, the injected 99m

Tc-

Page 65: Tanguy Blaire - TEL

57

11

tetrofosmin activity was gradually decreased over time as it became clear that CZT camera allows

the injection of small amounts of perfusion tracer without compromising image quality.

CONCLUSION

This study demonstrated that determination of late HMR of cardiac 123

I-MIBG uptake

using dual-isotope (123

I and 99m

Tc) acquisition on a multi-pinhole CZT camera (DNM-530c) is

feasible in patients with heart failure. However, this determination might be performed using

transaxial reconstructed images and a linear correction based on phantom data acquisitions.

FINANCIAL SUPPORT

No

DISCLOSURE

Tanguy Blaire: no disclosure

Alban Bailliez: no disclosure

Fayçal Ben Bouallegue: no disclosure

Dimitri Bellevre: no disclosure

Denis Agostini: no disclosure

Alain Manrique: no disclosure

COMPLIANCE WITH ETHICAL STANDARDS

Ethical Approval

All procedures performed in studies involving human participants were in accordance

with the ethical standards of the institutional and/or national research committee and with the

principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical

standards.

Informed Consent was obtained from all individual participants included in the study.

ACKNOWLEDGMENTS

Amélie Lansiaux, Sylvie Petit, Mathilde Thélu, and the nuclear medicine technicians at Lille for

their technical assistance.

Page 66: Tanguy Blaire - TEL

58

12

REFERENCES

1. Merlet P, Valette H, Dubois-Rande JL, et al. Prognostic value of cardiac

metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med. 1992;33:471-477.

2. Nakata T, Miyamoto K, Doi A, et al. Cardiac death prediction and impaired cardiac

sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl

Cardiol. 1998;5:579-590.

3. Merlet P, Benvenuti C, Moyse D, et al. Prognostic value of MIBG imaging in idiopathic

dilated cardiomyopathy. J Nucl Med. 1999;40:917-923.

4. Wakabayashi T, Nakata T, Hashimoto A, et al. Assessment of underlying etiology and

cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med.

2001;42:1757-1767.

5. Manrique A, Bernard M, Hitzel A, et al. Prognostic value of sympathetic innervation and

cardiac asynchrony in dilated cardiomyopathy. Eur J Nucl Med Mol Imaging. 2008;35:2074-2081.

6. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-

iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective

ADMIRE-HF (Adreview Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am

Coll Cardiol. 2010;55:2212-2221.

7. Flotats A, Carrio I, Agostini D, et al. Proposal for standardization of 123I-

metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular

Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging.

2010;37:1802-1812.

8. Veltman CE, Boogers MJ, Meinardi JE, et al. Reproducibility of planar (123)I-meta-

iodobenzylguanidine (MIBG) myocardial scintigraphy in patients with heart failure. Eur J Nucl

Med Mol Imaging. 2012;39:1599-1608.

9. Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging initial

clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc

Imaging. 2008;1:156-163.

10. Herzog BA, Buechel RR, Katz R, et al. Nuclear myocardial perfusion imaging with a

cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction. J Nucl

Med. 2010;51:46-51.

11. Imbert L, Poussier S, Franken PR, et al. Compared performance of high-sensitivity

cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and

human images. J Nucl Med. 2012;53:1897-1903.

12. Verger A, Djaballah W, Fourquet N, et al. Comparison between stress myocardial

perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study

protocols. Eur J Nucl Med Mol Imaging. 2013;40:331-340.

Page 67: Tanguy Blaire - TEL

59

13

13. Gimelli A, Liga R, Genovesi D, Giorgetti A, Kusch A, Marzullo P. Association between

left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis:

a cardiac CZT study. Eur J Nucl Med Mol Imaging. 2014;41:946-955.

14. Gimelli A, Liga R, Giorgetti A, Genovesi D, Marzullo P. Assessment of myocardial

adrenergic innervation with a solid-state dedicated cardiac cadmium-zinc-telluride camera: first

clinical experience. Eur Heart J Cardiovasc Imaging. 2014;15:575-585.

15. D'Estanque E, Hedon C, Lattuca B, et al. Optimization of a simultaneous dual-isotope

201Tl/123I-MIBG myocardial SPECT imaging protocol with a CZT camera for trigger zone

assessment after myocardial infarction for routine clinical settings: are delayed acquisition and

scatter correction necessary? J Nucl Cardiol. May 25, 2016 [Epub ahead of print].

16. Bellevre D, Manrique A, Legallois D, et al. First determination of the heart-to-

mediastinum ratio using cardiac dual isotope (123I-MIBG/99mTc-tetrofosmin) CZT imaging in

patients with heart failure: the ADRECARD study. Eur J Nucl Med Mol Imaging. 2015;42:1912-

1919.

17. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac

gamma camera with dynamic SPECT capabilities: design, system validation and future potential.

Eur J Nucl Med Mol Imaging. 2010;37:1887-1902.

18. Bailliez A, Lairez O, Merlin C, et al. Left ventricular function assessment using 2 different

cadmium-zinc-telluride cameras compared with a gamma-camera with cardiofocal collimators:

dynamic cardiac phantom study and clinical validation. J Nucl Med. 2016;57:1370-1375.

19. Inoue Y, Suzuki A, Shirouzu I, et al. Effect of collimator choice on quantitative

assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol. 2003;10:623-632.

20. Verberne HJ, Feenstra C, de Jong WM, Somsen GA, van Eck-Smit BL, Busemann Sokole

E. Influence of collimator choice and simulated clinical conditions on 123I-MIBG

heart/mediastinum ratios: a phantom study. Eur J Nucl Med Mol Imaging. 2005;32:1100-1107.

21. Blaire T, Bailliez A, Ben Bouallegue F, Bellevre D, Agostini D, Manrique A. First

assessment of simultaneous dual isotope (123I/99mTc) cardiac SPECT on two different CZT

cameras: a phantom study. J Nucl Cardiol. Mar 08, 2017 [Epub ahead of print].

22. Blaire T, Bailliez A, Bouallegue FB, Bellevre D, Agostini D, Manrique A. Left ventricular

function assessment using 123I/99mTc dual-isotope acquisition with two semi-conductor

cadmium-zinc-telluride (CZT) cameras: a gated cardiac phantom study. EJNMMI Phys.

2016;3:27-37.

23. Inoue Y, Abe Y, Itoh Y, et al. Acquisition protocols and correction methods for estimation

of the heart-to-mediastinum ratio in 123I-metaiodobenzylguanidine cardiac sympathetic imaging.

J Nucl Med. 2013;54:707-713.

24. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics.

1989;45:255-268.

25. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods

of clinical measurement. Lancet. 1986;1:307-310.

Page 68: Tanguy Blaire - TEL

60

14

26. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-

SPECT: a novel SPECT system for nuclear cardiology. Phys Med Biol. 2009;54:2635-2649.

27. Gambhir SS, Berman DS, Ziffer J, et al. A novel high-sensitivity rapid-acquisition single-

photon cardiac imaging camera. J Nucl Med. 2009;50:635-643.

28. Nakajima K, Okuda K, Matsuo S, et al. Standardization of metaiodobenzylguanidine heart

to mediastinum ratio using a calibration phantom: effects of correction on normal databases and a

multicentre study. Eur J Nucl Med Mol Imaging. 2012;39:113-119.

29. Nakajima K, Okuda K, Yoshimura M, et al. Multicenter cross-calibration of I-123

metaiodobenzylguanidine heart-to-mediastinum ratios to overcome camera-collimator variations.

J Nucl Cardiol. 2014;21:970-978.

30. Verschure DO, Poel E, Nakajima K, et al. A European myocardial 123I-mIBG cross-

calibration phantom study. J Nucl Cardiol. Jan 24, 2017 [Epub ahead of print].

31. Takahashi Y, Miyagawa M, Nishiyama Y, Ishimura H, Mochizuki T. Performance of a

semiconductor SPECT system: comparison with a conventional Anger-type SPECT instrument.

Ann Nucl Med. 2013;27:11-16.

Page 69: Tanguy Blaire - TEL

61

FIGURES AND TABLES

FIGURE 1 Imaging study protocol. The first acquisition is a single-isotope planar acquisition,

using a conventional camera, whereas the second is a dual-isotope acquisition, using a CZT

camera.

FIGURE 2 Single 123

I (24 MBq), single 99m

Tc, and simultaneous (123

I and 99m

Tc) energy spectra

using linear sources and DNM-530c. Notice the low tailing effect and the down-scatter of 123

I

towards 99m

Tc (and the absence of 99m

Tc scatter towards 123

I) in the dual-isotope condition,

whatever the ratio of 99m

Tc:123

I activity; 0.5:1 (A), 1:1 (B), and 5:1 (C) respectively.

123I and 99mTc99mTc123I

Norm

alis

ed c

ounts

Energy (keV)

0

20

40

60

80

100

30 80 130 180

Norm

alis

ed c

ounts

Energy (keV)

Norm

alis

ed c

ounts

0

20

40

60

80

100

30 80 130 180

Energy (keV)

0

20

40

60

80

100

30 80 130 180

A B C

D

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

HMRplanar

HM

Rre

pro

j

Line of perfect concordance

Reduced major axis

CCC: 0.24 (95% CI 0.13 - 0.34)

A

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

HMRplanar

cH

MR

rep

roj

Line of perfect concordance

Reduced major axis

CCC: 0.49 (95% CI 0.32 - 0.63)

C

B

0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

Mean HMR [(HMRplanar + HMRreproj)/2]

Diffe

ren

ce

HM

R [

HM

Rp

lan

ar

- H

MR

rep

roj]

Mean difference : 0.33 (95% CI: 0.07 ; 0.58)

+/- 2SD

y = -0.36 x + 0.783 ; r2

= 0.194

0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

Mean HMR [(HMRplanar + cHMRreproj)/2]

Diffe

ren

ce

HM

R [H

MR

pla

na

r -

cH

MR

rep

roj]

Mean difference : -0.11 (95% CI: -0.29 ; 0.08)

+/- 2SD

y = 0.445 x -0.769 ; r2

= 0.278

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

HMRplanar

HM

Rtr

an

sa

xia

l

Line of perfect concordance

Reduced major axis

CCC: 0.61 (95% CI 0.52 - 0.69)

D

A

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

HMRplanar

cH

MR

tra

nsa

xia

l

Line of perfect concordance

Reduced major axis

CCC: 0.92 (95% CI 0.85 - 0.96)

C

B

0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

Mean HMR [(HMRplanar + HMRtransaxial)/2]

Diffe

ren

ce

HM

R [H

MR

pla

na

r -

HM

Rtr

an

sa

xia

l]

Mean difference : 0.09 (95% CI: -0.34 ; 0.52)

+/- 2SD

y = -0.834 x + 1.27 ; r2

= 0.873

0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

Mean HMR [(HMRplanar + cHMRtransaxial)/2]

Diffe

ren

ce

HM

R [H

MR

pla

na

r -

cH

MR

tra

nsa

xia

l] Mean difference : -0.01 (95% CI: -0.12 ; 0.09)

+/- 2SD

y = 0.006 x -0.022 ; r2

= 0

FIGURE 3 Lin’s concordance correlation

coefficient plots (A, C) and Bland-Atman plots

(B, D) showing the agreement between

HMRreproj and HMRplanar (A, B) and between

cHMRreproj and HMRplanar (C, D).

FIGURE 4 Lin’s concordance correlation

coefficient plots (A, C) and Bland-Atman plots

(B, D) showing the agreement between

HMRtransaxial and HMRplanar (A, B; p<0.01) and

between cHMRtransaxial and HMRplanar (C, D)

Page 70: Tanguy Blaire - TEL

62

17

FIGURE 5 Patient #4 with ischemic heart failure (LVEF 44%). HMRs calculated with conventional

planar imaging (HMRplanar= 1.38, A) and using DNM-530c with anterior reprojection images

(HMRreproj= 0.96, E) and with transaxial reconstructed images (HMRtransaxial= 1.2, C, F). The 99m

Tc

image allows positioning on the heart of the ROI (D) or the VOI (B), and is pasted onto the 123

I image

(E and C respectively). Mediastinum VOI on 123

I acquisition (F). HMRreproj and HMRtransaxial were

decreased compared to HMRplanar. Lung activity (red arrows) and truncation artefacts (blue arrows) are

close to the heart.

TABLE 1 HMRs from phantom acquisitions

Heart activity (MBq) HMRplanar HMRreproj HMRtransaxial

1.75 3.56 5.33 6.49

1.5 3.34 4.82 5.77

1.25 2.88 3.84 4.60

1.1 2.77 3.73 4.90

0.94 2.41 2.50 3.81

0.75 2.29 2.14 3.35

0.5 1.86 1.69 2.33

0.35 1.61 1.57 1.65

0.25 1.48 1.34 1.49

0.1 1.21 1.26 0.73

Mean±SD 2.34±0.8 2.82±1.5 3.51±1.94

Page 71: Tanguy Blaire - TEL

63

19

TABLE 2 Patients characteristics Case

#

Age Gender Heart failure NYHA1 LVEF Administered dose

(MBq)

HMR

class (%) 123

I-MIBG 99m

Tc-tetrofosmin

Planar Reproj Trans cReproj cTrans

1 70 M ICM II 36 196 241 1.54 1.23 1.48 1.6 1.51

2 67 M ICM III 20 181 222 1.41 1.12 1.36 1.55 1.46

3 65 F NICM II 30 151 264 1.23 0.83 0.88 1.41 1.26

4 77 M NICM I 44 125 370 1.38 0.96 1.2 1.48 1.4

5 82 M NICM I 44 181 265 1.35 1.04 0.99 1.51 1.31

6 67 M ICM II 32 206 282 1.37 0.85 1.18 1.42 1.38

7 79 M ICM I 34 212 245 1.53 1.38 1.42 1.68 1.48

8 75 M ICM II 33 199 109 1.41 1.21 1.17 1.59 1.38

9 73 M ICM II 45 204 632 1.48 1.02 1.47 1.5 1.51

10 78 M ICM I 44 186 271 1.39 1.09 1.52 1.54 1.53

11 67 M NICM II 40 154 734 1.54 1.13 1.6 1.56 1.56

12 81 M NICM II 40 183 276 1.36 1.0 1.5 1.49 1.52

13 69 F NICM I 40 192 578 1.48 1.12 1.47 1.55 1.51

14 85 M ICM I 40 212 225 1.56 1.1 1.68 1.54 1.59

15 78 M ICM I 45 200 176 1.0 0.48 0.22 1.24 0.99

16 64 M NICM III 20 189 232 1.57 1.28 1.78 1.63 1.63

17 76 M ICM I 36 189 525 1.63 1.18 1.73 1.58 1.61

18 58 M NICM III 24 125 370 1.36 1.06 1.02 1.52 1.32

19 70 M NICM II 35 119 880 1.63 1.6 1.84 1.79 1.66

20 59 M ICM I 35 221 290 1.35 1,00 1.02 1.49 1.32

21 60 M ICM II 31 193 549 1.32 0.98 0.97 1.48 1.3

22 82 M NICM II 32 175 528 1.65 1.17 1.89 1.58 1.68

23 55 M NICM II 35 204 263 1.53 1.26 1.52 1.62 1.52

24 70 M ICM II 35 196 288 1.28 0.92 1.23 1.45 1.41

25 77 M NICM III 29 191 225 1.48 1.03 1.38 1.51 1.47

26 80 M ICM II 30 223 267 1.35 1.06 1.04 1.52 1.33

27 68 M ICM II 35 152 263 1.37 1.11 1.36 1.55 1.46

28 80 M ICM II 30 188 302 1.32 1.2 1.26 1.59 1.42

29 67 M NICM II 33 199 335 1.48 1.22 1.37 1.6 1.47

30 71 M ICM II 35 216 308 1.31 0.99 1.11 1.49 1.36

31 70 M ICM II 40 214 275 1.26 1.19 1.1 1.58 1.35

32 70 F NICM II 33 197 597 1.42 1.09 1.39 1.53 1.47

33 72 F ICM I 33 222 235 1.64 1.08 1.74 1.53 1.62

34 54 M ICM II 30 181 317 1.44 1.33 1.24 1.65 1.41

35 59 F NICM I 42 206 326 1.28 0.91 1.02 1.45 1.32

36 60 F NICM I 45 205 377 1.57 1.1 1.69 1.54 1.6

37 72 M NICM III 20 247 295 1.45 1.2 1.11 1.59 1.36

38 77 M NICM II 32 225 345 1.47 1.06 1.29 1.52 1.43

39 59 M ICM II 40 174 294 1.69 1.48 1.95 1.73 1.7

40 59 M ICM I 40 198 720 1.57 1.38 1.67 1.68 1.59

Mean

±SD

71±

9

35±9 191±41 358±177 1.44±0.14 1.12±0.19 1.35±0.34 1.54±0.09 1.45±0.14

1 New York Heart Association functional class.

Page 72: Tanguy Blaire - TEL

64

ORIGINAL ARTICLE

First determination of the heart-to-mediastinum ratio usingcardiac dual isotope (123I-MIBG/99mTc-tetrofosmin) CZT imagingin patients with heart failure: the ADRECARD study

Dimitri Bellevre1 & Alain Manrique1,2 & Damien Legallois2,3 & Samy Bross4 &

Rafael Baavour4 & Nathaniel Roth4& Tanguy Blaire2,5 & Cédric Desmonts1 &

Alban Bailliez2,5 & Denis Agostini1,2

Received: 26 March 2015 /Accepted: 10 July 2015# Springer-Verlag Berlin Heidelberg 2015

Abstract

Purpose Cardiac innervation is assessed using the heart-to-

mediastinum ratio (HMR) of metaiodobenzylguanidine

(MIBG) on planar imaging using Anger single photon emis-

sion computed tomography (A-SPECT). The aim of the study

was to determine the HMR of MIBG obtained using a CZT-

based camera (D-SPECT; Spectrum Dynamics, Israel) in

comparison with that obtained using conventional planar

imaging.

Methods The ADRECARD study prospectively evaluated 44

patients with heart failure. They underwent planar acquisition

using the A-SPECT camera 4 h after 123I-MIBG injection

(236.4±39.7 MBq). To localize the heart using D-SPECT,99mTc-tetrofosmin (753±133 MBq) was administered and du-

al isotope acquisition was performed using the D-SPECT sys-

tem. HMR was calculated using both planar A-SPECT imag-

ing and front view D-SPECT cine data. In a phantom study,

we estimated a model fitting the A-SPECT and the D-SPECT

data that was further applied to correct for differences between

the cameras.

Results A total of 44 patients (39 men and 5 women, aged 60

±11 years) with ischaemic (31 patients) and nonischaemic (13

patients) cardiomyopathy completed the study. Most patients

(28 of 44) were NYHA class II, and the mean left ventricular

ejection fraction was 33±7 %. The mean HMR values were

1.34±0.15 and 1.45±0.27 from A-SPECT and D-SPECT, re-

spectively (p<0.0001). After correction, Lin’s concordance

correlation showed an almost perfect concordance between

corrected D-SPECT HMR and A-SPECT HMR, and Bland-

Altman analysis demonstrated a high agreement between the

two measurements.

Conclusion The ADRECARD study demonstrated that deter-

mination of late HMR during cardiac MIBG imaging using

dual isotope (123I and 99mTc) acquisition on a CZTcamera (D-

SPECT) is feasible in patients with heart failure. A linear

correction based on the phantom study yielded a high agree-

ment between 123I MIBG HMR obtained using a CZTcamera

and that from conventional planar imaging.

Keywords CZT . D-SPECT .MIBG . Heart-to-mediastinum

ratio . Heart failure . Dual isotope

Introduction

Impairment of cardiac sympathetic innervation assessed with123I-metaiodobenzylguanidine (MIBG) is recognized as an

independent prognostic factor in patients with heart failure

[1–6]. In a recent multicentre study, the late heart-to-

mediastinum ratio (HMR) was found to be the most important

parameter allowing the classification of patients with heart

failure according to their risk of sudden death and a cardiac

event applying a threshold of 1.6 between low risk and high

risk [6]. Currently, the calculation of HMR requires a planar

static image of the thorax. This technique is well-standardized

and reproducible using Anger SPECT (A-SPECT) [7, 8]. Re-

cently, dedicated cardiac SPECTcameras using CZT detectors

* Denis Agostini

[email protected]

1 Department of Nuclear Medicine, CHU Côte de Nacre, Caen, France

2 EA 4650, Normandie Université, Caen, France

3 Cardiology Department, CHU Côte de Nacre, Caen, France

4 Spectrum Dynamics, Biosensors, Caesarea, Israel

5 Nuclear Medicine Department, IRIS, Polyclinique du Bois,

Lille, France

Eur J Nucl Med Mol Imaging

DOI 10.1007/s00259-015-3141-3

VI. :Premièredéterminationdurapportcardiomédiastinal

en imagerieCZTcardiaquedouble-isotope (123I-MIBG/99mTc-

tétrofosmine) chez les patients porteurs d’insuffisance

cardiaque : l’étudeADRECARD (Eur JNuclMedMol Imaging

2015)

Page 73: Tanguy Blaire - TEL

65

VII. :Discussion

A. Principauxrésultats

1. EvaluationdelaFEVGenconditiondouble-isotope

Nosrésultatsontdémontrélafaisabilitédel'évaluationdelaFEVGenutilisantla

TEMPdeperfusionsynchroniséeàl’ECGavecdescamérasCZT.Encequiconcerneles

acquisitionssimultanéesdouble-radiopharmaceutique,l’acquisitiondanslephotopicdu

99mTcn'apasétéaffectéeparleseffetsdudiffuséetdelacontaminationcroiséedel’123I.

Ànotreconnaissance, il s'agitde lapremièreétudesur fantômecardiaquedynamique

synchronisé en double-isotope (99mTc et 123I) évaluant la fonction ventriculaire en

comparantlesdeuxcamérasCZTdisponiblesdanslecommerce(DNM530cetDSPECT).

NosrésultatsontégalementdémontréquelaDNM530cfournissaitdesvolumes

systoliquesplusélevésparrapportàlaDSPECT.Ceteffetdelacamérasurl'évaluationdu

volumeestprobablementliéàlarésolutionspatiale.Imbertetal.(42)ontrapportéles

mesuressuivantesdelarésolutionspatialecentrale:DNM530c(6,7mm)etDSPECT(8,6

mm). Ces résultats concordent avec les résultats précédents de Bailliez et al (40) qui

montraient à la fois chez les fantômes et les patients que les volumes ventriculaires

gauches étaient plus élevés avec la DNM530c qu’avec la DSPECT et la caméra Anger

équipéedecollimateurscardiofocaux.

2. Evaluation de la perfusion (99mTc) en condition double-isotope

(99mTcet123I)

Cetteétudesurfantômeaétéconçuepourimiterl'évaluationcombinéeendouble-

isotopedelaperfusion(99mTc)etdel'innervation(123I)duventriculegaucheaumoyen

d'unfantômedetorseanthropomorpheéquipéd’uninsertcardiaque,enutilisantlesdeux

gamma-caméras à semi-conducteurs CZT dédiées aux explorations cardiaques

disponibles dans le commerce. Bien qu'il y ait eu un effet significatif de l'acquisition

double-isotopesurl'activité99mTc,nosrésultatsontdémontréquelatailledesdéfautsen

Page 74: Tanguy Blaire - TEL

66

123I et 99mTc ainsi que leur discordance n'étaient impactées ni par le type de caméra

(DSPECTvs.DNM530c)niparlemoded'acquisition(simpleoudouble-isotope).Ànotre

connaissance,ils'agitdelapremièreétudesurfantômedetorseanthropomorphiqueen

double-isotopeévaluantlaperfusion(99mTc)etl'innervation(123I)enutilisantlesdeux

gamma-caméras à semi-conducteurs CZT dédiées aux explorations cardiaques

disponibles dans le commerce (DNM 530c et DSPECT). Nos résultats rapportent

également que la présence d’123I lors d'une acquisition double-isotope 123I-99mTc ne

compromettaitpasl'évaluationdelaperfusionmyocardiquecentréesurlephotopicdu

99mTcparrapportàuneacquisitionsimple-isotopede99mTc.

3. EvaluationduRCMaveclaDNM530c

a) Synthèsedesrésultats

La réalisation du rapport cardiomédiastinal (RCM) effectué sur l’acquisition

tardive en 123I-MIBG d’une gamma-caméra conventionnelle est bien standardisé. Sa

valeur pronostique est largement reconnue. Dans cette étude rétrospective, effectuée

aveclaDNM530c,chezdespatientssouffrantd'insuffisancecardiaqueàfaibleFEVG,nous

avonscalculéleRCMdelacaptationdel’123I-MIBG.Ànotreconnaissance,ils'agitdela

première étude en double-isotope à évaluer l’innervation cardiaque et la fonction

ventriculairegauchedansl’insuffisancecardiaqueencombinantlaprésenced’123I-MIBG

(191±29MBq)etde99mTc-tétrofosmine(358±177MBq),avecunegamma-caméraà

semi-conducteursCZTàgéométried’acquisitionmulti-sténopée,dédiéeauxexplorations

cardiaques.

LesRCMtardifsdespatientsétaientsignificativementplusfaiblesenimagerieCZT

qu’enimagerieplanaireconventionnelle,maisavecunfortagrémentavecleRCMtransaxial

corrigé.Nosrésultatssontcompatiblesaveclesrésultatsprécédentsdel'étudeAdrecard

(37)réaliséeenutilisantl’autremodèledegamma-caméraCZTdédiéeauxexplorations

cardiaquesavecunerésolutionspatiale,unesensibilitéetunecollimation(parallèlevs

sténopée)différentes(1,2).

Page 75: Tanguy Blaire - TEL

67

b) Comparaison des RCM : acquisitions conventionnelles

(planaire)vsDNM530c(planaireetTEMP)

Toutd'abord,afindemieuxcomprendrelescaractéristiquesdesTEMPeffectuées

sur la DNM 530c dans l'imagerie 123I-MIBG, nous avons comparé les acquisitions de

fantômes effectuées sur une gamma-caméra conventionnelle (acquisitions planaires

conventionnelles)surlaDNM530c(acquisitionsTEMP).LesRCMnoncorrigésobtenus

aveclaDNM530contsous-estimélesvaleursfaiblesetsurestimélesvaleursélevéesde

fixation de 123I-MIBG. En conséquence, les valeurs de RCM chez les patients étaient

significativementplusfaiblesaveclaDNM530cqu’aveclacaméraAnger,carcespatients

atteintsd'insuffisancecardiaqueavaientunefixationdiminuéed’123I-MIBG.

c) Nécessitéd’unfacteurdecorrection

Lescollimateursutilisésetlapuissanced'arrêtdumatériaududétecteurpeuvent

avoiruneincidencesurlavaleurduRCMd’123I-MIBG(69,85).Inoueetal.(86)arapporté

qu'un facteur de correction était nécessaire pour améliorer la normalisation entre les

valeursdeRCMobtenuesd’uncollimateurmoyenneénergieetbasse-à-moyenneénergie.

Nakajima et al. a démontré que l'équation de régression linéaire entre les

collimateurs basse-énergie etmoyenne-énergie obtenue lors d’une étude sur fantôme

peutêtreutiliséepournormaliserlamesureduRCMdansl'imagerie123I-MIBG(87-89).

Dansnotreétude,aprèslacorrection,ilyavaitencoreunedifférencesignificativeentre

leRCMreprojectioncorrigéetRCMplanaire(p<0,0001),maisiln'yavaitaucunedifférenceentrele

RCMtransaxialcorrigéetleRCMplanaire(p=NS).

4. EvaluationduRCMaveclaDSPECT

a) Synthèsedesrésultats

En utilisant l’autre modèle de gamma-caméra à semi-conducteurs dédié aux

explorations cardiologiques équipé de colonnes de détecteurs CZT mobiles et d’une

collimation parallèle de tungstène (la DSPECT), Bellevre et al. ont extrait un

Page 76: Tanguy Blaire - TEL

68

planogramme, équivalent d’image planaire en reprojetant et en sommant toutes les

imagesélémentaires2-Dquiontpartagélemêmeanglesurungrandplandevuevirtuel

(37).Aprèsl’utilisationd’unecorrectionidentiquebaséesurunerégressionlinéaireentre

lesacquisitionsdefantômeplanairesetTEMP,ilsonttrouvéunagrémentélevéentrele

RCMd’123I-MIBG obtenu en utilisant laDSPECT et celui obtenu en utilisant l'imagerie

planaireconventionnelle.

Ce protocole d’acquisition en double-isotope simultané fournit une image plus

nette de 99mTc-tétrofosmine et une acquisition parfaite pour définir les contours

cardiaques sur l'image de 99mTc-tétrofosmine, puismesurer avec précision la fixation

cardiaqued’123I-MIBG(37).

b) DiscordancedesRCMentrelaDSPECTetlaDNM530c

Enrevanche,laconcordancemodéréeentreleRCMreprojectioncorrigéetleRCMplanaire

que nous avons trouvé en utilisant les images de reprojection antérieure est

vraisemblablement liée à la collimation multi-sténopée, qui est responsable (i) d'un

artefact de troncature (65) qui interfère avec le nombre de coupsmoyendans laROI

myocardique(voirlafigure5)et(ii)d’unenon-uniformitéduchampd’acquisitionplus

grandeaveclaDNM530cqu’aveclacaméraAnger(65).

Cettelimitationaétésurmontéeenutilisantlesimagestransaxiales(RCMtransaxial)

reconstruitesaulieudesimagesdereprojection(RCMreprojection)pourlamesureduRCM

d’123I-MIBGcorrigéaveclaDNM530cdansnotrepopulation.

B. Discussiongénérale

1. Intérêtdesacquisitionsendouble-isotope

En routine clinique, l'acquisition simultanée en double-radiopharmaceutique

permet d'obtenir des images fonctionnelles parfaitement co-enregistrées en un temps

réduit d'imagerie. Avec les caméras conventionnelles d’Anger, plusieurs protocoles

d'imagerie TEMP en double-radiopharmaceutique ont été proposés. L'imagerie

Page 77: Tanguy Blaire - TEL

69

simultanée99mTc-sestamibi/123I-BMIPPaétéutiliséepourévaluerlaperfusionderepos

etlemétabolismedesacidesgrassimultanémentchezlespatientsatteintsd'infarctusdu

myocarde récent (90,91). L’usage des caméras conventionnelles d’Anger est bien

documentéetlargementvalidé,dansl'acquisitionsimultanéedouble-isotopeavecle201Tl

etla123I-MIBG,aveclapossibilitédecorrectiondeseffetsdediffuséetdelacontamination

croisée (34), en utilisant notamment la méthode de correction de triple fenêtrage

énergétique(75).

Une étude combinée (séquentielle) de la perfusion puis de l’innervation

sympathique avec des radiopharmaceutiques marqués au 99mTc puis à la 123I-MIBG

permetd'évaluerlesdiscordancesinnervation-perfusionetpeutfournirdesinformations

précieuses pour cibler la zone gâchette dans l’étude de l'arythmie ventriculaire du

myocardeinfarci(21,92).EnutilisantlaDNM530clorsd’uneétudeséquentielleenTEMP

myocardique à la 123I-MIBG puis à la 99mTc-tétrofosmine, Gimelli et al. (16,17) ont

démontré une association entre la dysinnervation, l’altération de la perfusion

myocardiqueetl’asynchronismemyocardique.

2. Champd’acquisitionlimitédesgamma-camérasCZT

L'acquisitiondouble-isotopeaveclescamérasCZTprésentequelquesdifficultés.

L’altérationdel'innervationmyocardiqueentraîneunefaiblefixationmyocardiquedela

123I-MIBG,nécessitantunprotocoled’acquisitiondouble-isotopepour localiser lecœur

(37).

En raison du petit champ de vue des caméras CZT dédiées aux explorations

cardiaques, une pré-acquisition est obligatoire pour localiser le cœur et centrer

correctementlechampd’acquisitionavantlaréalisationdelaTEMP.Enoutre,laplupart

des patients adressés pour une TEMP à la 123I-MIBG ont une insuffisance cardiaque

d’origineischémique(66%dansl'étudeADMIRE-HF(28)).Danscecontexteclinique,le

protocole double-isotope permet un co-enregistrement simple et efficace des études

d'innervation(123I-MIBG)etdeperfusion(99mTc-tétrofosmine),etdoncuneévaluation

robuste de la discordance innervation-perfusion. L’étude de la fonction ventriculaire

gauche,del'innervationetdelaperfusiondumyocardeestuneétapeclédansl'évaluation

dupronostic.Enraisondeseffetsdediffusé,decontaminationcroiséeetdetrainéede

Page 78: Tanguy Blaire - TEL

70

l’123Iverslephotopicdu99mTcdesgamma-camérasCZT,cetteétudepourrait-êtrealtérée

parl’utilisationd’unprotocoled’acquisitionendouble-isotopesimultanée.

3. Rapportsdeconcentrationdesisotopes123Iet99mTcenacquisition

double-isotope

Lerapportentrelesconcentrationsd'activité123Iet99mTcaétéfixéaucoursdece

travailà1:2.Cerapportestreprésentatifdelafaiblefixationmyocardiquedela123I-MIBG

observée chez les patients souffrant d'insuffisance cardiaque. Dans ces conditions,

l'absence de corrections lors de l'utilisation de la DNM 530c n'a pas compromis

l'évaluationdelafonctionventriculairedanslephotopicdu99mTcniaffectél'évaluation

de la taille des défauts de fixation en 99mTc lors des acquisitions double-isotope

simultanée (99mTc-123I) par rapport aux acquisitions simple-isotope en 99mTc. Ces

résultatssuggèrentquelacorrectiondeseffetsdediffusé,decontaminationcroiséeetde

trainée vers les basses énergies de l’123I dans le photopic de 99mTc n'a probablement

qu'unepertinencecliniquelimitéechezlespatientsatteintsdecardiopathieischémique.

Sur la DSPECT, la correction de l’effet de trainée n’est effectuée que lors des

acquisitions double-isotope (et non simple-isotopes) (71). Ceci pourrait expliquer la

différencedecontrasted'imageentrelesacquisitionssimple-isotope(acquisitions123Iet

99mTc séquentielles) et les acquisitions double-isotope (123I et 99mTc simultanée)

rapportéedansnotre2èmepartie.Lecontrastedanslessériesd’imagesétaiteneffetplus

élevélorsdesacquisitionssimultanéesdouble-isotopes(123Iet99mTc)aveclaDSPECTque

lorsdesacquisitionssimple-isotopes.

4. Post-traitementdesacquisitionsdouble-isotope:particularitésdes

artefacts

Malgré une augmentation significative de la résolution et de la sensibilité de

l'énergie,lafractiondediffuséaveclacaméraCZTestencoreélevée,évaluéejusqu'à30%

contre34%aveclescamérasconventionnellesAnger(2).Enraisond’unecollectionde

chargeimparfaiteetdudiffuséinter-cristal,lesdétecteursCZTsontsoumisàuneffetde

trainéeàlapartieinférieureduphotopicquipeutconduireàunecorrectionexcessivedes

Page 79: Tanguy Blaire - TEL

71

photonsdiffuséssilaméthodeclassiquedefenêtrageàtripleénergie(71)étaitutilisée.

Récemment,Fanetal.pourlaDNM530c(84)etHolstenssonetalpourlaDSPECT(84)

ontprésentéunalgorithmedecorrectionbasésurlagéométried’acquisitiondechaque

modèle.Cetalgorithmeextraitlesphotonsprimairesutilesde99mTcet123Iàpartirdes

donnéesdeprojection,entenantcomptedeseffetsdetrainéepourcorrigerleseffetsdu

diffuséetdelacontaminationcroiséedansl'imageriedouble-isotope99mTc-123I.

Dansnostravaux,touteslesreconstructionsontétéeffectuéesàl'aidedelastation

detraitementetdeslogicielsdisponiblesfournisparlesindustrielsdechaquecaméra.En

routine,lacorrectiondeseffetsdediffusé,decontaminationcroiséeetdetrainéeversles

basses énergies (84) n’est pas disponible pour la DNM 530c. Cette correction est par

contreeffectuéepourlesacquisitionseffectuéessurlaDSPECTenutilisantuneméthode

décriteprécédemment(71).

5. Contaminationcroiséedu99mTcdanslephotopicdu123I

Lacontaminationcroiséede99mTcdanslafenêtredel’123Iestnégligeablelorsde

l'acquisition simultanée de CZT (71). Comme lemontre la figure 2 (article 3, JNM), la

quantitéd'activitéde99mTcaunimpactsurlerapportde99mTc/123Imaisn'interfèrepas

aveclarésolutiond'énergiedudétecteur.Ellenemodifiequelagrandeurduphotopic,

maispassalargeur.

6. Comparaison des durées d’acquisition : gamma-caméra

conventionnellevsCZT

Enfin,l'acquisitiondelaTEMPetdesimagesplanairesenutilisantlacaméraAnger

requierthabituellement30à45minutesversus10minenutilisantdescamérasCZT,ce

quiestbeaucouppluspratiquechezlespatientssouffrantd'insuffisancecardiaque.

Page 80: Tanguy Blaire - TEL

72

C. Limitesdenostravaux

1. Valeurréelledesvolumescavitairesinconnue

Enraisondelaconceptiondufantômedynamique(AGATE),lesVTSetVTDn'ont

pasétéprédéterminés.Lefantômeaétéremplidansdesconditionsd'équilibrestatique

aveclapressionatmosphériquepourfournirunefractiond'éjectionreproductible.Surla

basedecetéquilibre,lafractiond'éjectionaétéimposéeeninjectantunvolumedecourse

danslacavitéventriculaire(40,93).Enconséquence,lesvraisVTSetVTDn'étaientpas

connusetnepouvaientdoncpasêtrecomparéauxvolumesmesurés.

2. Différencedepost-traitemententrelesdeuxgamma-camérasCZT

Comme les reconstructions ont été effectuées selon les recommandations de

chaquefabricant,aveclepost-traitementinstalléenconditionderoutine,lescorrections

des effets de diffusé, de contamination croisée et de trainée vers les basses énergies

n’étaienteffectuéesqu’avec laDSPECT,enacquisitiondouble-isotope,maispasavec la

DNM530c.Cependant,nosrésultatsn'ontmontréaucunedifférencesignificativedans

l'évaluation des images 99mTc, entre les conditions d’acquisitions simple-isotope et

double-isotope,mêmeaveclaDNM530c.

Aumieux, la démonstration pourrait être effectuée en comparant les résultats

obtenus avec et sans corrections des effets de diffusé, de contamination croisée et de

trainée vers les basses énergies (84). Cependant, l'objectif de notre étude était de

comparer les résultats obtenus avec les deux caméras CZT en utilisant les logiciels

constructeursdisponiblessurlemarchépourimiterlesconditionsderoutineclinique.

3. Champd’acquisitionlimitédescamérasCZT

Enraisonduchampd’acquisitionétroit,l'acquisitioncardiaquenecomprendpas

lemédiastinsupérieur.Parconséquent,dansnotreétudeclinique(3èmepartiedenotre

travail),laROI(ouVOI)médiastinaleétaitpositionnéeenregarddumédiastinmoyensur

Page 81: Tanguy Blaire - TEL

73

lesimagesdelaDNM530c,tandisquelaROImédiastinaleétaitplacéesurlemédiastin

supérieurlorsdel'utilisationd'unecaméraconventionnelleAnger(34).D'autrepart,la

tailleetleplacement(manuelouautomatisé)delaROIcardiaquen'affectentpasleRCM

tardifd’123I-MIBGenutilisantl'imagerieplanaireconventionnelle(35).Parconséquent,

d'autresétudes sontnécessairespournormaliser leplacementde laROIoude laVOI

médiastinaleenutilisantlesdifférentsmodèlesdisponiblesdecamérasCZTdédiéesaux

explorationscardiaques,aumieuxavecunRCMstandardiséenutilisantdescoefficients

deconversiondecalibrationcroisée(87).

4. Irradiationsupplémentairedel’acquisitiondouble-isotope

Enfin, l'acquisition double-isotope augmente la charge d’irradiation. Dans cette

étuderétrospective,l'activitéinjectéede99mTc-tétrofosmineaprogressivementdiminué

dansletemps,carilestdevenuévidentquelacaméraCZTpermettaitl'injectiondepetites

quantitésdetraceursdeperfusionsanscompromettrelaqualitédel'image.

Page 82: Tanguy Blaire - TEL

74

ORIGINAL ARTICLE

Segmental and global left ventricular functionassessment using gated SPECT with asemiconductor Cadmium Zinc Telluride (CZT)camera: Phantom study and clinical validation vscardiac magnetic resonance

Alban Bailliez, MD,a,d Tanguy Blaire, MD,a,d Frederic Mouquet, MD, PhD,b

R. Legghe, MD,a B. Etienne, MD,a Damien Legallois, MD,c,d Denis Agostini, MD,

PhD,c,d and Alain Manrique, MD, PhDc,d

a Nuclear Medicine Department, IRIS, Polyclinique du Bois, Lille, Franceb Cardiology, Polyclinique du Bois, Lille, Francec Nuclear Medicine Department, CHU de Caen, Caen, Franced Normandie Universite - EA4650, Caen, France

Received Sep 25, 2013; revised Jan 26, 2014; accepted Feb 17, 2014

doi:10.1007/s12350-014-9899-z

Background. We evaluated gated-SPECT using a Cadmium-Zinc-Telluride (CZT) camera

for assessing global and regional left ventricular (LV) function.

Methods. A phantom study evaluated the accuracy of wall thickening assessment using

systolic count increase on both Anger and CZT (Discovery 530NMc) cameras. The refillable

phantom simulated variable myocardial wall thicknesses. The apparent count increase (%CI)

was compared to the thickness increase (%Th). CZT gated-SPECT was compared to cardiac

magnetic resonance (CMR) in 27 patients. Global and regional LV function (wall thickening

and motion) were quantified and compared between SPECT and CMR data.

Results. In the phantom study using a 5-mm object, the regression between %CI and %Th

was significantly closer to the line of identity (y 5 x) with the CZT (R25 0.9955) than the

Anger (R25 0.9995, P 5 .03). There was a weaker correlation for larger objects (P 5 .003). In

patients, there was a high concordance between CZT and CMR for ESV, EDV, and LVEF (all

CCC >0.80, P < .001). CZT underestimated %CI and wall motion (WM) compared to CMR

(P < .001). The agreement to CMR was better for WM than wall thickening.

Conclusion. The Discovery 530NMc provided accurate measurements of global LV func-

tion but underestimated regional wall thickening, especially in patients with increased wall

thickness. (J Nucl Cardiol 2014;21:712–22.)

Key Words: CZT Æ SPECT Æ myocardial perfusion imaging Æ solid-state cardiac camera Æ left

ventricular function Æ wall thickening Æ wall motion Æ cardiac magnetic resonance Æ tetrofosmin

INTRODUCTION

Over the last decade, advances in microelectronics

and improvements in crystal growth have led to the

increased use of Cadmium Zinc Telluride (CZT)

materials in nuclear medicine. These new materials are

capable of using direct photon conversion and provide

high image quality.1 Other attractive features include

increased sensitivity, high energy, high spatial resolu-

tion, and the ability to be used in compact systems. This

novel generation of detectors has led to new solid-state

camera designs that overcome the limitations of con-

ventional Anger systems.2,3 Commercially available

CZT systems have improved sensitivity and spatial

Reprint requests: Alban Bailliez, MD, Nuclear Medicine Department,

IRIS, Polyclinique du Bois, 144 avenue de Dunkerque, 59000 Lille,

France; [email protected]

VIII. :Autrestravaux:Évaluationdelafonctionventriculairesurgamma-camérasàsemi-conducteurs

1. EtudesurfantômeetvalidationcliniquevsIRMdel’évaluationdes

fonctionsventriculairesgauchessegmentaireetglobaleutilisantunegamma-

caméraàsemi-conducteurCZT(JNuclCardiol2014;21:712-22)

Page 83: Tanguy Blaire - TEL

75

Doi: 10.2967/jnumed.115.168575Published online: April 28, 2016.

2016;57:1370-1375.J Nucl Med.

Valette and Alain ManriqueAlban Bailliez, Olivier Lairez, Charles Merlin, Nicolas Piriou, Damien Legallois, Tanguy Blaire, Denis Agostini, Frederic Phantom Study and Clinical Validation

-Camera with Cardiofocal Collimators: Dynamic CardiacγCameras Compared with a Left Ventricular Function Assessment Using 2 Different Cadmium-Zinc-Telluride

http://jnm.snmjournals.org/content/57/9/1370This article and updated information are available at:

http://jnm.snmjournals.org/site/subscriptions/online.xhtml

Information about subscriptions to JNM can be found at:

http://jnm.snmjournals.org/site/misc/permission.xhtmlInformation about reproducing figures, tables, or other portions of this article can be found online at:

(Print ISSN: 0161-5505, Online ISSN: 2159-662X)1850 Samuel Morse Drive, Reston, VA 20190.SNMMI | Society of Nuclear Medicine and Molecular Imaging

is published monthly.The Journal of Nuclear Medicine

© Copyright 2016 SNMMI; all rights reserved.

by Alban Bailliez on September 15, 2016. For personal use only. jnm.snmjournals.org Downloaded from

2. Etudesurfantômedynamiqueetvalidationcliniquedel’évaluationde

lafonctionventriculairegaucheutilisantdeuxgamma-camérasCZTdifférentes

etunegamma-caméraàcollimationcardiofocale(JNuclMed.2016;57:1370-

75)

Récompensée en juin 2017 lors de la SNM de Denver : Alavi-Mandell Publication Awards for Articles Published in 2016 (Funded by the ERF)

Page 84: Tanguy Blaire - TEL

76

Left Ventricular Function Assessment Using 2 Different

Cadmium-Zinc-Telluride Cameras Compared with a

g-Camera with Cardiofocal Collimators: Dynamic Cardiac

Phantom Study and Clinical Validation

Alban Bailliez1–3, Olivier Lairez4, Charles Merlin5, Nicolas Piriou6, Damien Legallois3,7, Tanguy Blaire1–3,

Denis Agostini3,8, Frederic Valette6, and Alain Manrique3,8

1Nuclear Medicine, IRIS, Polyclinique du Bois, Lille, France; 2Nuclear Medicine, UF 5881, Groupement des Hôpitaux de l’Institut

Catholique de Lille, Lomme, France; 3Normandie Université–EA4650, Caen, France; 4Nuclear Medicine, CHU de Toulouse,

Toulouse, France; 5Nuclear Medicine, Centre Jean Perrin, Clermont-Ferrand, France; 6Nuclear Medicine, CHU de Nantes, Nantes,

France; 7Cardiology, CHU de Caen, Caen, France; and 8Nuclear Medicine, CHU de Caen, Caen, France

This study compared two SPECT cameras with cadmium-zinc-telluride

(CZT) detectors to a conventional Anger camera with cardiofocal collima-

tors for the assessment of left ventricular (LV) function in a phantom and

patients. Methods: A gated dynamic cardiac phantom was used. Eigh-

teen acquisitions were processed on each CZT camera and the conven-

tional camera. The total number of counts within a myocardial volume of

interest varied from 0.25 kcts to 1.5 Mcts. Ejection fraction was set to

33%, 45%, or 60%. Volume, LV ejection fraction (LVEF), regional wall

thickening, andmotion (17-segmentmodel) were assessed. One hundred

twenty patients with a low pretest likelihood of coronary artery disease

and normal findings on stress perfusion SPECT were retrospectively

analyzed to provide the reference limits for end-diastolic volume (EDV),

end-systolic volume (ESV), ejection fraction, and regional function for each

camera model. Results: In the phantom study, for each ejection fraction

value, volume was higher for the CZT cameras than for the conventional

camera, resulting in a decreased but more accurate LVEF (all P ,

0.001). In clinical data, body-surface–indexed EDV and ESV (mL/m2)

were higher for one of the CZT cameras (Discovery NM 530c) than for the

other (D-SPECT) or the conventional camera (respectively, 40.5 ± 9.2,

37 ± 7.9, and 35.8 ± 6.8 for EDV [P , 0.001] and 12.5 ± 5.3, 9.4 ± 4.2,

and 8.3 ± 4.4 for ESV [P , 0.001]), resulting in a significantly decreased

LVEF: 70.3% ± 9.1% vs. 75.2% ± 8.1% vs. 77.8% ± 9.3%, respectively

(P, 0.001). Conclusion: The new CZT cameras yielded global LV func-

tion results different from those yielded by the conventional camera. LV

volume was higher for the Discovery NM 530c than for the D-SPECT or

the conventional camera, leading to decreased LVEF in healthy

subjects. These differences should be considered in clinical practice and

warrant the collection of a specific reference database.

Key Words: CZT; myocardial perfusion imaging; left ventricular

function; wall thickening; dynamic phantom; cardiofocal collimators

J Nucl Med 2016; 57:1370–1375

DOI: 10.2967/jnumed.115.168575

Myocardial perfusion imaging is extensively used in patients

with known or suspected coronary artery disease. In addition, the

measurement of left ventricular (LV) ejection fraction (LVEF), end-

diastolic volume (EDV) and end-systolic volume (ESV) using SPECT

has been widely validated in comparison to other imaging techniques

(1,2) and is commonly used for prognosis assessment and clinical

decision making (3). Moreover, it has been demonstrated that the

reference limits of LV function are sex-specific but do not depend

on type of tracer or acquisition camera when conventional Anger

cameras are used (4), suggesting equivalency for patient management.

Dedicated cadmium-zinc-telluride (CZT) g-cameras revealed a

new step in SPECT myocardial perfusion imaging. These cameras

allow for reduced imaging time (5) and reduced exposure of pa-

tients to radiation (6,7) but are not equivalent in terms of count

sensitivity and spatial resolution, leading to images with differ-

ences in sharpness and contrast-to-noise ratio in clinical practice

(8). Previous publications have validated the performance and

results of these cameras versus the conventional Anger camera

in clinical practice (9,10), but recent data demonstrated that when

quantitative gated SPECT is performed using CZT cameras in-

stead of Anger cameras, LV volume is overestimated, leading to

a lower estimated LVEF in healthy patients (11). This difference is

likely related to the increased spatial resolution, a condition that

also significantly affects the assessment of segmental wall motion

and thickening (12,13). Alternatively, the multifocal collimators of

IQ-SPECT technology (Siemens Healthcare) can be plugged into

multipurpose cameras, offering better sensitivity and contrast-to-

noise ratio than conventional Anger cameras equipped with low-

energy, high-resolution collimators (14).

Because commercially available CZT cameras and IQ-SPECT

cameras have differences in sensitivity and spatial resolution, it

remains unclear whether the type of camera may affect assessment

of LV volume and LVEF. Consequently, the aim of this study was,

first, to perform a head-to-head comparison of two commercially

available CZT cameras versus a conventional Anger camera with

IQ-SPECT collimators in the assessment of LV function on a

dynamic cardiac phantom and, second, to confirm the phantom

results by retrospectively analyzing data from patients with a low

pretest likelihood of coronary artery disease.

Received Oct. 20, 2015; revision accepted Mar. 26, 2016.For correspondence or reprints contact: Alban Bailliez, Nuclear Medicine

Department IRIS, 144 Avenues de Dunkerque, Polyclinique du Bois, 59000Lille, France.E-mail: [email protected] online Apr. 28, 2016.COPYRIGHT © 2016 by the Society of Nuclear Medicine and Molecular

Imaging, Inc.

1370 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 57 • No. 9 • September 2016

by Alban Bailliez on September 15, 2016. For personal use only. jnm.snmjournals.org Downloaded from

Page 85: Tanguy Blaire - TEL

77

3. Etudedelafonctionetdel’asynchronismeventriculairedroitet

gauche:comparaisondelatomoventriculographieisotopiqueàla

ventriculographieisotopiqueplanaireavecunegamma-caméraàsemi-

conducteurCZTetavecunegamma-caméraconventionnelle.(Encoursde

soumissionauJNC)

Page 86: Tanguy Blaire - TEL

78

IX. :Conclusionetperspectives

A. Conclusion

Notre travail s’est concentré, en condition de routine clinique, sur l’apport de

l’amélioration de la résolution en énergie des deux gamma-caméras à semi-

conducteursdédiéesauxexplorationscardiologiques(DNM530cetDSPECT).Bienque

construitesaveclemêmecristalCZTpixélisé(2,46x2,46mm),cesdeuxgamma-caméras

présententdesdifférencesnotables.

Lasensibilité(x4vsx7)(1,42),larésolutionspatiale(6,7mmvs8,6mm),lagéométrie

d’acquisition(collimationmulti-sténopéestatiquevscollimationparallèlemobile)et le

post-traitement(correctiondeseffetsdediffusé,decontaminationcroiséeetdetrainée

vers les basses énergies absente sur la DNM 530c vs présente uniquement lors des

acquisitionsdouble-isotopesurlaDSPECT)sontdifférents.

Ces deux-gamma-caméras ont fourni des résultats similaires dans les trois

partiesdenotretravail,portantsur:

(i) l'évaluation de la fonction ventriculaire (VTD, VTS et FEVG) lors d’acquisitions

simple-isotope(acquisitions123Iet99mTcséparées)etdouble-isotopesimultanées(123Iet

99mTc);effectuéesurunfantômecardiaquedynamique(94),

(ii) l’étude segmentaire de l'innervation et de la perfusion myocardiques

(concordanceetdiscordance)lorsd’acquisitionssimple-isotope(acquisitions123Iet99mTc

séparées) et double-isotope simultanées (123I et 99mTc), effectuée sur un fantôme

anthropomorphedetorseéquipéd’uninsertcardiaque(95),

(iii) la détermination du RCM tardif de fixation de la 123I-MIBG en utilisant une

acquisitiondouble-isotope (123I et 99mTc) chez lespatientsporteursd’une insuffisance

cardiaque.Cettedéterminationestpossiblesurleplanogramme(DSPECT)(37)etsurles

reconstructions transaxiales (DNM 530c) (95). Une correction linéaire basée sur des

acquisitionsdedonnéesdefantômesestnécessaire.

Page 87: Tanguy Blaire - TEL

79

Cesrésultatspeuventavoirdesimplicationsdiagnostiquesetthérapeutiqueschezles

patients atteints d'insuffisance cardiaque adressés dans les services de médecine

nucléairepouruneévaluationcombinéedelaperfusionetdel’innervation.

Parallèlementàcestravaux,nousnoussommeségalementintéressésauxapports

de l’amélioration de la résolution spatiale qu’offraient ces deux gamma-caméras dans

l’étudedelafonctionventriculaire,etavonsparticipéàlarédactionetlapublicationdes

troisétudessuivantes,rapportant:

(i)Lesdifférentescaractéristiquestechniquesdesdeuxgamma-camérasCZTdédiées

aux explorations cardiologiques disponibles dans le commerce et la caméra

conventionnelle équipée d'un collimateur astigmatique ont donné lieu à différentes

estimationsdelafonctionventriculairegauchelorsquelelogicielQGSaétéutilisépourla

détectiondelaparoimyocardiqueen3dimensions.Cesrésultatsconfirmentlanécessité

devaleursderéférenceajustéesausexeetàlagamma-camérapourlesparamètresdela

fonctionventriculairegauche(39).

(ii)L’étudedelaFEVGestsimilaire,avecunetrèsbonneconcordance,entrelaDNM

530cetunegamma-caméraconventionnelle(mêmesilesvolumesventriculairesgauche

et droit sont nettement inférieurs avec la DNM 530c) et que l’on a comparé des

ventriculographiesisotopiquesàl’équilibreetdestomogrammesreprojetésobtenusde

laDNM530c.Cestomogrammesreprojetéspourrait-êtreproposéscommealternativeà

l’acquisition de ventriculographie isotopique à l’équilibre afin d’éviter les acquisitions

planairesadditionnelles(40).

(iii)ParrapportàlacaméraAnger,lacaméraCZTafournidesmesuresprécisesdela

fonctionventriculairegaucheglobaleetaméliorél’étudedel’épaississementdelaparoi

myocardiquechez lespatientsprésentantuneparoiventriculairenormaleouamincie.

Cependant, la résolution spatiale accrue peut entraîner une sous-estimation de

l'épaississement régional de la paroi myocardique dans les parois myocardiques

hypertrophiques. L'analyse de la cinétique segmentaire n'a pas été influencée par

l’amplitude du mouvement et peut être un meilleur outil pour évaluer la fonction

segmentaire du ventricule gauche dans la pratique quotidienne. D'autres études sont

nécessairespouraborderl'impactdelacaméraCZTsurl'évaluationdel'épaississement

Page 88: Tanguy Blaire - TEL

80

régionaldelaparoidanslacardiomyopathiehypertrophique.

B. Perspectives

1. Soumissiond’unesynthèsedecetravailencours

Unesynthèsedecetravailestencoursderédactionetdesoumissionavecles

différentsco-auteursdenospublications,danslejournalfrançaisdemédecinenucléaire.

2. Améliorerlepost-traitementdesdeuxgamma-camérasCZT

Effectueretcomparerlareconstructionsanspuisaveclesméthodesdecorrections

récentes des effets de diffusé, de contamination croisée et de trainée vers les basses

énergies,enacquisitiondouble-isotope(123Iet99mTc),avec laDNM530cet laDSPECT

(84,92).

3. Optimiser l’irradiation supplémentaire de l’acquisition double-

isotope

Continuer àoptimiser ladiminutionde l'activité injectéede 99mTc-tétrofosmine

pourlocaliserlecœur,àpartird’acquisitionsdouble-isotope(123Iet99mTc)effectuéesen

mode-list.

Ouaucontraire,administrerunedosed’activitédiagnostiquederoutineclinique

de99mTc-tétrofosminepourétudierlorsd’uneseuleacquisitionendouble-isotope(i)la

perfusionmyocardique,lafonctionventriculairegauche(cinétiquesegmentaire,volumes

ventriculaires gauches et FEVG) sur l’acquisition de 99mTc-tétrofosmine et (ii)

l’innervationcardiaquesurl’acquisitionàla123I-MIBG.

4. Champ d’acquisition limité des gamma-caméras dédiées aux

explorationscardiaques

Continuerd'autresétudescliniquespournormaliserleplacementdelaROIoude

la VOI médiastinale en utilisant les différents modèles disponibles de caméras CZT

Page 89: Tanguy Blaire - TEL

81

dédiéesauxexplorationscardiaques,aumieuxavecunRCMstandardiséenutilisantdes

coefficientsdeconversiondecalibrationcroisée(87).

Comparer les valeurs de RCM des études transaxiales (activité moyenne VOI

cardiaque/activitémoyenneVOImédiastinale)delaDSPECTetdelaDNM530c).

5. Gamma-caméraàsemi-conducteurCZTgrandchamp

Notre service Lillois s’équipe en septembre 2017 de laDNM670 CZT, gamma-

caméra grand champ à semi-conducteur (General Electric Healthcare, Milwaukee,

Wisconsin).Cetéquipementdepointe(5èmeserviceéquipéenFrance)nouspermettrade

poursuivrenostravauxinitiésdanslesdomainesextra-cardiologiques.

6. PoursuitedelacollaborationLillo-Caenaise

Ces 5 années de travaux ont permis de créer des liens forts réciproques

scientifiques,confraternelsetamicaux.Noséquipesrespectivesontapprisàtravailleret

àcollaborerensemble,danslerespectmutueletlaconfiance.Noussouhaitonspoursuivre

cettecollaborationettoutesuggestiondeprojetscommuns.

Page 90: Tanguy Blaire - TEL

82

X. :Bibliographie

1. BocherM,BlevisIM,TsukermanL,ShremY,KovalskiG,VolokhL.AfastcardiacgammacamerawithdynamicSPECTcapabilities:design,systemvalidationandfuturepotential.EurJNuclMedMolImaging.2010;37:1887-1902.2. ErlandssonK, Kacperski K, van GrambergD, Hutton BF. Performance evaluation of D-SPECT:anovelSPECTsystemfornuclearcardiology.PhysMedBiol.2009;54:2635-2649.3. ManriqueA,MariePY,NuclearCardiologyMRIG.Recommendationsfortheperformanceandinterpretationofmyocardialperfusiontomoscintigraphy.ArchMalCoeurVaiss.2003;96:695-711.4. Verberne HJ, Acampa W, Anagnostopoulos C, et al. EANM procedural guidelines forradionuclidemyocardialperfusionimagingwithSPECTandSPECT/CT:2015revision.EurJNuclMedMolImaging.2015;42:1929-1940.5. Hachamovitch R, Berman DS, Kiat H, Cohen I, Friedman JD, Shaw LJ. Value of stressmyocardial perfusion single photon emission computed tomography in patients with normalrestingelectrocardiograms:anevaluationofincrementalprognosticvalueandcost-effectiveness.Circulation.2002;105:823-829.6. Marcassa C, Bax JJ, Bengel F, et al. Clinical value, cost-effectiveness, and safety ofmyocardialperfusionscintigraphy:apositionstatement.EurHeartJ.2008;29:557-563.7. McArdleBA,DowsleyTF,deKempRA,WellsGA,BeanlandsRS.Doesrubidium-82PEThave superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronarydisease?:Asystematicreviewandmeta-analysis.JAmCollCardiol.2012;60:1828-1837.8. HachamovitchR,BermanDS,ShawLJ,etal.Incrementalprognosticvalueofmyocardialperfusion single photon emission computed tomography for the prediction of cardiac death:differential stratification for risk of cardiac death and myocardial infarction. Circulation.1998;97:535-543.9. HachamovitchR,HayesSW,FriedmanJD,CohenI,BermanDS.Comparisonoftheshort-term survival benefit associated with revascularization compared with medical therapy inpatientswith no prior coronary artery disease undergoing stressmyocardial perfusion singlephotonemissioncomputedtomography.Circulation.2003;107:2900-2907.10. ThomasGS,MiyamotoMI,MorelloAP,3rd,etal.Technetium99msestamibimyocardialperfusion imagingpredicts clinical outcome in the community outpatient setting. TheNuclearUtilityintheCommunity(NUC)Study.JAmCollCardiol.2004;43:213-223.11. BodenWE,O'RourkeRA,TeoKK,etal.OptimalmedicaltherapywithorwithoutPCIforstablecoronarydisease.NEnglJMed.2007;356:1503-1516.12. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for themanagement of patients with ventricular arrhythmias and the prevention of sudden cardiacdeath: The Task Force for theManagement of Patientswith Ventricular Arrhythmias and thePreventionofSuddenCardiacDeathoftheEuropeanSocietyofCardiology(ESC).Endorsedby:

Page 91: Tanguy Blaire - TEL

83

Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J.2015;36:2793-2867.13. ZipesDP.Sympatheticstimulationandarrhythmias.NEnglJMed.1991;325:656-657.14. Bax JJ, Kraft O, Buxton AE, et al. 123 I-mIBG scintigraphy to predict inducibility ofventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilotstudy.CircCardiovascImaging.2008;1:131-140.15. ClementsIP,GarciaEV,ChenJ,FolksRD,ButlerJ,JacobsonAF.Quantitativeiodine-123-metaiodobenzylguanidine (MIBG) SPECT imaging in heart failurewith left ventricular systolicdysfunction: Development and validation of automated procedures in conjunction withtechnetium-99mtetrofosminmyocardialperfusionSPECT.JNuclCardiol.2016;23:425-435.16. GimelliA,LigaR,GenovesiD,GiorgettiA,KuschA,MarzulloP.Associationbetweenleftventricularregionalsympatheticdenervationandmechanicaldyssynchronyinphaseanalysis:acardiacCZTstudy.EurJNuclMedMolImaging.2014;41:946-955.17. GimelliA,LigaR,GiorgettiA,GenovesiD,MarzulloP.Assessmentofmyocardialadrenergicinnervation with a solid-state dedicated cardiac cadmium-zinc-telluride camera: first clinicalexperience.EurHeartJCardiovascImaging.2014;15:575-585.18. PaulM,WichterT,KiesP,etal.Cardiacsympatheticdysfunction ingenotypedpatientswith arrhythmogenic right ventricular cardiomyopathy and risk of recurrent ventriculartachyarrhythmias.JNuclMed.2011;52:1559-1565.19. ZhouY,ZhouW,FolksRD,etal. I-123mIBGandTc-99mmyocardialSPECTimagingtopredict inducibility of ventricular arrhythmia on electrophysiology testing: a retrospectiveanalysis.JNuclCardiol.2014;21:913-920.20. Gimelli A, Menichetti F, Soldati E, et al. Relationships between cardiacinnervation/perfusion imbalance and ventricular arrhythmias: impact on invasiveelectrophysiological parameters and ablation procedures. Eur J Nucl Med Mol Imaging.2016;43:2383-2391.21. CarrioI,CowieMR,YamazakiJ,UdelsonJ,CamiciPG.CardiacsympatheticimagingwithmIBGinheartfailure.JACCCardiovascImaging.2010;3:92-100.22. Morozumi T, Kusuoka H, Fukuchi K, et al. Myocardial iodine-123-metaiodobenzylguanidine imagesandautonomicnerveactivity innormalsubjects. JNuclMed.1997;38:49-52.23. BengelFM,BarthelP,MatsunariI,SchmidtG,SchwaigerM.Kineticsof123I-MIBGafteracutemyocardialinfarctionandreperfusiontherapy.JNuclMed.1999;40:904-910.24. McGhieAI,CorbettJR,AkersMS,etal.RegionalcardiacadrenergicfunctionusingI-123meta-iodobenzylguanidinetomographicimagingafteracutemyocardialinfarction.AmJCardiol.1991;67:236-242.25. SimoesMV,BarthelP,MatsunariI,etal.Presenceofsympatheticallydenervatedbutviablemyocardium and its electrophysiologic correlates after early revascularised, acutemyocardialinfarction.EurHeartJ.2004;25:551-557.

Page 92: Tanguy Blaire - TEL

84

26. MatsunariI,SchrickeU,BengelFM,etal.Extentofcardiacsympatheticneuronaldamageisdeterminedby theareaof ischemia inpatientswithacute coronary syndromes.Circulation.2000;101:2579-2585.27. Dimitriu-LeenAC,GimelliA,AlYounis I, etal.The impactofacquisition timeofplanarcardiac(123)I-MIBGimagingonthelatehearttomediastinumratio.EurJNuclMedMolImaging.2016;43:326-332.28. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospectiveADMIRE-HF(AdreViewMyocardialImagingforRiskEvaluationinHeartFailure)study.JAmCollCardiol.2010;55:2212-2221.29. ManriqueA,BernardM,HitzelA,etal.Prognosticvalueofsympatheticinnervationandcardiacasynchronyindilatedcardiomyopathy.EurJNuclMedMolImaging.2008;35:2074-2081.30. Merlet P, Benvenuti C,Moyse D, et al. Prognostic value ofMIBG imaging in idiopathicdilatedcardiomyopathy.JNuclMed.1999;40:917-923.31. Merlet P, Valette H, Dubois-Rande JL, et al. Prognostic value of cardiacmetaiodobenzylguanidineimaginginpatientswithheartfailure.JNuclMed.1992;33:471-477.32. Nakata T, Miyamoto K, Doi A, et al. Cardiac death prediction and impaired cardiacsympatheticinnervationassessedbyMIBGinpatientswithfailingandnonfailinghearts.JNuclCardiol.1998;5:579-590.33. Wakabayashi T, Nakata T, Hashimoto A, et al. Assessment of underlying etiology andcardiac sympathetic innervation to identify patients at high risk of cardiac death. J NuclMed.2001;42:1757-1767.34. Flotats A, Carrio I, Agostini D, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM CardiovascularCommittee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging.2010;37:1802-1812.35. Veltman CE, Boogers MJ, Meinardi JE, et al. Reproducibility of planar (123)I-meta-iodobenzylguanidine (MIBG)myocardial scintigraphy inpatientswithheart failure.Eur JNuclMedMolImaging.2012;39:1599-1608.36. AgostiniD,MariePY,Ben-HaimS,etal.Performanceofcardiaccadmium-zinc-telluridegammacameraimagingincoronaryarterydisease:areviewfromthecardiovascularcommitteeof the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging.2016;43:2423-2432.37. BellevreD,ManriqueA,LegalloisD,etal.Firstdeterminationoftheheart-to-mediastinumratio using cardiac dual isotope (I-MIBG/ Tc-tetrofosmin) CZT imaging in patientswith heartfailure:theADRECARDstudy.EurJNuclMedMolImaging.2015;42:1912-1919.38. Tinti E, Positano V, Giorgetti A, Marzullo P. Feasibility of [(123)I]-meta-iodobenzylguanidine dynamic 3-D kinetic analysis in vivo using a CZT ultrafast camera:preliminaryresults.EurJNuclMedMolImaging.2014;41:167-173.39. Bailliez A, Blaire T, Mouquet F, et al. Segmental and global left ventricular functionassessment using gated SPECT with a semiconductor Cadmium Zinc Telluride (CZT) camera:

Page 93: Tanguy Blaire - TEL

85

phantomstudyandclinicalvalidationvscardiacmagneticresonance.JNuclCardiol.2014;21:712-722.40. BailliezA,LairezO,MerlinC,etal.Leftventricularfunctionassessmentusingtwodifferentcadmium zinc telluride cameras compared to gamma camera with cardiofocal collimators:dynamiccardiacphantomstudyandclinicalvalidation.JNuclMed.2016;57:1370-5.41. CochetH,BullierE,GerbaudE,etal.AbsolutequantificationofleftventricularglobalandregionalfunctionatnuclearMPIusingultrafastCZTSPECT:initialvalidationversuscardiacMR.JNuclMed.2013;54:556-563.42. ImbertL,PoussierS,FrankenPR,etal.Comparedperformanceofhigh-sensitivitycamerasdedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and humanimages.JNuclMed.2012;53:1897-1903.43. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis andtreatmentofacuteandchronicheartfailure:TheTaskForceforthediagnosisandtreatmentofacuteandchronicheartfailureoftheEuropeanSocietyofCardiology(ESC)DevelopedwiththespecialcontributionoftheHeartFailureAssociation(HFA)oftheESC.EurHeartJ.2016;37:2129-2200.44. BardyGH,LeeKL,MarkDB,etal.Amiodaroneoranimplantablecardioverter-defibrillatorforcongestiveheartfailure.NEnglJMed.2005;352:225-237.45. BuxtonAE,LeeKL,FisherJD,JosephsonME,PrystowskyEN,HafleyG.Arandomizedstudyof the prevention of sudden death in patients with coronary artery disease. MulticenterUnsustainedTachycardiaTrialInvestigators.NEnglJMed.1999;341:1882-1890.46. MossAJ,HallWJ,CannomDS,etal.Improvedsurvivalwithanimplanteddefibrillatorinpatientswith coronary disease at high risk for ventricular arrhythmia.Multicenter AutomaticDefibrillatorImplantationTrialInvestigators.NEnglJMed.1996;335:1933-1940.47. MossAJ,ZarebaW,HallWJ,etal.Prophylacticimplantationofadefibrillatorinpatientswithmyocardialinfarctionandreducedejectionfraction.NEnglJMed.2002;346:877-883.48. HohnloserSH,KuckKH,DorianP,etal.Prophylacticuseofanimplantablecardioverter-defibrillatorafteracutemyocardialinfarction.NEnglJMed.2004;351:2481-2488.49. DesaiAS,FangJC,MaiselWH,BaughmanKL.Implantabledefibrillatorsforthepreventionof mortality in patients with nonischemic cardiomyopathy: a meta-analysis of randomizedcontrolledtrials.JAMA.2004;292:2874-2879.50. KadishA,DyerA,DaubertJP,etal.Prophylacticdefibrillatorimplantationinpatientswithnonischemicdilatedcardiomyopathy.NEnglJMed.2004;350:2151-2158.51. KoberL,ThuneJJ,NielsenJC,etal.DefibrillatorImplantationinPatientswithNonischemicSystolicHeartFailure.NEnglJMed.2016;375:1221-1230.52. AgostiniD,LecluseE,BelinA,etal.Impactofexerciserehabilitationoncardiacneuronalfunctioninheartfailure:aniodine-123metaiodobenzylguanidinescintigraphystudy.EurJNuclMed.1998;25:235-241.

Page 94: Tanguy Blaire - TEL

86

53. Agostini D, Belin A, Amar MH, et al. Improvement of cardiac neuronal function aftercarvedilol treatment in dilated cardiomyopathy: a 123I-MIBG scintigraphic study. J NuclMed.2000;41:845-851.54. AgostiniD,VerberneHJ,BurchertW,etal.I-123-mIBGmyocardialimagingforassessmentofriskforamajorcardiaceventinheartfailurepatients:insightsfromaretrospectiveEuropeanmulticenterstudy.EurJNuclMedMolImaging.2008;35:535-546.55. VolokhL,LahatC,BinyaminE,BlevisI.Myocardialperfusionimagingwithanultra-fastcardiac SPECT camera - A phantom study IEEENuclear Science SymposiumConference Record2008:4636–4639.56. GeneralElectric.AlcyoneTechnologyWhitePaper.2009.57. NicholsKJ,VanToshA,PalestroCJ.Prospectsforadvancingnuclearcardiologybymeansofnewdetectordesigns.JNuclCardiol.2009;16:691-696.58. LeoW.TechniquesforNuclearandParticlePhysicsExperiments.2ndedn(Berlin:Spinger).1994.59. VergerA,DjaballahW,FourquetN,etal.ComparisonbetweenstressmyocardialperfusionSPECTrecordedwithcadmium-zinc-tellurideandAngercamerasinvariousstudyprotocols.EurJNuclMedMolImaging.2013;40:331-340.60. LevinC.Detectordesignissuesforcompactnuclearemissioncamerasdedicatedtobreastimaging.NuclearInstrumentsandMethodsinPhysicsResearchSectionA497:60-74.2003.61. Barrett H. Charge transport in array of semiconductor gamma ray detector. Phys RevLetter.1995;75:270-276.62. BuechelRR,HerzogBA,HusmannL,etal.Ultrafastnuclearmyocardialperfusionimagingonanewgammacamerawithsemiconductordetectortechnique: firstclinicalvalidation.EurJNuclMedMolImaging.2010;37:773-778.63. Godbert Y, Bullier E, Rivière A, Laffon E, Guyot M, Bordenave LB. Nouveautés encardiologie nucléaire : une gamma caméra à semi-conducteurs dédiée à l’imagerie cardiaque.MédecineNucléaire.2010;34:165-170.64. Herzog BA, Buechel RR, Katz R, et al. Nuclear myocardial perfusion imaging with acadmium-zinc-telluride detector technique: optimizedprotocol for scan time reduction. JNuclMed.2010;51:46-51.65. Takahashi Y, Miyagawa M, Nishiyama Y, Ishimura H, Mochizuki T. Performance of asemiconductor SPECT system: comparisonwith a conventionalAnger-type SPECT instrument.AnnNuclMed.2013;27:11-16.66. Guerra P, Santos A, Darambara DG. Development of a simplified simulationmodel forperformance characterizationof a pixellatedCdZnTemultimodality imaging system.PhysMedBiol.2008;53:1099-1113.67. SheppLA,VardiY.Maximum likelihood reconstruction for emission tomography. IEEETransMedImaging.1982;1:113-122.

Page 95: Tanguy Blaire - TEL

87

68. GreenPJ.BayesianreconstructionsfromemissiontomographydatausingamodifiedEMalgorithm.IEEETransMedImaging.1990;9:84-93.69. GambhirSS,BermanDS,Ziffer J, etal.Anovelhigh-sensitivity rapid-acquisitionsingle-photoncardiacimagingcamera.JNuclMed.2009;50:635-643.70. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets ofprojectiondata.IEEETransMedImaging.1994;13:601-609.71. Kacperski K, Erlandsson K, Ben-Haim S, Hutton BF. Iterative deconvolution ofsimultaneous 99mTc and 201Tl projection datameasured on a CdZnTe-based cardiac SPECTscanner.PhysMedBiol.2011;56:1397-1414.72. TakeuchiW,SuzukiA,ShigaT,etal.SimultaneousTc-99mandI-123dual-radionuclideimaging with a solid-state detector-based brain-SPECT system and energy-based scattercorrection.EJNMMIPhys.2016;3:1-10.73. DevousMD,Sr.,LoweJL,PayneJK.Dual-isotopebrainSPECTimagingwithtechnetium-99mandiodine-123:validationbyphantomstudies.JNuclMed.1992;33:2030-2035.74. IvanovicM,WeberDA, Loncaric S, FranceschiD. Feasibility of dual radionuclide brainimagingwithI-123andTc-99m.MedPhys.1994;21:667-674.75. OgawaK. Simulation studyof triple-energy-windowscatter correction in combinedTl-201,Tc-99mSPECT.AnnNuclMed.1994;8:277-281.76. Kadrmas DJ, Frey EC, Tsui BM. Simultaneous technetium-99m/thallium-201 SPECTimaging with model-based compensation for cross-contaminating effects. Phys Med Biol.1999;44:1843-1860.77. deJongHW,BeekmanFJ,ViergeverMA,vanRijkPP.Simultaneous(99m)Tc/(201)Tldual-isotope SPET with Monte Carlo-based down-scatter correction. Eur J Nucl Med Mol Imaging.2002;29:1063-1071.78. ElFakhriG,BuvatI,AlmeidaP,BendriemB,Todd-PokropekA,BenaliH.ShouldscatterbecorrectedinbothtransmissionandemissiondataforaccuratequantitationincardiacSPET?EurJNuclMed.2000;27:1356-1364.79. HapdeyS,SoretM,BuvatI.Quantificationinsimultaneous(99m)Tc/(123)IbrainSPECTusing generalized spectral factor analysis: aMonte Carlo study.PhysMedBiol.2006;51:6157-6171.80. OuyangJ,ElFakhriG,MooreSC.FastMonteCarlobasedjointiterativereconstructionforsimultaneous99mTc/123ISPECTimaging.MedPhys.2007;34:3263-3272.81. Frey EC, Tsui B. A new method for modeling the spatially-variant, object-dependentscatter response function in SPECT. Paper presented at: Nuclear Science Symposium, 1996.ConferenceRecord.,1996IEEE;2-9Nov1996,1996.82. WernickMN,Aarsvold JN.EmissionTomography:TheFundamentals of PETandSPECT:ElsevierScience;2004.

Page 96: Tanguy Blaire - TEL

88

83. PourmoghaddasA,VanderwerfK,RuddyTD,GlennWellsR.Scattercorrectionimprovesconcordance in SPECTMPIwith a dedicated cardiac SPECT solid-state camera. J Nucl Cardiol.2015;22:334-343.84. Fan P, Hutton BF, Holstensson M, et al. Scatter and crosstalk corrections for(99m)Tc/(123)Idual-radionuclideimagingusingaCZTSPECTsystemwithpinholecollimators.MedPhys.2015;42:6895-911.85. VerberneHJ,FeenstraC,deJongWM,SomsenGA,vanEck-SmitBL,BusemannSokoleE.Influenceofcollimatorchoiceandsimulatedclinicalconditionson123I-MIBGheart/mediastinumratios:aphantomstudy.EurJNuclMedMolImaging.2005;32:1100-1107.86. InoueY,AbeY,ItohY,etal.Acquisitionprotocolsandcorrectionmethodsforestimationof the heart-to-mediastinum ratio in 123I-metaiodobenzylguanidine cardiac sympatheticimaging.JNuclMed.2013;54:707-713.87. Verschure DO, Poel E, Nakajima K, et al. A European myocardial 123I-mIBG cross-calibrationphantomstudy.JNuclCardiol.2017;doi:10.1007/s12350-017-0782-6.[Epubaheadofprint].88. NakajimaK,OkudaK,MatsuoS,etal.Standardizationofmetaiodobenzylguanidinehearttomediastinumratiousingacalibrationphantom:effectsofcorrectiononnormaldatabasesandamulticentrestudy.EurJNuclMedMolImaging.2012;39:113-119.89. Nakajima K, Okuda K, Yoshimura M, et al. Multicenter cross-calibration of I-123metaiodobenzylguanidine heart-to-mediastinum ratios to overcome camera-collimatorvariations.JNuclCardiol.2014;21:970-978.90. KumitaS,ChoK,NakajoH,etal.SimultaneousassessmentofTc-99m-sestamibiandI-123-BMIPP myocardial distribution in patients with myocardial infarction: evaluation of leftventricularfunctionwithECG-gatedmyocardialSPECT.AnnNuclMed.2000;14:453-459.91. Ouyang J,ZhuX,TrottCM,ElFakhriG.Quantitative simultaneous99mTc/123I cardiacSPECTusingMC-JOSEM.MedPhys.2009;36:602-611.92. AbdulghaniM,DuellJ,SmithM,etal.GlobalandRegionalMyocardialInnervationBeforeandAfterAblationofDrug-RefractoryVentricularTachycardiaAssessedwith123I-MIBG.JNuclMed.2015;56Suppl4:52S-58S.93. VisserJJ,SokoleEB,VerberneHJ,etal.Arealistic3-DgatedcardiacphantomforqualitycontrolofgatedmyocardialperfusionSPET:theAmsterdamgated(AGATE)cardiacphantom.EurJNuclMedMolImaging.2004;31:222-228.94. BlaireT,BailliezA,BouallegueFB,BellevreD,AgostiniD,ManriqueA. Left ventricularfunction assessment using 123I/99mTc dual-isotope acquisition with two semi-conductorcadmium-zinc-telluride(CZT)cameras:agatedcardiacphantomstudy.EJNMMIPhys.2016;3:1-27.95. BlaireT,BailliezA,BenBouallegueF,BellevreD,AgostiniD,ManriqueA.Firstassessmentof simultaneous dual isotope (123I/99mTc) cardiac SPECT on two different CZT cameras: Aphantomstudy.JNuclCardiol.2017;doi:10.1007/s12350-017-0841-z.[Epubaheadofprint].

Page 97: Tanguy Blaire - TEL

89

RESUMELesnouvellesgamma-camérasàsemi-conducteursutilisantdesdétecteursauCZTsontdédiéesaux explorations cardiaques. Leurs sensibilité, résolution spatiale et en énergie nettementaméliorées comparativement aux gamma-caméras conventionnelles sont une révolution enmédecine nucléaire. Ces gamma-caméras utilisent de nouvelles géométries d’acquisition, denouveauxalgorithmesdereconstruction,etouvrentdenouvellesperspectivesdans lesétudessimultanéesendouble-isotopedel’123Ietdu99mTc,dontlespicsénergétiquessontproches.Nous avons étudié l’impact de l’amélioration de la résolution en énergie en comparant deuxmodèles de gamma-caméras à détecteurs semi-conducteurs aux gamma-camérasconventionnelles.Al’aided’étudessurfantômesanthropomorphesetchezdespatientsporteursd’insuffisancecardiaque,notretravails’estconcentrésurlesacquisitionsscintigraphiques(i)delafonctionventriculairegauche(99mTc)enprésenced’123I,(ii)delaperfusionmyocardique(99mTc)en présence d’123I (innervation), et (iii) du rapport cardiomédiastinal de la fixation d’123I-métaiodobenzylguanidine (123I-MIBG) lors d’acquisitions double-isotope (123I-MIBG/99mTc-tétrofosmine)chezlespatientssouffrantd’insuffisancecardiaque.Nosrésultatsmontrentquelameilleurerésolutionenénergiedesgamma-camérasCZTpermeten étude double-isotope (i) une évaluation de la FEVG et du mouvement régional dans lesdifférentesfenêtresd'énergie(123Iou99mTc)etlestypesd'acquisition(simple-vsdouble-isotope),(ii)uneévaluationsimultanéeetcombinéede laperfusion(99mTc)etde l’innervation(123I)dumyocarde,et(iii)l’évaluationdurapportcardiomédiastinaldelafixationd’123I-MIBG.Chacunedecestroispartiesafaitl’objetd’unepublication.Mots-clefs : tellururede cadmium-zinc ; scintigraphie ; double-isotope ; fonction ventriculairegauche;innervationdumyocarde;insuffisancecardiaque;123I-MIBG.

ABSTRACTDual-isotope(123I/99mTc)myocardialSPECTusingsemiconductorgamma-cameras:

methodologicalaspectsandclinicalapplications.

Newdedicated-cardiaccamerasusingCZTdetectorshavedramaticallytransformedtheroutineofmyocardialperfusionimaging.Withabettercountdetectionsensitivity,animprovedspatialandenergyresolution,theypotentiallyenablecombinedassessmentofmyocardialinnervation(123I)andperfusion(99mTc)withinasingleimagingsession.Thesecamerasimageswithdifferentsharpnessandcontrast-to-noiseratios.Using two CZT cameras with anthropomorphic phantom, and clinical studies in heart failurepatients,ourworkfocusedon(i)theleftventricularfunctionassessmentwithinthe99mTcwindowin presence of 123I, (ii) the evaluation of regionalmyocardial innervation (123I) and perfusion(99mTc)matchandmismatchwithsingle-(separate123Iand99mTcacquisition)andsimultaneousdual-isotopeacquisitions,and(iii)thelateheart-to-mediastinalratio(HMR)of123I-MIBGuptakedeterminedusingdual-isotopeCZTacquisitionwiththatdeterminedusingconventionalplanarimaginginpatientswithheartfailure.Ourresultsfoundnoimpactoftheacquisitionmode(singlevsdual)orthetypeofCZTcameraon123Iand99mTcdefectsizeandmismatch,LVEF,andHMRof123I-MIBGuptake.This work provides a new step toward simultaneous dual-isotope acquisition for combinedinnervation,perfusionandventricularfunctionassessment.Keywords:cadmium-zinc-telluride;dual-isotope;123I-MIBG;myocardialinnervation;myocardialperfusion.