56
Industria Textil„ ISSN 1222â5347 (201â256) 5/2010 Recunoscut„ Ón Rom‚nia, Ón domeniul ∫tiin˛elor inginere∫ti, de c„tre Consiliul Na˛ional al Cercet„rii ™tiin˛ifice din Œnv„˛„m‚ntul Superior (C.N.C.S.I.S.), Ón grupa A / Aknowledged in Romania, in the engineering sciences domain, by the National Council of the Scientific Research from the Higher Education (CNCSIS), in group A 201 industria textil„ 2010, vol. 61, nr. 5 COLEGIUL DE REDACfiIE: Dr. ing. EMILIA VISILEANU cerc. ∫t. pr. I â EDITOR Institutul Na˛ional de Cercetare-Dezvoltare pentru Textile ∫i Piel„rie â Bucure∫ti S.C. MEDTEX DESIGN & PRODUCTION S.R.L. Prof. dr. ing. CRI™AN POPESCU Institutul German de Cercetare a L‚nii â Aachen Cerc. ∫t. pr. I ERIC BOUDON Institutul Francez de Textile-Œmbr„c„minte â Paris Prof. dr. ing. DUMITRU LIUfiE Universitatea Tehnic„ Gh. Asachi â Ia∫i Prof. dr. ing. AURELIA GRIGORIU Universitatea Tehnic„ Gh. Asachi â Ia∫i Prof. dr. ing. COSTEA BUDULAN Universitatea Tehnic„ Gh. Asachi â Ia∫i Prof. dr. ing. VALERIA GRIBINCEA Universitatea Tehnic„ Gh. Asachi â Ia∫i Ing. VASILE MIRCIU director general adjunct Direc˛ia General„ Politici Industriale â Ministerul Economiei ∫i Comer˛ului Ing. VASILE P√TR¬NOIU â consilier Ministerul Economiei ∫i Comer˛ului Dr. ing. ION PIRNA â cerc. ∫t. pr. I Institutul Na˛ional de Cercetare-Dezvoltare pentru Ma∫ini Agricole â Bucure∫ti Prof. dr. ing. EROL MURAD Universitatea Politehnic„ â Bucure∫ti Dr. ing. MIHAELA IORD√NESCU cerc. ∫t. pr. I â RENAR Conf. dr. CRI™AN ALBU Academia de Studii Economice â Bucure∫ti Dr. ing. CARMEN GHIfiULEASA cerc. ∫t. pr. II Institutul Na˛ional de Cercetare-Dezvoltare pentru Textile ∫i Piel„rie â Bucure∫ti Prof. ing. ARISTIDE DODU cerc. ∫t. pr. gr. I Membru de onoare al Academiei de ™tiin˛e Tehnice din Rom‚nia Ec. AURELIENfiIU POPESCU pre∫edinte executiv FEPAIUS Prof. univ. dr. MARGARETA FLORESCU Academia de Studii Economice â Bucure∫ti Conf. univ dr. ing. LUCIAN CONSTANTIN HANGANU Universitatea Tehnic„ Gh. Asachi â Ia∫i LIU JIHONG, PAN RURU, GAO WEIDONG, JIANG HONGXIA, WANG HONGBO Detectarea fuselor ce produc bobine defecte pe ma∫ina de filat, cu ajutorul tehnologiei RFID 203â206 MANIELA DIACONU, MARIUS DIACONU, EMILIA VISILEANU, CLAUDIA NICULESCU Algoritmi generaliza˛i de proiectare automat„ a Ómbr„c„mintei 207â209 HAMID REZA SANJARI, DARIUSH SEMNANI, MOHAMMAD SHEIKHZADEH Studierea performan˛ei diferitelor procese de relaxare asupra uniformit„˛ii de suprafa˛„ ∫i a propriet„˛ilor dimensionale ale tricoturilor interloc, prin utilizarea tehnicii de procesare a imaginii 210â217 NARCISA VR¬NCEANU, DIANA COMAN, ANA-MARIA GRIGORIU, AURELIA GRIGORIU Studii spectroscopice asupra modific„rilor de suprafa˛„ ale l‚nii, induse de tratamente laser excimer UV 218â222 JUNJIE LIU, WEIDONG YU Comportamentul fibrelor polietilenice de Ónalt„ performan˛„ Ón func˛ie de temperatura de tranzi˛ie a sticlei la diferite frecven˛e 223â227 DANIELA LIUfiE, GEORGE CIUBOTARU Rela˛ii de calcul pentru programe de comand„ prin calculator a Ónc„rc„rii urzelilor cu emulsie de ceruire 228â231 MIHAI STAN, EMILIA VISILEANU, ALEXANDRA ENE, CARMEN MIHAI Aplica˛ii ale structurilor textile auxetice Ón industrie ∫i societate 232â235 GHEORGHE ORZAN, IULIANA PETRONELA GEANGU, ADRIAN DANIEL G¬RDAN, FLOAREA BUMBA™ Impactul fideliz„rii consumatorilor de produse textile Ón procesul decizional de cump„rare 236â241 SABINA OLARU, ADRIAN S√LI™TEAN, CLAUDIA NICULESCU, CONSTANTIN-CRISTIAN MATENCIUC, MIRELA TEODORESCU Modele de optimizare a procesului de fabrica˛ie a parapantelor 242â247 PELIN ‹NAL, RIZA ATAV Efectul tension„rii urzelii Ón procesul de ˛esere asupra culorii ob˛inute Ón cazul vopsirii cu coloran˛i reactivi ∫i a contrac˛iei materialelor din bumbac 248â252 DOCUMENTARE 227, 235, 252â254 CRONIC√ 206, 254â255 INDUSTRIA TEXTIL√ ŒN LUME 247, 255â256 Editat„ Ón 6 nr./an, indexat„ ∫i recenzat„ Ón:/ Edited in 6 issues per year, indexed and abstracted in: Science Citation Index Expanded (SciSearch ® ), Materials Science Citation Index ® , Journal Citation Reports/Science Edition, World Textile Abstracts, Chemical Abstracts, VINITI Revist„ cotat„ ISI ∫i inclus„ Ón Master Journal List a Institutului pentru ™tiin˛a Inform„rii din Philadelphia â S.U.A., Óncep‚nd cu vol. 58, nr. 1/2007/ ISI rated magazine, included in the ISI Master Journal List of the Institute of Science Information, Philadelphia, USA, starting with vol. 58, no. 1/2007

Textila 5/2010- 1revistaindustriatextila.ro/images/2010/5_2010.pdfRecunoscut„ Ón Rom‚nia, Ón domeniul ∫tiin˛elor inginere∫ti, de c„tre Consiliul Na˛ional al Cercet„rii

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • IndustriaTextil„

    ISSN 1222â5347 (201â256)

    5/2010

    Recunoscut„ Ón Rom‚nia, Ón domeniul ∫tiin˛elor inginere∫ti, de c„tre Consiliul Na˛ional al Cercet„rii ™tiin˛ifice din Œnv„˛„m‚ntul Superior

    (C.N.C.S.I.S.), Ón grupa A /Aknowledged in Romania, in the engineering sciences domain,

    by the National Council of the Scientific Research from the Higher Education (CNCSIS), in group A

    201industria textil„ 2010, vol. 61, nr. 5

    COLEGIULDE REDACfiIE:Dr. ing. EMILIA VISILEANU

    cerc. ∫t. pr. I â EDITORInstitutul Na˛ional de Cercetare-Dezvoltare

    pentru Textile ∫i Piel„rie â Bucure∫tiS.C. MEDTEX DESIGN & PRODUCTION S.R.L.

    Prof. dr. ing. CRI™AN POPESCUInstitutul German de Cercetare a L‚nii â Aachen

    Cerc. ∫t. pr. I ERIC BOUDONInstitutul Francez de Textile-Œmbr„c„minte â

    ParisProf. dr. ing. DUMITRU LIUfiE

    Universitatea Tehnic„ Gh. Asachi â Ia∫iProf. dr. ing. AURELIA GRIGORIU

    Universitatea Tehnic„ Gh. Asachi â Ia∫iProf. dr. ing. COSTEA BUDULAN

    Universitatea Tehnic„ Gh. Asachi â Ia∫iProf. dr. ing. VALERIA GRIBINCEA

    Universitatea Tehnic„ Gh. Asachi â Ia∫iIng. VASILE MIRCIU

    director general adjunctDirec˛ia General„ Politici Industriale â

    Ministerul Economiei ∫i Comer˛uluiIng. VASILE P√TR¬NOIU â consilierMinisterul Economiei ∫i Comer˛uluiDr. ing. ION PIRNA â cerc. ∫t. pr. I

    Institutul Na˛ional de Cercetare-Dezvoltare pentru Ma∫ini Agricole â Bucure∫ti

    Prof. dr. ing. EROL MURADUniversitatea Politehnic„ â Bucure∫ti

    Dr. ing. MIHAELA IORD√NESCUcerc. ∫t. pr. I â RENARConf. dr. CRI™AN ALBU

    Academia de Studii Economice â Bucure∫tiDr. ing. CARMEN GHIfiULEASA

    cerc. ∫t. pr. IIInstitutul Na˛ional de Cercetare-Dezvoltare

    pentru Textile ∫i Piel„rie â Bucure∫tiProf. ing. ARISTIDE DODU

    cerc. ∫t. pr. gr. IMembru de onoare al Academieide ™tiin˛e Tehnice din Rom‚nia

    Ec. AURELIENfiIU POPESCUpre∫edinte executiv FEPAIUS

    Prof. univ. dr. MARGARETA FLORESCUAcademia de Studii Economice â Bucure∫ti

    Conf. univ dr. ing. LUCIAN CONSTANTIN HANGANU

    Universitatea Tehnic„ Gh. Asachi â Ia∫i

    LIU JIHONG, PAN RURU, GAO WEIDONG,JIANG HONGXIA, WANG HONGBODetectarea fuselor ce produc bobine defecte pe ma∫ina de filat,cu ajutorul tehnologiei RFID 203â206MANIELA DIACONU, MARIUS DIACONU, EMILIA VISILEANU,CLAUDIA NICULESCUAlgoritmi generaliza˛i de proiectare automat„ a Ómbr„c„mintei 207â209HAMID REZA SANJARI, DARIUSH SEMNANI,MOHAMMAD SHEIKHZADEHStudierea performan˛ei diferitelor procese de relaxare asupra uniformit„˛ii de suprafa˛„ ∫i a propriet„˛ilor dimensionale ale tricoturilor interloc, prin utilizarea tehnicii de procesare a imaginii 210â217NARCISA VR¬NCEANU, DIANA COMAN, ANA-MARIA GRIGORIU,AURELIA GRIGORIUStudii spectroscopice asupra modific„rilor de suprafa˛„ ale l‚nii,induse de tratamente laser excimer UV 218â222JUNJIE LIU, WEIDONG YUComportamentul fibrelor polietilenice de Ónalt„ performan˛„ Ón func˛ie de temperatura de tranzi˛ie a sticlei la diferite frecven˛e 223â227DANIELA LIUfiE, GEORGE CIUBOTARURela˛ii de calcul pentru programe de comand„ prin calculatora Ónc„rc„rii urzelilor cu emulsie de ceruire 228â231MIHAI STAN, EMILIA VISILEANU, ALEXANDRA ENE, CARMEN MIHAIAplica˛ii ale structurilor textile auxetice Ón industrie ∫i societate 232â235GHEORGHE ORZAN, IULIANA PETRONELA GEANGU, ADRIAN DANIEL G¬RDAN, FLOAREA BUMBA™Impactul fideliz„rii consumatorilor de produse textileÓn procesul decizional de cump„rare 236â241SABINA OLARU, ADRIAN S√LI™TEAN, CLAUDIA NICULESCU,CONSTANTIN-CRISTIAN MATENCIUC, MIRELA TEODORESCUModele de optimizare a procesului de fabrica˛ie a parapantelor 242â247PELIN ‹NAL, RIZA ATAVEfectul tension„rii urzelii Ón procesul de ˛esere asupra culorii ob˛inute Ón cazul vopsirii cu coloran˛i reactivi ∫i a contrac˛iei materialelor din bumbac 248â252DOCUMENTARE 227, 235, 252â254CRONIC√ 206, 254â255INDUSTRIA TEXTIL√ ŒN LUME 247, 255â256

    Editat„ Ón 6 nr./an, indexat„ ∫i recenzat„ Ón:/Edited in 6 issues per year, indexed and abstracted in:

    Science Citation Index Expanded (SciSearch®), Materials ScienceCitation Index®, Journal Citation Reports/Science Edition, World Textile

    Abstracts, Chemical Abstracts, VINITI

    Revist„ cotat„ ISI ∫i inclus„ Ón Master Journal List a Institutului pentru™tiin˛a Inform„rii din Philadelphia â S.U.A., Óncep‚nd cu vol. 58, nr. 1/2007/ISI rated magazine, included in the ISI Master Journal List of the Instituteof Science Information, Philadelphia, USA, starting with vol. 58, no. 1/2007

  • 202industria textil„ 2010, vol. 61, nr. 5

    LIU JIHONGPAN RURUGAO WEIDONGJIANG HONGXIAWANG HONGBO

    MANUELA DIACONUMARIUS DIACONUEMILIA VISILEANUCLAUDIA NICULESCU

    HAMID REZA SANJARIDARIUSH SEMNANIMOHAMMAD SHEIKHZADEH

    NARCISA VR¬NCEANUANA-MARIA GRIGORIUDIANA COMANAURELIA GRIGORIU

    JUNJIE LIUWEIDONG YU

    DANIELA LIUfiE GEORGE CIUBOTARU

    MIHAI STANEMILIA VISILEANUALEXANDRA ENECARMEN MIHAI

    GHEORGHE ORZANIULIANA PETRONELA GEANGUADRIAN DANIEL G¬RDANFLOAREA BUMBA™

    SABINA OLARUADRIAN S√LI™TEANCLAUDIA NICULESCUCONSTANTIN-CRISTIAN MATENCIUC

    PELIN ‹NALRIZA ATAV

    DOCUMENTARE

    CRONIC√

    INDUSTRIA TEXTIL√ ŒN LUME

    203

    207

    210

    218

    223

    228

    232

    236

    242

    248

    227,235,

    252â254

    206, 254â255

    247,255â256

    Tracing defected bobbins back tospindles of spinning frames using RFIDtechnology

    Generalized algprithms forcomputerized apparel design

    Investigating the performance of variousrelaxation processes on the surfaceregularity and the dimensionalproperties of interlock knitted fabricsusing image processing technique

    Spectroscopic studies on the woolsurface modifications induced by UVexcimer laser irradiation

    Frequency dependent glass transitionbehavior of high performancepolyethylene fibers

    Computing relations for the computercontrolling programmes of warp loadwith waxing emulsions

    Applications of auxetic textile structuresin the industry and society

    The impact of textile products customerretention on the buying decision process

    Optimization models of paraglidemanufacturing process

    Effect of warp tension in weavingprocess on colour obtained in reactivedyeing and fabric shrinkage of cotton

    DOCUMENTATION

    CHRONICLES

    TEXTILE INDUSTRY IN THE WORLD

    Die Ermittlung der Spindel welchefehlerhafte Spulen auf Spinnmaschinenproduzieren, mit Hilfe der RFID-Technologie

    Generalisierte Algorythmen f¸r denautomatisierten Bekleidungsentwurf

    Untersuchungen der Leistungverschiedener Entspannungssprozesseauf der Oberfl‰chengleichfˆrmigkeit undder dimensionellen Eigenschaften derInterlockware, durch Anwendung derBildbearbeitung

    Spektroskopieuntersuchungen auf dieOberfl‰chenmodifizierungen der Wolle,verursacht von UV- Excimer-LaserBehandlungen

    Das Verhalten der Hochleistungs-Polyethylenfaser in Abh‰ngigkeit derGlastransitionstemperatur beiverschiedenen FrequenzenEs wird statfinden...

    Computersteuerprogramme-Rechnungsbeziehungen f¸r dieBehandlung der Ketten mitWachsemulsion

    Anwendung auxetischer Textilstrukturenin der Industrie und der GesellschaftChronik

    Impakt der Kundentreue beiTextilprodukten imKaufentscheidungsprozess

    Optimierungsmodelle des Gleitschirm-Fertigungsprozesses

    Einwirkung der Kettenspannung imWebprozess auf der Farbe erhaltenbeim Reaktivf‰rben und die Kontraktionder Baumwollmaterialien

    DOKUMENTATION

    CHRONIK

    DIE TEXTILINDUSTRIE IN DER WELT

    Contents Inhalt

  • 203industria textil„ 2010, vol. 61, nr. 5

    According to different requirements of quality control,defected bobbins can be sought out by the winder.But the corresponding spindles which can not be tra-ced will still produce defected bobbins. To solve theproblem, Liu et al. [1] put forward a solo bobbin tracingsystem in which a number is written on the spoolsbefore attaching them to the spindles. If experimentersdesire to use these spools repeatedly, there are twomethods: one is to rewrite the number on the spoolsafter erasing; the other is to arrange the spoolsaccording to their number. However, both methods areinconvenient. Liu et al. developed a bobbin tracingsystem, labeling the top part of spool with the bar code1-D, but the label was easily damaged and the bar codecould not be read when covered by the yarn. Recently, the RFID technology has been widely used[2]. The working principles, modification and implan-tation of an existing RFID-tag in extracted human molarswere described for forensic identification purposes [3].By means of Radio Frequency Identification (RFID), Liu[4â6] redesigned a bobbin tracing system based on aPC which enables the quality control of the spindles bymeans of an electric kind of spool. According to thetests carried out in textile factories, at least two pro-blems needed to be solved in the system: ● During the production, the integrated circuit of the

    RFID pasted on the surface of spools was easilydestroyed by the collision between spools;

    ● The system needed to use a PC in order to managethe serial number of spindles for each function, whichwas an inconvenient for the textile factories.

    In this research, a new kind of electronic bobbin wasdesigned, where the integrated circuit of the RFID waspasted inside the spools. Two new kinds of PersonalDigital Assistant (PDA) were designed for the systemÖsimprovement. One can write the information into thedata storages of the RFID within the bobbins, and the other can read and print the information receivedfrom the RFID of bobbins. Using the new system, ex-periments of tracing the defected bobbins back to thespindles of the spinning frames were performed andanalyzed.

    STRUCTURE OF TRACING SYSTEM

    The full structure of the tracing system is composed ofthree parts: electric spool, RFID writer used for spin-ning frame only, and RFID reader/ printer used forwinder only. We will introduce the RFID before intro-ducing the electric spool.

    What is RFID?The RFID, using radio frequency energy to commu-nicate with a reader, is a new technology for automaticidentification and for collecting data. It originated fromthe radio communication techniques, available in the1980s, later provided with control, identification,

    REZUMAT â ABSTRACT â INHALTSANGABE

    Detectarea fuselor ce produc bobine defecte pe ma∫ina de filat, cu ajutorul tehnologiei RFIDDispozitivul de bobinat poate detecta bobinele defecte, Ón conformitate cu cerin˛ele controlului calit„˛ii, Óns„ nu poate stabili pe care dintrefusele ma∫inii de filat s-au realizat acele bobine. Pentru a putea rezolva aceast„ problem„, s-au utilizat un asistent digital personal â PDA, ∫iun program software inclus Ón acesta, cu ajutorul c„rora s„ se poat„ identifica fiecare bobin„ prin num„rul de serie a fusului ∫i codul ma∫iniide filat, folosind tehnologia de identificare prin radiofrecven˛„ â RFID. PDA-ul poate detecta bobina defect„ de pe ma∫ina de filat, dar ∫i fusulpe care s-a realizat aceasta. Prin utilizarea acestei metode s-a rezolvat problema vechiului sistem, care necesita folosirea unui PC, pentruidentificarea seriilor fuselor. De asemenea, prin aceast„ metod„ sunt Ómbun„t„˛ite at‚t mentenan˛a ma∫inii de filat, c‚t ∫i calitatea firului filat.Cuvinte-cheie: RFID, ˛eav„, bobin„, detectare, ma∫in„ de filat, PDA

    Tracing defected bobbins back to spindles of spinning frames using RFID technologyThe winding device is able to detect the defected bobbins, according to the requirements of quality control; however it cannot deduce onwhich of the spinning frameÖs spindles they were produced. In order to solve this problem, a special Personal Digital Assistant (PDA) and anembedded software were used for identifying the individual bobbins associated to the serial number of spindles and the code of the spinningframes, utilizing Radio Frequency Identification (RFID) technology. The PDA could trace the defected bobbin, from the winder to the spindlethat produced it. This method solved the problem of the old system, which needed to use a PC in order to manage the serial number of thespindles. It also improved the spinning frameÖs maintenance and increased the quality of the spun yarn.Key-words: RFID, spool, bobbin, tracing, spinning frame, PDA

    Die Ermittlung der Spindel welche fehlerhafte Spulen auf Spinnmaschinen produzieren, mit Hilfe der RFID-TechnologieDer Spulautomat kann die fehlerhaften Spulen gem‰ss der Qualit‰tskontrollnormen herausfinden, aber er kann nicht feststellen auf welcherSpindel der Spinnmaschine diese produziert wurden. Um dieses Problem lˆsen zu kˆnnen, wurde in der Arbeit ein Personal Digital Assistentâ PDA entwickelt und eine integrierte Software entworfen, f¸r die Identifikation der individuellen Spulen durch die Seriennummer der Spindelund der Code der Spinnmaschine, indem die Technologie f¸r die Identifizierung durch Radiofrequenz (RFID) angewendet wurde. Das PDAkann die fehlerhafte Spule herausfinden, sogleich aber auch die Spindel, auf welche diese produziert wurde. Durch die Anwendung dieserMethode wurde das Problem des alten Systems, welche die Anwendung eines PCs f¸r die Identifizierung der Spindelserie benˆtigte, gelˆst.Gleichzeitig wurde durch diese Methode sowohl die Mentenanz der Spinnmaschine, als die Qualit‰t des Garnes, verbessert. Schl¸sselwˆrter: RFID, Spindel, Spule, Herausfinden, Spinnmaschine, PDA

    Tracing defected bobbins back to spindles of spinning frames using RFID technology

    LIU JIHONG JIANG HONGXIAPAN RURU WANG HONGBOGAO WEIDONG

  • modern computer networking, which gradually maturedas a non-contact identification technique. It was suc-cessfully applied in the tracing and identification ofmulti-target applications [7, 8]. Figure 1 shows a typical passive RFID (Texas Instru-ments Incorporated: ISO15693, 13.56 MHz) used inthis application. RFID could store large amounts of datawithin a small amount of read/write storage space (64bytes). In this research, 4 bytes were used to store thespinning frames code, and another 4 bytes were usedto store the serial number of spindles. The range ofcodes used in the system can be encoded within 64bytes, able to store data for an entire textile factory.

    Reconstruction of electric spool and electric bobbinusing RFIDRFID used to be pasted on the surface of the bobbin.As shown in figure 2, RFID is now installed inside thebobbins. Therefore, the integrated circuit of the RFIDwill not be destroyed by the collision between two ormore spools during production. In the spool, there is atop eye. The RFID is installed between the top eye andthe top of the spool and it is about 3â6 cm long. The topeye could prevent the RFID from crashing the spindles.The corresponding spinning spool and spinning bobbinare still called electronic spool and electronic bobbin.The electronic bobbin has stored the serial number ofspindles and the code of spinning frames, while theelectronic spool has not.

    Writer PDAThe writer represents a basic function of tracingsystem, which could be finished by a PDA device withRFID writer designed for this research, as shown in

    figure 3. The PDA had integrated an embedded an-tenna, RFID writer and input/output devices. The flowchart of the writer PDA is shown in figure 4.After the spools were installed on the spindles of thespinning frame, the serial number of spindles and thecode of the spinning frame could be written accordingto the spindle order, and saved into the data storage ofthe RFID in the electric spool. In the experiments, whenthe PDA successfully wrote the data into the RFID, theLED light gave a continual light signal which could beused for confirming that the action of writing wassuccessfully accomplished.

    Reader/printer PDAIn the spinning frames, there was only 50 mm left foroperating the RFID writer, given the bobbinÖs diameterwas about 20 mm. Therefore, the designed thickness ofthe writer PDA was of 20 mm, in order to facilitate theoperation, as shown in figure 3. However, according tothe requirements of experimenter, the data regardingthe defected bobbins needed to be printed by RFIDprinter. Therefore, another PDA functioning as reader/printer system was designed, having a printer attached,on top of RFID reader, as shown in figure 5. The flowchart of the reader/printer PDA is shown in figure 6.When a defected bobbin was detected by the winder,the RFID reader could read the data stored in the RFIDof electric bobbin. After that, the RFID reader translatedthe data into the serial number of the spindles and thecode of spinning frame, and displayed it on the LCD ofthe RFID reader. In the experiments, when the PDAsuccessfully read the data provided by the RFID, thespeaker on the side of the RFID reader gave a

    204industria textil„ 2010, vol. 61, nr. 5

    Fig. 1. Typical RFID tag

    Fig. 3. PDA device of RFID writer Fig. 4. Flow chart of system structure

    Fig. 2. Cutaway view of the electronic spool:a â spinning spool; b â electronic spool

    a

    b

  • continuous sound signal which could be used forconfirming that the action of reading was successfullyaccomplished.

    EXPERIMENTAL SETUP

    An actual experimental setup of the whole system hadbeen built. Valid experiments of tracing defected bob-bins back to the specific spindles of spinning frame(Jingwei Co. /China: FA506) were accomplished onthe winder (Savio Co. /Italy: Orion M/L). There were 30spindles on one-side of the spinning frames.

    RESULTS AND DISCUSSIONS

    After attaching all electric spools onto the spindles of the spinning frames, the RFID writer wrote the se-rial number of spindles and the code of the spinningframes, and saved them into the data storage of theRFID, according to the order of the spindles. In theexperiment, writing the serial number on 30 electronicspools at once, it took 22 seconds, on average. Afterthe yarn was produced and winded on the electricspool by the spinning frame, the electric spool becamean electric bobbin. When defected bobbins were foundby the winder, the RFID reader read the serial numberof spindles and the code of spinning frames. Theexperimenter could find the defected spindles of thespinning frames, and maintain the corresponding once.Therefore, the experiments could be simplified in thefollowing four steps:● attaching the spools to the spinning frames;● writing the serial number of the spindles and the code

    of the spinning frames on the electric spool;● detecting the defected bobbin by winder;● reading the serial number of spindles and the code of

    spinning frames, and tracing the spinning frames andspindles etc, and maintaining the correspondingspindle.

    By this technique, bobbins from different spindles couldbe distinguished precisely. Therefore, the usual quality

    control for each spinning frame was changed into theevaluation for each spindle. This technique could im-prove yarn quality and gain potential economical profit.Addressing the problematic spindles, improving themaintenance of the spinning frames, as well as increa-sing the quality of the spun yarn, and so on, could alsobe accomplished utilizing the system.The data process of tracing the defected bobbin couldonly be accomplished by implementing the two PDAs.Therefore, the trouble of the old system, which neededto use a PC in order to manage the serial number ofspindles, was solved in this research. As the RFID wasinstalled inside the bobbin, there was no collision be-tween the RFID and spools and bobbins during themanufacturing process. There were also no collisionsduring the processes of attaching and detaching, be-tween the RFID and spindles, because the RFID wasinstalled outside of top eye of the bobbins. In ourexperiment, there was no RFID that was destroyed.

    CONCLUSIONSThe electric spool and electric bobbin were recon-structed utilizing RFID according to the practical ap-plications from the textile factory. After that, the twoPDAs, functioning as reader and writer/printer, used forsharing information about the electric bobbins betweenspindles and winders, were developed. Then, the tra-cing system for quality control was developed and dis-cussed. In the experiments, there was no destroyingcaused by collision between the RFID of reconstructedelectronic spool or other. The new system solved thetrouble of the old system which needed to use a PC inorder to manage the serial number of spindles. Theexperiments proved that the system was available androbust.

    ACKNOWLEDGEMENTSThe authors were grateful for the financial support by theFundamental Research Funds for the Central Universities(JUSRP30907) and the Jiangsu Natural Science Foundation(BK2009511).

    205industria textil„ 2010, vol. 61, nr. 5

    Fig. 5. PDA device of RFID reader/printer Fig. 6. Flow chart of system structure

    BIBLIOGRAPHY

    [1] L iu , J . H. , Gong, Z. , Hu, H. J . , J iang, H. X. Solo bobbin tracing system for spinning frame based on Label technology. The10th Asian Textile Conference, 2009, Sept.7â9, Ueda, Japan, p. 250

    [2] Sebast ian , S. , F io la , B. , Chr is t ian , W. W. P. , J¸rgen, T . Automatic life-long monitoring of individual insect behaviour nowpossible. In: Zoology, 2003, 106, p. 169

    [3] Pat r ick , W. T. , Guy, P. , Miche l , D. C. , Rober t , P. , Guy, W. Implantation of an RFID-tag into human molars to reduce hardforensic identification labor. Part I: Working principle. In: Forensic Science International, 2006, 159S, p. S33

  • Edi˛ia din septembrie a Texworld a avut loc la centrulexpozi˛ional Le Bourget/Paris ∫i s-a bucurat de parti-ciparea a circa 850 de expozan˛i, peste 150 dintreace∫tia fiind din r‚ndul celor specializa˛i Ón produc˛ia deÓmbr„c„minte. Un num„r din ce Ón ce mai mare de com-panii caut„ s„-∫i verticalizeze produc˛ia, Ón vederea opti-miz„rii costurilor, a reducerii timpului de fabrica˛ie ∫i arestric˛ion„rii num„rului de colaboratori externi. àInte-resul nostru este acela de a dezvolta acest sector,deoarece este foarte cerut de vizitatorii no∫tri...Cererea este semnificativ„ ∫i r„spundem acestei nevoiprin deschiderea por˛ilor pentru companii specializateÓn full-packages ∫i Ón produse de Ónalt„ calitateÜ â afirmaMichael Scherpe, pre∫edinte al Messe France.T‚rgul chinezesc pentru comer˛ul cu textile ∫i Ómbr„-c„minte â CTAF, a reunit aproape o sut„ de companiitextile specializate Ón producerea de Ómbr„c„minte, une-le cu tradi˛ii de secole. Scopul acestora este acela de adezvolta o gam„ de produse care s„ Óntruneasc„cerin˛ele pie˛elor vestice, Ón ceea ce prive∫te calitatea ∫istilul. Produc„tori din regiuni precum Beijing, Jiangsu,JueXi sau Zhejiang au oferit broderii fine, m„t„suri sautricoturi suple, foarte apreciate de actorii din sector. Num„rul expozan˛ilor de la CTAF aproape c„ s-a dublatfa˛„ de edi˛ia precedent„ a Texworld, ceea ce repre-zint„ o m„rturie vie a inten˛iilor de consolidare a leg„-turilor economice dintre China ∫i pie˛ele europene. Œnacest sens, Zhang Tao, reprezentant al Camerei deComer˛ ∫i Industrie Textil„ din China, afirma: àParti-ciparea noastr„ la Texworld reprezint„ o oportunitate deintensificare a eforturilor, Ón perspectiva unei colabor„ri

    de lung„ durat„ Óntre expozan˛ii no∫tri ∫i clien˛ii din Vest.Oferim produse foarte variate, ce Óntrunesc diverselenevoi ale firmelor ∫i Óntreprindem ceea ce este necesarpentru a r„spunde cel mai bine cererilor clien˛ilor no∫tri,Ón ceea ce prive∫te calitatea ∫i promptitudinea livr„riiÜ. Consiliul de Dezvoltare Comercial„ din Hong Kong,HKTDC, reune∫te produc„tori de Ómbr„c„minte cu ex-perien˛„ ∫i tradi˛ie Óndelungat„, care, Ón prezent, suntcunoscu˛i pretutindeni Ón lume, datorit„ unor platformecum este Texworld. Diversitatea articolelor de Ómbr„c„minte a fost asigurat„∫i de companii europene precum IGL Textil, PiazzaItalia, grupul Bestseller, Esprit etc. àParticip‚nd la Tex-world, am putut penetra pie˛e noi, prin intermediul unorcolabor„ri dezvoltate Ón cadrul expozi˛ieiÜ â spuneaFrans Bourgeois de la compania belgian„ MaboFashion, specializat„ Ón realizarea de c„m„∫i Ón stilvestic ∫i la pre˛uri atractive.A∫a cum afirma Murat Ozudogru, director de export alfirmei Ozsim â produc„toare de articole de dam„ ∫ib„rb„te∫ti, unii furnizori de articole de Ómbr„c„minte auparticipat pentru prima dat„ la Texworld, cu scopul dea Ónt‚lni parteneri cu care s„ poat„ stabili o colaborarepe termen lung. Firma Royal Touch din India, produc„toare de acce-sorii, a prezentat o mare varietate de fulare, e∫arfe ∫ipareos din m„tase, bumbac sau in, pentru a r„spundeoric„ror cerin˛e speciale, solicitate de companiilepartenere. Informa˛ii de pres„. Messe Frankfurt France, iulie 2010

    206industria textil„ 2010, vol. 61, nr. 5

    [4] L iu , J . H. Study on bobbin tracking system using RFID technology. In: The 1st International Conference on Sustainable Textiles, 2008,Wuxi, China, p. 132

    [5] L iu , J .H. , Lu, Y.Z. R & D of bobbin tracking and tracing system based on RFID technology. In: 86th Textile Institute WorldConference, 2008, Hong Kong, China, p. 1 754

    [6] L iu , J .H. , Gao, W.D. , Wang, H.B. , J iang, H.X. , L i Z .X. Development of bobbin tracing system based on RFID technology.In: Journal of the Textile Institute, DOI: 10.1080/ 00405000903028299

    [7] Tan, J . , Zhao, Z.C. , He, W., Ge, P. , Zhang, X.H. , Wang, Z. Design and application of monitor and control system basedon RFID for product Line. In: Application Research of Computers, 2006, vol. 7, p. 119

    [8] X iang, Y. , Y i , M. , Fan, T . Design an ERP basing on RFID technology. In: Journal of Nanchang University (Natural Science), 2005,vol. 29, issue 2, p. 188

    Authors:Dr. LIU JIHONG Dr. PAN RURU

    Dr. WANG HONGBODr. GAO WEIDONGJiangnan University

    School of Textile and GarmentLihu Road 1800, Wuxi, 214122 China

    e-mail:[email protected]; [email protected]; [email protected];[email protected]; [email protected]

    Dr. eng. JIANG HONGXIAShinshu University

    Faculty of Textile Science and TechnologyTokita 1, Ueda, Nagano, 386-8 567 Japan

    e-mail: [email protected]

    TEXWORLD 2010

    CRONIC√

  • Proiectarea individualizat„ nu mai reprezint„ ast„zi unconcept nou. Noutatea este dat„ doar de abordareaunor noi metode de proiectare, dezvoltate de cer-cet„tori ∫i transpuse de produc„torii de software Óndiverse aplica˛ii, precum: proiectarea semiautomat„ ∫iautomat„ MTM (made-to-measure); proiectarea 2D ∫iprobarea 3D a tiparelor-fi∫ier pe avataruri sau corpuriscanate; proiectarea 2D ∫i probarea 3D Ón sistem inte-grat, orice modificare de dimensiune reflect‚ndu-se Óntiparul 3D; proiectarea 3D pe avatar/model 3D ∫i ob˛i-nerea ulterioar„ a desf„∫uratelor plane. Exist„ c‚tevasisteme comerciale, care se eviden˛iaz„ prin rezultateapreciabile, cum ar fi: Browzwear Systems, ScanvecGarment Systems (Optitex), Lectra Systems, GerberTechnology, Tukatech, PatternMaker, CADTERNS etc.Algoritmii generaliza˛i au fost concepu˛i Ón scopuleficientiz„rii produc˛iei de Ómbr„c„minte individualizat„[2], [4]. Aplicarea algoritmilor generaliza˛i implic„ auto-matizarea etapei de proiectare.

    CARACTERIZAREA ALGORITMILOR GENERALIZAfiI

    ● Algoritmii generaliza˛i descriu corpul real corect, àes-teticÜ, cu/f„r„ adaosuri de lejeritate.

    Proiectarea Ón varianta de serie utilizeaz„ ca modelcorpurile tip, ob˛inute Ón urma prelucr„rilor statistice adimensiunilor prelevate de la un segment de popula˛ie.Indicatorii morfologici de caracterizare a formei ex-terioare a corpului uman (dimensiuni globale, confor-ma˛ie, propor˛ii etc.) reprezint„ criterii de clasificare acorpurilor tip, pentru care se elaboreaz„ algoritmii deconstruc˛ie a tiparelor de baz„ Ón diverse variante. Decele mai multe ori, ace∫ti algoritmi reprezint„ modele deproiectare ∫i pentru produselor individualizate, cu

    deosebirea c„ num„rul de dimensiuni utilizate este maimare [1], [5]. Acest mod de lucru Ómbun„t„˛e∫te, Ónanumite cazuri, coresponden˛a corp-tipar, dar nuelimin„ etapele finale de m„surare ∫i verificare atiparului, respectiv de probare a acestuia pe corp prindrapare 3D, conform celor mai evoluate aplica˛ii deproiectare.Algoritmii generaliza˛i realizeaz„ modelarea matematic„a formei exterioare a corpului real [3], [7], astfel Ónc‚tunele no˛iuni â prelucrarea statistic„, indicatorul morfo-logic etc. â Ó∫i pierd sensul. Practic, se preleveaz„ depe corpul scanat un set complet de parametri antro-pometrici, Ón ideea descrierii complete a corpului indi-ferent de particularit„˛ile conforma˛ionale [6]. Cu acestset de caracteristici dimensionale 3D se construiesctipare de baz„ cu adaosuri de lejeritate à0Ü, care Ómbra-c„ corect ∫i armonios corpul, precum o àarmur„Ü. Apli-c‚nd adaosurile de lejeritate corespunz„toare, se ob˛intipare pentru diverse siluete de produs.Caracteristicile utilizate sunt dimensiuni standardizate,prelevate numai Óntre puncte antropometrice u∫or iden-tificabile (proeminen˛e, apofize etc.), cum a fi: perime-tre, lungimi, l„˛imi, diametre, arce ∫i, nu Ón ultimul r‚nd,ad‚ncimi. Aceste caracteristici pot fi preluate ∫i dintr-unstandard antropometric 3D. Pensele care redau formaspa˛ial„ a produsului de Ómbr„c„minte sunt calculate cuprecizie. Ad‚ncimile, deosebit de importante Ón calcu-larea deschiderilor de pense, se utilizeaz„ ∫i pentrudimensionarea unor segmente de baz„ din tipare. Deexemplu, Ón cazul unui corsaj confec˛ionat din materialtextil neelastic (fig. 1), algoritmul generalizat introduceca variant„ de proiectare urm„toarele ecua˛ii de calculal l„˛imii fe˛ei:

    Algoritmi generaliza˛i de proiectare automat„ a Ómbr„c„minteiMANUELA DIACONU EMILIA VISILEANUMARIUS DIACONU CLAUDIA NICULESCU

    ABSTRACT â INHALTSANGABE

    Generalized algorithms for computerized apparel designThe development of computerized measurement techniques, particularly by 3D scanning, as well as the mathematical applications, allow theclothing production individualization process to evolve in two directions: sizes systems â with a sufficient number of typo-dimensional variants,thus all bodies could be represented, and design algorithms, with sufficient number of anthropometric parameters, with/without new designrules. The selection of representative dimensional features that describe the bodyÖs geometry, and identification of the most suitable designrules, allow the gradual elimination of the body-print correspondence verification, by fitting the product on the body (the classical variant) orby 3D draping (the modern version). The paper presents the basic features of an original type of algorithms, called by the authors generalizedalgorithms, by means of which basic patterns for any geometric configuration of the body are automatically generated.Key-words: generalized algorithm, automatic design, 3D scanning, 3D draping, mathematical modeling, individual print

    Generalisierte Algorythmen f¸r den automatisierten Bekleidungsentwurf Die Entwicklung der Messungstechniken im automatisiertem System, insbesondere mit 3D-Bildaufnahme, sowie die Anwendungmathematischer Berechnungen, erlauben den Fortschritt des Individualisierungsprozesses der Bekleidungsproduktion in zwei Richtungen:Grˆssensysteme, mit einer ausreichenden Nummer von typodimensionellen Varianten, so dass alle Kˆrpertypen vertreten sind undEntwurfsalgorythmen, mit einer ausreichenden Nummer von antropometrischen Parameter, mit/ohne neue Entwurfsregeln. Die Auswahl derdimensionellen Charakteristika, welche vertretend f¸r die Beschreibung der Kˆrpergeometrie sind, sowie die Aussuche der bestenEntwurfsregeln, erlauben die stufenweise Eliminierung der àberpr¸fungsetappe der bereinstimmung Kˆrper-Schnittmuster, durch dieProbierung des Produktes auf dem Kˆrper (klassische Variante) oder durch 3D - Drapierung (moderne Variante). Die Arbeit stellt vor dieBasischarakteristika eines originellen Algorythmtypes, welche vom Author als generalisierte Algorythmen bezeichnet werden, durch welcheautomatisch Basisschnittmuster generiert werden, f¸r eine jedwelche geometrische Kˆrperkonfiguration. Schl¸sselwˆrter: Generalisierte Algorythmen, automatischer Entwurf, 3D-Bildaufnahme, 3D-Drapierung, mathematische Modellierung,Individualisiertes Schnittmuster

    207industria textil„ 2010, vol. 61, nr. 5

  • (1)comparativ cu produc˛ia de serie

    (2)

    (3)

    (4)

    Ón care:a reprezint„ l„˛imea spatelui;b â l„˛imea r„scroielii m‚necii;c â l„˛imea fe˛ei;Pb â al treilea perimetru al bustului;Pt â perimetrul taliei;A0 â prima ad‚ncitur„ a curburii lombare;Al â ad‚ncimea lateral„;Ab â ad‚ncimea bustului;Ax â adaosul de lejeritate Ón zona bustului;f1 ,f2 â factorii ce depind de dimensiunile cor-

    pului â lungimea taliei Ón fa˛„, lungimeaspatelui p‚n„ la talie, Ón„l˛imea bustului,lungimea spatelui p‚n„ la diametrulaxilo-posterior, pozi˛ia omoplatului.

    Œn figura 2 sunt ilustrate prima ad‚ncime a curburiilombare A0, ad‚ncimea lateral„ A1 ∫i ad‚ncimea bus-tului Ab.Œn cazul Ón care adaosul de bust este Ax = 0, cu sigu-ran˛„ ecua˛ia (1) va dimensiona corect l„˛imea fe˛ei,indiferent de dimensiunea Pb ∫i de particularit„˛ile deconforma˛ie a trunchiului. Nu se poate afirma acela∫ilucru ∫i Ón cazul ecua˛iei (2), care este aplicabil„ numaicorpurilor tip ∫i corpurilor reale cu conforma˛ie ase-m„n„toare ∫i cu condi˛ia ca Ax ≠ 0.Œn proiectarea clasic„, manipularea adaosurilor de leje-ritate acoper„ toate inconvenientele legate de parti-cularit„˛ile conforma˛ionale. Din aceast„ cauz„, tiparelecomercializate prezint„ adaosuri foarte mari. Algoritmiigeneraliza˛i lucreaz„ cu un set simplu de adaosuri, care

    variaz„ numai Ón func˛ie de silueta produsului, fiind inde-penden˛i de geometria corpului. Cu singuran˛„, adaosulde lejeritate Ax = 3 cm ∫i chiar mai mic, pentru tiparulunei rochii ajustate, construit cu algoritmul generalizat,este suficient ∫i se reg„se∫te la aceea∫i valoare Ónprodusul final, indiferent de geometria corpului.● Algoritmii generaliza˛i sunt unici.Unicitatea este dat„ de faptul c„ utilizatorul seteaz„acela∫i tip de parametri, indiferent de geometria cor-pului ∫i ob˛ine un tipar unic, destinat corpului investigat.Sistemul este complex, se deruleaz„ pe mai multe ra-muri ∫i ˛ine cont de o serie de restric˛ii, conform varie-t„˛ii morfologice a corpurilor reale. Cu alte cuvinte,programul analizeaz„ automat dimensiunile primite ∫igenereaz„ tiparul potrivit corpului. De exemplu, Ón cazulunei fuste, rutina con˛ine trei ramuri de baz„, Ón func˛iede raportul care exist„ Óntre perimetrele zonei inferioarea trunchiului: Pab â perimetrul maxim al abdomenului,preluat la nivelul cel mai proeminent al abdomenului;Pf â perimetrul fesier, preluat la nivelul proeminen˛eifesiere ∫i P∫ â perimetrul maxim al ∫oldurilor, preluat lanivelul cel mai proeminent al ∫oldurilor (fig. 3).● Algoritmii generaliza˛i introduc noi reguli de pro-

    iectare.Curbele de contur, de regul„ arce de cerc ∫i parabole,care urm„resc armonios geometria corpului, sunt cal-culate precis ∫i corespund dimensiunilor corpului. Deexemplu, lungimea proiectat„ a liniei cus„turii lateraleÓntre linia taliei ∫i linia ∫oldurilor este egal„ cu lungimeam„surat„ pe corp Óntre acelea∫i repere.Curbele de contur prezint„ tangente comune Ón punc-tele de Ónt‚lnire tip curb„-curb„ sau curb„-segment dedreapt„, situate pe r„scroiala g‚tului, r„scroiala m‚-necii, linia taliei, linia de termina˛ie a produsului (figurile4 ∫i 5).Pensele de pe linia taliei, pensa de bust, precum ∫ipensa de omoplat sunt calculate precis ∫i se Ónchidperfect, asigur‚nd modelului armonie ∫i verticalitate. De

    X F P P A A Ab f fb t l2 0 1 2= ( , , , , , , )

    X F P P X A A A fb t l b1 2 0 1= ( , , , , , , )

    c P A a bb x= ⋅ + − +0 5. ( )

    c P A X X a bb x= ⋅ + + + − +0 5 1 2. ( ),

    208industria textil„ 2010, vol. 61, nr. 5

    Fig. 1

    Fig. 2

    Fig. 3 Fig. 4

  • exemplu, Ón cazul produsului fust„, axele penselor sedispun radial Ón a∫a fel, Ónc‚t, la Ómbr„carea produsuluipe corp, acestea s„ devin„ normale la sol.Consecin˛a fireasc„ a generaliz„rii algoritmilor de pro-iectare este ob˛inerea unor probleme supradimen-sionate, chiar dac„ num„rul parametrilor de calcul pre-leva˛i de pe modelul 3D al corpului cre∫te semnificativ.De aceea, apare necesitatea formul„rii unor problemesuplimentare de optimizare matematic„ cu restric˛ii ge-nerale (neliniare) ∫i a solu˛ion„rii lor, utiliz‚nd cele maiieftine motoare de optimizare disponibile pe pia˛„ (Lin-do Lingo ∫i amelior„ri ale Excel Solver).Ca interfa˛„ grafic„ cu utilizatorul a fost ales un mediuCAD popular, foarte ieftin, capabil s„ integreze aplica-˛iile de optimizare. Deoarece Excel Solver va continuas„ fie cel mai robust motor de optimizare la un pre˛ modic, s-a optat pentru integrarea Excel (evident,Óntr-un mod invizibil) Ón cea mai popular„ clon„ Au-toCAD, ∫i anume ZwCAD.

    CONCLUZI I

    Solu˛ia problemei privind potrivirea produselor de Óm-br„c„minte pe corp, indiferent de configura˛ia morfo-logic„, const„ Ón adoptarea unei proiect„ri bazate peregulile àpotrivirii perfecteÜ ∫i pe implementarea unoralgoritmi de proiectare generaliza˛i, care utilizeaz„ op-timizarea matematic„ pentru satisfacerea acestor re-stric˛ii. Deoarece problemele de optimizare matematic„nu se pot rezolva dec‚t Ón mod automat, este necesar„generarea automat„ a tiparelor. Principala proprietate(restrictiv„) a acestor tipare const„ Ón aceea c„, Ón prin-cipiu, orice modificare ulterioar„ a construc˛iei de baz„,executat„ prin mijloace tradi˛ionale, afecteaz„ potrivireacu corpul pentru care ele au fost create. Astfel de mo-dific„ri trebuie realizate dup„ acelea∫i reguli de potrivirepe corp, efectuate tot prin optimizare matematic„. Œnschimb, se poate aplica orice modelare care nu afec-teaz„ construc˛ia de baz„ a tiparului. Metoda de lucrueste dezvoltat„ Ón cadrul proiectului european EUREKAàO nou„ Ómbr„c„minte â CAD pentru modelarea geo-metric„ 2D/3D a confec˛iilorÜ. Sistemul propus Ón a-ceast„ lucrare prezint„ o serie de avantaje:● Construiesc, practic instantaneu, tipare dimensionate

    corect, care Ómbrac„ firesc corpul subiectului â con-di˛ia fiind Óndeplinit„ indiferent de varianta morfo-logic„;

    ● Sunt eliminate opera˛iilor uzuale de m„surare/veri-ficare care Ónso˛esc obligatoriu proiectarea clasic„,etapa de probare a tiparelor pe corp fiind, practic,transferat„ Ón etapa de elaborare a algoritmilor gene-raliza˛i;

    ● Sarcina utilizatorului const„ doar Ón setarea carac-teristicilor de calcul Ón fereastra de lucru, analiza ∫iproiectarea fiind realizate Ón cadrul programului.

    209industria textil„ 2010, vol. 61, nr. 5

    Fig. 5

    BIBLIOGRAFIE

    [1] Diaconu, M. , Mi tu , S. Cercet„ri fotogrametrice experimentale pentru reconstruc˛ia 3D a corpului uman ∫i prelevarea m„sur„torilornecesare Ón proiectarea vestimenta˛iei personalizate. Buletinul Simpozionului anual al speciali∫tilor din industria de tricotaje-confec˛ii, Ia∫i,2006, p. 155

    [2] Diaconu, M. , P in t i l ie , E . , Av„dane i , M. , D iaconu, M. DMM Pattern Design CAD/CAM, software de proiectare automat„ aÓmbr„c„mintei. Cea de-a XIII-a Conferin˛„ Rom‚n„ de Textile ∫i Piel„rie CORTEP, 20 sept. 2007, Universitatea Tehnic„ Gh. Asachi â Ia∫i.Buletinul Institutului Politehnic, tom LIII, fasc. 5, vol. II, p. 18, 81

    [3] Diaconu, M. , Mi tu , S. , D iaconu, M. Model de descriere geometric„ a tiparelor pentru elaborarea aplica˛iilor de proiectareautomat„. Œn: Industria Textil„, 2008, vol. 59, nr. 5, p. 205

    [4] Diaconu, M. , P in t i l ie , E . , Av„dane i , M. , D iaconu, M. Sistem integrat de produc˛ie a Ómbr„c„mintei personalizate pentru IMM-uri cu profil de confec˛ii textile. Œn: Industria Textil„, 2008, vol. 59, nr. 2, p. 63

    [5] Diaconu, M. Studierea fomei corpului uman Ón spa˛iul virtual pentru corelarea cu silueta vestimenta˛iei. Simpozionul na˛ional de artevizuale àSincretismul artelor contemporaneÜ. Facultatea de Arte Plastice, Decorative ∫i Design, Ia∫i, 26 octombrie 2006

    [6] Diaconu, M. , Mi tu , S. , P in t i l ie , E . , F i l ipescu, E. Metod„ de evaluare antropomorfologic„ a corpului uman scanat prinfotogrametrie, Ón vederea proiect„rii personalizate a Ómbr„c„mintei. Culegere de lucr„ri ale Simpozionului anual al speciali∫tilor din industriade tricotaje-confec˛ii àTextilele ViitoruluiÜ, Ia∫i, noiembrie 2008

    [7] Diaconu, M. , Mi tu , S. , P in t i l ie , E . , F i l ipescu, E. Modelarea matematic„ a construc˛iei de baz„ pentru produsele cu sprijin peumeri personalizate, Ón vederea proiect„rii automate. Culegere de lucr„ri ale Simpozionului anual al speciali∫tilor din industria de tricotaje-confec˛ii àTextilele ViitoruluiÜ, Ia∫i, noiembrie 2008

    Autori/Authors:Dr. ing./Dr. eng. MANUELA DIACONUDr. ing./ Dr. eng. MARIUS DIACONU

    SC Diaman Art Srl Ia∫iStr. Silvestru nr. 2, 700090 Ia∫i

    e-mail: [email protected]. ∫t. gr. I dr. ing./Senior researcher dr. eng. EMILIA VISILEANUCerc. ∫t. gr. II ing. /Senior researcher eng. CLAUDIA NICULESCUInstitutul Na˛ional de Cercetare-Dezvoltare pentru Textile ∫i Piel„rie

    Str. Lucre˛iu P„tr„∫canu nr. 16, 030508 Bucure∫ti/The National Research & Development Institute for Textiles and Leather

    16 Lucre˛iu P„tr„∫canu Street, 030508 Buchareste-mail: [email protected]

  • Both of the stitches shape uniformity and dimensionalstability of weft-knitted fabrics play an importantrole in the quality of knitted fabrics. Because of theirbalanced structure, these two properties of interlockweft-knitted fabrics have received comparatively lesserattention than plain or rib weft-knitted fabrics. Munden[1] showed that in fully relaxed knitted-fabric, the looptakes up a fixed geometrical shape. According to thiscomprehensive study, he defined four non-dimensionalparameters or K-values in order to determine the di-mensional properties of plain knitted fabrics. But tospecify the dimensional characteristics of complex knit-ted structures, various methods of defining the fabricparameters have been utilized. It is obvious that alldouble-knit structures are made up of repeated,identical structural knit-cells â SKC, which are

    themselves combinations of simple structural knit units.Paying attention to this concept, Knapton et al. [2] mo-dified MundenÖs K-values for complex knitted struc-tures. According to SKC definition, in complex knittedfabrics the effective loop length should be the length ofthe yarn in the smallest repeated unit of the structure, lu. They also defined the following non-dimensionalparameters for complex knitted structures including:Course units per fabric length unit â Cu, wale unit perfabric width â Wu, and the number of SKCÖs per unitarea â Su . The structural knitted cell in the interlockknitted fabrics consists of four single loops. Thereforethe dimensional relations can be defined by theequations (1)â(4).

    (1) U C lc u u= ×

    Investigating the performance of various relaxation processes on the surface regularity and the dimensional properties

    of interlock knitted fabric using image processing techniqueHAMID REZA SANJARI MOHAMMAD SHEIKHZADEHDARIUSH SEMNANI

    REZUMAT â ABSTRACT â INHALTSANGABE

    Studierea performan˛ei diferitelor procese de relaxare asupra uniformit„˛ii de suprafa˛„ ∫i a propriet„˛ilor dimensionale aletricoturilor interloc, prin utilizarea tehnicii de procesare a imaginii

    Œn lucrare este studiat„ influen˛a diferitelor regimuri de relaxare asupra uniformit„˛ii formei ochiurilor ∫i a propriet„˛ilor dimensionale aletricoturilor interloc din urzeal„. Pentru a ob˛ine structuri de tricotare mai stabile ∫i mai uniforme, tricoturile interloc au fost supuse unor metodecomplexe de relaxare, mecanic„ ∫i chimic„, iar apoi s-a evaluat Ómbun„t„˛irea formei ochiurilor prin m„surarea abaterii unghiului de Ónclinare aochiurilor fa˛„ de pozi˛ia ideal„, pe materiale din diferite tipuri de fire, ∫i s-a ob˛inut indicele de neuniformitate a materialului, utiliz‚nd metodaconven˛ional„ ∫i cea inteligent„. Rezultatele arat„ c„ tratamentul de relaxare chimic„ Ón ultrasunete are o influen˛„ mai mare asupra uniformit„˛iiformei ochiurilor ∫i a stabilit„˛ii dimensionale a tricoturilor interloc, comparativ cu alte metode de relaxare. De asemenea, dup„ aplicarea acestuitratament, media valorii constante a parametrului dimensional al materialului - Us, este mai apropiat„ de valoarea ideal„. Prin urmare, serecomand„ folosirea tratamentului de relaxare chimic„ Ón ultrasunete, fiind mai eficient asupra uniformit„˛ii formei ochiurilor ∫i a propriet„˛ilordimensionale ale tricoturilor interloc.Cuvinte-cheie: tricot interloc, uniformitate de suprafa˛„, propriet„˛i dimensionale, tratament de relaxare, relaxare chimic„ Ón ultrasunete, tehnic„de procesare a imaginii

    Investigating the performance of various relaxation processes on the surface regularity and the dimensional properties of interlockknitted fabrics using image processing technique

    In this study, the effects of various relaxation regimes on stitches shape regularity and dimensional properties of interlock weft-knitted fabricswere investigated. To obtain more regular and stable knitted structure, we applied various mechanical, chemical and complex relaxationmethods on interlock knitted fabrics. The improvement rhythm of the stitch shape during various relaxation processes was evaluated bymeasuring the stitches direction angle deviation from the ideal state, on fabrics obtained from different yarn types, and the index of fabricirregularity was obtained by both the conventional and the intelligent methods. The results show that, the ultrasonic-chemical relaxationtreatment has a greater effect on stitches shape uniformity and dimensional stability of interlock knitted fabrics, compared to other relaxationmethods. Also, after the above treatment, the average of the fabricÖs constant dimensional parameter (Us) is closer to an ideal value.Therefore, the utilization of the ultrasonic-chemical relaxation treatment is recommended, due to its effectiveness on the stitches shaperegularity and dimensional properties of interlock knitted fabrics.Key-word: interlock knitted fabric, surface regularity, dimensional properties, relaxation treatment, ultrasonic-chemical relaxation, image pro-cessing technique

    Untersuchungen der Leistung verschiedener Entspannungssprozesse auf der Oberfl‰chengleichfˆrmigkeit und der dimensionellenEigenschaften der Interlockware, durch Anwendung der Bildbearbeitung

    In der Arbeit wird die Einwirkung der verschiedenen Entspannungsrbedingungen auf der Gleichfˆrmigkeit der Maschenform und derdimenionellen Eigenschaften der Ketten-Interlockware untersucht. Um stabilere und gleichfˆrmigere Wirkwarenstrukturen zu erhalten, wurdedie Interlockware einiger komplexen mechanischen und chemischen Entspannungsmethoden ausgesetzt, dann wurde die Verbesserung derMaschenform bewertet, durch die Messung der Abweichung des Neigungswinkels der Maschen im Vergleich zur Idealstellung, aufMaterialien aus verschiedenen Fasertypen und es wurde somit der Ungleichfˆrmigkeitsindex des Materials erhalten, indem die konventionelleund die intelligente Methode angewendet wurde. Die Ergebnisse zeigen, dass die Ultraschall-chemische Entspannungsbehandlung einengrˆsseren Einfluss auf die Gleichfˆrmigkeit der Maschenform und der dimensionellen Stabilit‰t der Interlockware hat, im Vergleich mit anderenEntspannungsmethoden. Gleichsfalls, nach Anwendung dieser Behandlung, ist der Mittelwert des konstanten dimensionellen Parameters derWirkware â Us, n‰her einem Idealwert, was in vorherigen Untersuchungen vorgestellt wurde. Deshalb schlagen wir vor die Ultraschall-chemische Entspannungsmethode vor, als neue Entspannungsmethode, welche effizienter f¸r die Gleichfˆrmigkeit der Maschenform als auchf¸r die dimensionellen Eigenschaften der Interlockware ist. Schl¸sserwˆrter: Interlockware, Oberfl‰chengleichfˆrmigkeit, dimensionelle Eigenschaften, Entspannungsmethoden, Ultraschall-chemischeEntspannung, Bildbearbeitungstechnik

    210industria textil„ 2010, vol. 61, nr. 5

  • (2)

    (3)

    (4)

    The forces imposed on the yarn during the knittingprocess and stitch forming, create some non-uniformityon the stitch shape. Relaxation treatment, by releasingthe stitches from the action of these extra forces, bringsthe stitch shape closer to the fixed geometrical anduniform shape. Stitch shape uniformity and dimensionalstability of knitted fabrics can be attained by eithermechanical relaxation or chemical treatments. Knapton[3] concluded in a comprehensive empirical study thatthe dimensional properties of complex structures arenot different from those of the simpler structures inrelaxation and laundering. On the contrary, once woolfabrics prevented from felting are completely relaxed,the SKC appears to take up a fixed configuration,independent of the tightness of construction and pre-sumably the diameter of the yarn. Dimensions aretherefore dependent on the structure and length of theyarn in the knitted cell only, and are easily calculablebefore knitting. Furthermore, if the machines are accu-rately set by using positive feed, it is unnecessary tomeasure the lu in the finished fabric. In another study,Jeddi et al. [4] concluded in a comprehensive expe-rimental analysis that the correct relaxation state forinterlock knitted cotton fabrics to reach the maximumshrinkage is the full mechanical relaxation, and forcotton/polyester blended and 100% polyester fabrics isthe chemical relaxation treatment. Their empiricalresults showed that the effect of mechanical relaxationdecreases as the percentage of polyester increases.Semnani et. al. [5] proposed an ideal model for plainweft-knitted fabric by using the classic mathematicalcurves (Strophoid and Folium of Descartes curves)based on the elastic rod model of leafÖs theory [6].According to this model, in fully relax state, the singleloop takes up a specific shape that has a factor equalto 1.4002. Jeddi et al. [7] by improving the mentionedideal model, prepared an ideal model for the interlockstructure. They assumed that the loops face in plain andinterlock structures are similar. Therefore, this segmentof the SKC follows the equation of the improvedstrophoid curve and another segment of SKC, thelinking portion between the face and back loops,expressed by means of a quadratic equation. Then,they extended this theory to a three-dimensional model.In another study, Jeddi et al. [7] employed ultrasoundwaves as a new tool to decrease fabrics internal energyin order to improve the performance of relaxation treat-ments on dimensional stability of weft-knitted fabrics.Ultrasonic waves with frequencies above 20 KHz,which are beyond the human hearing ability, are lon-gitudinal pressure waves. However, by using this novelrelaxation method, they could obtain more stable knittedstructure, but the average of loop shape factor after thisfinishing treatment still differed from the ideal value [5].Therefore, we can conclude that more advanced andsuitable relaxation methods should be used in finishing

    treatments, for the weft-knitted fabrics to acquire astitch shape closer to an ideal shape. Computer vision is an accurate tool to evaluate fabricfeatures. It is clear that human inspection vision is timeconsuming and tiresome, and also depends on humanprecision. In recent decades many researchers haveimplemented computer vision in order to improve theinspection method of human vision in textile products.Some workers attempted to utilize the image analysistechnique as a real-time inspection tool for fabric qualityevaluation. Celik et al. [8], attempted to utilize the imageprocessing technique for determining the angle of spi-rality in knitted-fabrics. They specifically used the FastFourier Transform to cover this matter. They applied theFast Fourier Transform â FFT, to a two-dimensionaldiscrete function and obtain the power spectrum andthe logarithmic spectrum of the fabricÖs image. Theyalso compared their image analysis result with manualinspection result and concluded that the differencesbetween the calculated and measured spirality anglesare generally not greater than one degree. In anotherstudy, Furferi [9] et al. presented a machine vision toolfor on-line detection of the defects on the raw textilefabrics. This tool worked in four stages:● the image acquisition of the raw fabric;● the extraction of some critical parameters from the

    acquired images;● detection and classification of the most frequent

    defects by artificial neural network â ANN, as a clas-sifier;

    ● applying the image processing technique to measurethe geometric properties of the detected defects.

    Ghazi Saeidi et al. [10] developed an on-line computervision system for knitted fabrics inspection on thecircular knitting machine. They considered the perfor-mance of this tool on two levels: laboratorial and indus-trial scale. They also used three different spectral trans-forms (discrete Fourier transform, the wavelet and theGabor transforms), and concluded that the Gabor trans-form method has the highest efficiency value among thethree methods. In all above mentioned studies, the number of faults andtheir localization were both used to define the quality ofthe knitted fabric. The probable defects in the knittingprocess were: broken needles, hole, soil strip or thinand thick-yarn defect etc. But one of the most importantfaults in the weft-knitted fabric is an irregularity of stitchdirection during the knitting process. On the other handthe quality of the non-defective fabric depends on theregularity of the fabric surface which is related to thedirection of stitches in the ideal fabric as an almost fullyrelaxed fabric. In our previous studies [11, 12] we deve-loped a grading method for weft-knitted fabrics, basedon stitch deformation in different types of weft-knittedfabrics. We presented a novel definition regarding theknitted fabric quality and defined a fabric irregularityindex that determined the deviation of the stitches di-rection angle from an ideal state [5], by means of imageprocessing techniques on different weft-knitted fabricstructures of various yarns. In this study, we used the image analysis method to study the effect of vari-ous relaxation processes on fabric regularity and stitch shape. Also we defined a new and more effective

    UU

    CW

    c

    w

    u

    u=

    U S ls u u= ×

    U W lw u u= ×

    211industria textil„ 2010, vol. 61, nr. 5

  • relaxation processes in order to obtain the stable formof interlock knitted fabrics, where the angle of stitchdirection is near to the ideal angle and therefore thestitch shape close to the ideal shape.

    METHODS AND EXPERIMENTSSample preparationIn this research various weft-knitted fabric sampleswere prepared from ring spun yarns with interlockknitted structures and almost equal SKC length toconsider the effect of various raw materials and rela-xation treatments on the dimensional properties andsurface regularity of distorted stitches. The sampleswere produced without knitting faults such as holes,drop stitches and stripes. Six samples of various yarntypes were prepared including cotton ring spun yarn of20 and 30 Ne, polyester/cotton ring spun yarn (65/35%) of 20 and 30 Ne and polyester/viscose ring spunyarn (65/35%) of 20 and 30 Ne. All samples wereproduced on a circular knitting machine with positivefeed in interlock structure and in similar knittingstiffness with following lu: 1.49, 1.50, 1.48, 1.51, 1.47and 1.51 cm. The machineÖs cylinder diameter is 30, 18gauge, four cam tracks, and 12 feeders. The machineÖsyarn input tension was set to 5 g. Four specimens weretaken from each knitted fabric, which were producedfrom different yarn types. Then, each of these sampleswas subjected to seven different kinds of relaxationregimes (dry, wet, washing, ultrasonic, chemical, deter-gent-washing, ultrasonic-chemical).

    Relaxation processTo consider the effectiveness of various relaxationregimes on knitted fabrics regularity and dimensionalproperties and for attaining a more suitable relaxationtreatment, seven different relaxation processes weredefined in three categories. In general, relaxation treat-ments were divided in two main categories: mechanicaland chemical treatment. In mechanical relaxation pro-cess, knitted fabrics were subjected to mechanicalforces in order to decrease the potential energy of thefabric. In chemical methods, by using chemical pro-cesses, such as immersing the fabric in aqueous so-lutions like ionic detergent baths, attempts have beenmade to decrease the friction between yarns and toobtain stable knitted structure. In this study, we definedtwo complex (mechanical-chemical) relaxation proces-ses as the third category, to consider the overall effectof the above mentioned treatments on fabric regularityand dimensional properties and also to attain a moreadvanced finishing treatment for the weft-knittedfabrics. Therefore each sample was subjected to thefollowing relaxation treatments:● Mechanical relaxation methods:

    â Dry relaxation â the samples were relaxed on a flatsurface, at room temperature conditions (25 ± 2oCand RH 65% ± 2) for 24 hours, to release knittedstresses;

    â Wet relaxation â the samples were immersed inwater bath containing 0.01%, wetting agent at38oC, for 12 hours and then removed, hydro-ex-tracted gently, and then dried on a flat surface for24 hours at room temperature;

    â Washing â the samples were washed in a domes-tic washing machine with water containing 0.1%neutral detergent at 50oC, for 35 minutes, then thewater drained off; the fabric samples were thenremoved from the washer, hydro-extracted anddried in tumble drier for 10 minutes and finally thesample was placed on a flat surface for 24 hoursat room temperature;

    â Ultrasonic waves â fabric samples were placed in an ultrasonic cleaning bath, created by WalterCompany, using a frequency of 35 kHz, an inten-sity wave of 9 W/cm2, and water temperature of70oC for 10 minutes relaxation time; the sampleswere then dried for 24 hours on a flat surface at atroom temperature.

    ● Chemical relaxation method:â Chemical relaxation â fabric samples were immer-

    sed in water bath containing 2 g/l cationic deter-gent at 50oC for 20 minutes and then removed,hydro-extracted gently, dried on a flat surface for24 hours at room temperature.

    ● Complex relaxation methods:â Detergent-washing â the samples were washed in

    domestic washing machine with water containing2 g/l cationic detergents at 50oC, in conditions asdescribed for the washing relaxed state;

    â Ultrasonic-chemical â fabric samples were placedin an ultrasonic cleaning bath, created by WalterCompany, containing 2 g/l cationic detergent, inconditions as described for the ultrasonic wavesprocess;

    â After each relaxation treatment, fabrics dimen-sional parameters including course units per fabricunit length â Cu, wale unit per fabric width â Wu,and the number of SKCÖs per unit area â Su, of allfabric samples were measured. Also fabric con-stant parameters were calculated according toKnaptonÖs equations [1]. The average of four mea-surements of constant dimensional parameter âUs, is shown in table 1.

    MEASURING METHODS FOR STITCH DIRECTION

    In the next stage, in order to evaluate stitch formationrhythm during various relaxation processes, we utilizedour pervious approach as a new intelligent method forevaluating knitted fabric regularity, based on the imageprocessing technique and Radon transformation ana-lysis, and we also compared the results of this methodwith the results obtained from the conventional methodfor determining the stitches direction angle after eachrelaxation process. Fabric samples were scanned inBMP format of gray scale with a resolution of 1 200 dpi.The scanned images were 200 x 200 mm in size. Todetect the stitches direction, the gray scale image ofthe yarn was converted to an edge-detected form by adifferential mask. There are different methods of edgedetection in the image processing technique. In oneedge-detection method an intensity image is processedand returned as a binary image of the same size, with1Ös where the function finds edges and 0Ös elsewhere.

    212industria textil„ 2010, vol. 61, nr. 5

  • According to our previous study we used CannyÖs me-thod as the most powerful edge-detection method toconvert the gray scale image of knitted fabric to anedge-detected form. The CannyÖs method [13] differsfrom other edge-detection methods in the fact that ituses two different thresholds (to detect strong andweak edges), and includes the weak edges in theoutput only if they are connected to strong edges. Thismethod is therefore more likely to detect truly weakedges. A sample of an edge-detected image in dryrelaxed state is shown in figure 1. After converting theoriginal image to an edge-detected form, the Radontransformation was used to find the stitches direction.Applying the Radon transform on an image f (x, y) for agiven set of angles can be thought of as computing theprojection of the image along the given angles. Theresulting projection is the sum of the intensities of thepixels in each direction, i.e. a line integral. The result isa new image R(ρ, θ). This can be mathematically writtenas the defining equation (5):

    (5)

    After which the Radon transform can be written as theequation (6):

    (6)

    Where σ(⋅) is the Dirac delta function [14]. Accordingto our previous approach we applied Radon trans-

    formation on fabric images in each relaxed state for 180times in one degree increment. The result will be amatrix R, of n by 180, where n is the length of eachcolumn and the number of columns is 180. R matrix isan intensity matrix which can be presented as a colormap histogram. The plot of high intensity raw of Radontransformation matrix is shown in figure 2. In this plotthe maximum value refers to the column number orangle of stitches direction [14]. Because of the Radontranspose of edge image, where the direction ofstitches is evaluated in the x and y axes, the maximumvalue is repeated after 90 degrees at the mirror point ofthe first repeat, which is located before 90 degrees. Forall fabric images preparations and image analysis todetect stitches direction, the image processing toolboxof MATLAB 7 was applied.According to MundenÖs equations, stitch shape factoris represented as the equation (7):

    (7)

    Where αk is the angle between the stitches of conse-cutive courses in plain knitted structure as shown infigure 3. αk is located between two stitches in suc-cessive order where one of them is located in the firstcourse and the other is located in the second course. Dand d are the height and width of a stitch. As wedemonstrated in the previous paper, we assumed that

    tg K cpc

    wpcKK

    Ddr

    c

    wα = = = =

    R f x y y dxdy( , ) ( , ) ( cos sin )ρ θ δ ρ χ θ θ= − −

    −∞

    +∞

    −∞

    +∞

    ∫∫

    ρ χ θ θ= +cos siny

    213industria textil„ 2010, vol. 61, nr. 5

    Table 1

    VALUES OF DIMENSIONAL PARAMETER Us OF INTERLOCK KNITTED FABRICS AT EACH RELAXED STATE

    UsYarn type Yarn count,

    Dry Wet Washing Ultrasonic Chemical Detergent Ultrasonic/Ne washing chemical

    Cotton 20 144.31 152.01 156.62 171.79 156.26 170.90 175.32Cotton 30 160.98 167.22 169.16 168.10 166.96 170.11 176.49Polyester/cotton 20 153.12 157.72 163.61 166.74 165.66 171.29 169.71(65/35%)Polyester/cotton 30 157.31 162.77 169.11 170.11 169.71 169.54 176.76(65/35%)Polyester/viscose 20 158.82 163.78 167.30 168.35 166.82 168.01 173.42(65/35%)Polyester/viscose 30 160.27 165.38 167.77 171.17 169.88 163.96 174.34(65/35%)

    Fig. 1. Cotton 20 Ne interlock knitted fabric ar dry relaxed state:a â original image of fabric; b â enhanced image of fabric as edge-prepared image

    a b

  • in fully relaxed state the values of Kc = 6.123 and Kw == 4.373 from a three-dimensional model [3], thus:

    (8)

    Then, αk = 54.5. As we mentioned in previous work[11], it could be assumed that in the fully relaxed fabricthe Kr is equal to 1.4002, otherwise the structure wouldnot be fully relaxed and the loops might not be in anideal state. We can assume that this is true for othersimilar structures like as interlock knitted fabrics but notrib, milano or cardigan structures. In interlock weft-knitted fabrics as well, by using equation (7) we cancalculate the angle between the stitches of consecutivecourses or αk .To consider the effect of each relaxation processes oninterlock knitted fabrics regularity, we calculated theindex of irregularity, Ia as our previous work [11] aftereach relaxation treatment (table 2). Also to compare theresults of human vision and computer vision we definedtwo fabric irregularity indices as equations (9) and (10).

    (9)

    (10)

    Where αa and αr are the angles of the stitches direc-tion, calculated manually and by Radon transformation

    analysis. The results of the above calculations areshown in table 8, for all knitted samples on each relaxedstate.

    RESULTS AND DISCUSSIONS

    In the first part, we attempt to consider, the efficiencyof each relaxation processes and yarn type on knittedfabric regularity based on our previous approach.Images of all knitted fabrics on each relaxed state wereanalyzed by appropriate software, in order to detect theangle between the stitches of consecutive courses, αr .In previous studies, it has been proven that this analy-zing software can calculate stitches direction irregu-larities with an error of less than 9%. In the presentstudy, to retest the accuracy of this method, we com-pared the results of the irregularity index that wascalculated manually from equation (9) with the results ofthe software that calculated equation (10). The resultsagain, showed good agreement between the imageanalysis method and the manual method. Therefore,because of simplicity and accuracy, this computer vi-sion method is acceptable to inspect the stitches shapeirregularity in weft-knitted fabrics.The statistical analysis by ANOVA test showed that thetype of yarn and relaxation regime, together and aloneaffected fabric regularity and fabric dimensional pa-rameters (table 3, 4). To compare the mean of Ir valueof different yarn types and relaxation treatments,DuncanÖs multiple range tests were performed (table 5,

    Ir

    r=−

    ×54 5

    54 5100

    ..

    α

    Ia

    a=−

    ×54 5

    54 5100

    ..

    α

    tg K

    Kkc

    wα = = 1 4002.

    214industria textil„ 2010, vol. 61, nr. 5

    Fig. 2. Plot of high intensity raw of Radon transformation matrix of hot histogram Fig. 3. Model of stitches in ideal knit structure [II]

    Table 2

    THE RESULTS OF INTERLOCK KNITTED FABRICS ACTUAL IRREGULARITY INDEX I a ON EACH RELAXED STATE

    IaYarn type Yarn count,

    Dry Wet Washing Ultrasonic Chemical Detergent Ultrasonic/Ne washing chemical

    Cotton 20 3.59 3.16 2.63 0.88 2.51 1.14 0.18Cotton 30 4.83 5.27 3.65 1.20 2.98 1.09 0.73Polyester/cotton 20 2.90 2.19 1.89 1.02 0.69 0.72 0.33(65/35%)Polyester/cotton 30 3.36 3.01 2.24 1.15 1.03 1.13 0.97(65/35%)Polyester/viscose 20 2.51 1.91 1.60 0.91 0.85 0.96 0.30(65/35%)Polyester/viscose 30 3.12 2.51 2.16 1.44 1.73 1.31 0.81(65/35%)

  • 6). The results of fabric Radon irregularity index in table7 confirmed that the yarn type has the major effect onfabric regularity. This must be due to the reaction of theyarn to the internal stresses of the fabric and differentfrictional behavior of the different yarns. Weft-knittedfabric samples of cotton showed greater irregularity incomparison to samples of knitted fabrics from polyesterblended yarn. Also the knitted fabric samples of poly-ester/viscose yarn have better regularity than theknitted fabric samples of polyester/cotton yarn.The results also showed that by improving theperformances of the relaxation treatment, the index offabric irregularity decreases. The forces imposed onthe yarn during the knitting process and stitch forming,

    led to a certain degree of unevenness in the stitchshape. Relaxation treatment, by releasing the stitchesfrom theses extra forces, brings the stitch shape closerto its fixed geometrical and uniform shape. The stitchshape uniformity increases with the successes that therelaxation treatment has in overcoming the extra forceson the stitch. The obtained results confirmed that, in afully relaxed state, the stitch takes up the closest to anideal kind of shape [3]. The results shown in table 3show the minimum values of irregularity index related tothe weft-knitted fabric samples that were subjected toultrasonic-chemical relaxation treatment. In general, ultrasonic cleaning consists of immersing apart of the sample in a suitable liquid medium, agitating

    215industria textil„ 2010, vol. 61, nr. 5

    Table 3

    TESTS OF BETWEEN-SUBJECTS EFFECTS (DEPENDENTVARIABLE: RADON IRREGULARITY INDEX)

    Type III MeanSource sum of squares df square F Sig.

    Corrected 610.914 (a) 41 14.900 74353.033 .000modelIntercept 1167.048 1 1167.048 5823592.157 .000Yarn 138.445 5 27.689 138168.787 .000Relaxation 424.547 6 70.758 353082.858 .000Yarn* 47.922 30 1.597 7971.109 .000relaxationError 0.025 126 0.000Total 1777.987 168Corrected 610.940 167total

    a â R Squared = 1.000 (Adjusted R squared = 1.000)

    Table 4

    TESTS OF BETWEEN-SUBJECTS EFFECTS (DEPENDENT VARIABLE: US)

    Type III MeanSource sum of squares df square F Sig.

    Corrected 7711.465 (a) 41 188.085 30.214 .000modelIntercept 4625791.818 1 4625791.818 743099.355 .000Yarn 1126.126 5 225.225 36.181 .000Relaxation 5094.434 6 849.072 136.397 .000Yarn* 1490.905 30 49.697 7.983 .000relaxationError 784.350 126 6.225Total 4634287.633 168Corrected 8495.815 167total

    a â R Squared = .908 (Adjusted R squared = .878)

    Table 5

    RESULTS OF DUNCANÖSA,B MULTIPLE RANGE TESTS TOCOMPARE THE MEAN OF I r VALUES FOR DIFFERENT

    YARN TYPES

    SubsetYarn type

    1 2 3 4 5 6

    Polyester/ 1.4679viscose 20 NePolyester/ 1.9135cotton 20 NePolyester/ 2.2346viscose 30 NePolyester/ 2.7261cotton 30 NeCotton 20 Ne 3.2517Cotton 30 Ne 4.2202Sig. 1.000 1.000 1.000 1.000 1.000 1.000

    Table 6

    RESULTS OF DUNCANÖSA,B MULTIPLE RANGE TESTS TOCOMPARE THE MEAN OF Ig VALUES FOR DIFFERENT

    RELAXATION REGIMES

    Relaxation Subsetregime 1 2 3 4 5 6 7

    Ultrasonic 0.5274chemicalUltrasonic 1.2848Detergent- 1.6216washingWashing 2.6296Chemical 2.7833Wet 4.0983Dry 5.5046Sig. 1.000 1.000 1.000 1.000 1.000 1.000 1.000

    Table 7

    THE RESULTS OF INTERLOCK KNITTED FABRICS RADON IRREGULARITY INDEX I r ON EACH RELAXED STATE

    IrYarn type Yarn count,

    Dry Wet Washing Ultrasonic Chemical Detergent Ultrasonic/Ne washing chemical

    Cotton 20 6.42 5.14 2.75 0.92 4.59 2.39 0.55Cotton 30 8.25 6.05 3.85 2.38 5.32 2.75 0.91Polyester/cotton 20 4.58 3.11 2.20 0.91 1.46 0.91 0.18(65/35%)Polyester/cotton 30 5.50 3.85 2.75 1.65 2.75 1.83 0.73(65/35%)Polyester/viscose 20 3.66 2.75 1.83 0.55 0.73 0.55 0.18(65/35%)Polyester/viscose 30 4.58 3.66 2.38 1.28 1.83 1.28 0.59(65/35%)

  • or sonicating that medium with high-frequency sound(18 to 120 kHz), for a brief interval of time (usually a few minutes), rinsing with clean solvent or water, anddrying. The mechanism underlying this process is onein which microscopic bubbles in the liquid mediumimplode or collapse under the pressure of agitation, toproduce shock waves, which impinge on the surface ofthe sample and, through a scrubbing action, displace orloosen particulate matter from that surface. Theprocess by which these bubbles collapse or implode isknown as cavitations. The intensity with which cavi-tations takes place in a liquid medium varies greatly withthe colligate properties of that medium, which includevapor pressure, surface tension, viscosity, and density,as well as any other property that is related to thenumber of atoms, ions, or molecules in the medium. Inultrasonic cleaning applications, the surface tensionand the vapor pressure characteristics of the cleaningfluid play the most significant roles in determiningcavitations intensity and, hence, cleaning effectiveness.The energy required to form a cavitations bubble in aliquid is proportional to both surface tension and vaporpressure. Thus, the higher the surface tension of aliquid, the greater will be the energy that is required toproduce a cavitations bubble, and, consequently, thegreater the shock-wave energy that is produced whenthe bubble collapses. It is produced with facility when asurface-active agent is added to the liquid. In the samemanner, when the vapor pressure of a liquid is low, asis the case with cold water, cavitations is difficult toproduce and it becomes less and less difficult as thetemperature is increased. Therefore, in the ultrasonic-chemical relaxation method, the role of three factors,bubble formation and collapse (cavitations), heat anddetergent, enable the knitted samples to be released ofextra forces, more than other relaxation regimes.Therefore, we can express that by using the ultrasonic-chemical relaxation treatment, more uniform interlockknitted structure will be obtain. In the next stage, the effectiveness of various relaxationprocesses on the dimensional properties of interlockknitted fabrics, which were produced from differentyarn types, was considered. In this stage as well, thestatistical analysis by ANOVA test showed that the typeof yarn and relaxation regime, together and aloneaffected the fabricÖs dimensional parameter (table 4).To compare the mean value of Us in different yarn typesand relaxation treatments, DuncanÖs multiple rangetests were performed again (table 8, 9). It is clear that,knitted fabrics will be out of tensions after wet relaxation

    rather than the dry one. Specially, in hydrophilic yarns,like cotton and viscose, molecules of water lead todecreasing intermolecular forces in these chains bydestroying hydrogen bonds between cellulose mole-cular chains and, finally, these chains can easily de-crease tensions during the knitting and fabrication anddetermine the fabric to relax while the Us value in-creases. For the polyester in the hydrophobic fibers,wet relaxation has not enough effect on removing ten-sions and reducing fabric energy level. In the washingrelaxation treatment, the tumble drying leads to highershrinkage than in the wet relaxed state. It would appearthat this method of fabric drying tends to cause themost dimensional changes in the fabric, due to a com-bination of constant slow agitation and temperature.This mixture forces the structures to take up theirminimum energy state, which causes the most dimen-sional changes in the loop shape [13]. The results of Usvalues in table 1 indicated that, the ultrasonic relaxationtreatment has more efficiency on the shrinkage of allknitted fabric samples, than pervious relaxation me-thods. In this relaxed state, the average of Us values arecloser to the ideal value [7]. We can, therefore, declarethat the ultrasonic relaxation treatment is more effectivein comparison with other common mechanical rela-xation methods, but the average of Us values after thistreatment is still smaller than the theoretical valuederived by an ideal interlock structure [7]. It can beconcluded that more effective relaxation method shouldbe found for the weft-knitted fabrics to increase theirpractical Us value. But the performance of the chemicalrelaxation process differs for different yarn types.Chemical treatment cause higher shrinkage on theweft-knitted fabric samples of polyester blended yarnsthan on the 100% cotton ones. In chemical relaxationtreatment, detergent helps the water molecules topenetrate the textiles easily, due to the reduction ofsurface tension. Also it is clear that textile humiditydepends on the facile penetration of water moleculesinto textiles. The second factor will be done by increa-sing temperature up to 50oC. Increasing the tempe-rature provides larger pores for water molecules and,finally, breakage of internal bonds could be easier.Higher temperature also leads to a faster absorbance of water molecules. But in knitted fabric samplesproduced from 100% cotton yarns, detergent causemore yarn bulking and also damaged the fibers,therefore the Us value, decreases. In polyester blended

    216industria textil„ 2010, vol. 61, nr. 5

    Table 8

    RESULTS OF DUNCANÖSA,B MULTIPLE RANGE TESTS TO COMPARE THE MEAN OF Us VALUES FOR DIFFERENT

    YARN TYPES

    Yarn typeSubset

    1 2 3 4

    Cotton 20 Ne 161.1135Polyester/cotton 20 Ne 163.9851Polyester/viscose 20 Ne 166.6437Polyester/viscose 30 Ne 167.5311 167.5311Polyester/cotton 30 Ne 167.9034 167.9034Cotton 30 Ne 168.4341Sig. 1.000 1.000 0.076 0.205

    Table 9

    RESULTS OF DUNCANÖSA,B MULTIPLE RANGE TESTS TO COMPARE THE MEAN OF Us VALUES FOR DIFFERENT

    RELAXATION REGIMES

    Relaxation Subsetregime 1 2 3 4 5

    Dry 155.8990Wet 161.4850Washing 165.6026Chemical 165.8843Ultrasonic 168.9984Detergent- 169.3339washingUltrasonic- 174.3429chemicalSig. 1.000 1.000 0.696 0.642 1.000

  • knitted fabrics, the chemical treatment has been moreeffective on fabric shrinkage than the washing rela-xation process but, there are no significant differencesbetween the ultrasonic and the chemical relaxationtreatments for these knitted fabric samples.In the next attempt to combine the efficiency oflaundering and chemical treatment, all knitted fabricsamples were subjected to detergent-washing rela-xation process. The results in table 1 showed thatdetergent-washing treatment led to further shrinkage onall samples than the common washing method but,there was no significant change in the Us value forcotton knitted fabrics than ultrasound relaxed state.Also, in polyester blended knitted fabrics, the deter-gent-washing treatment makes the same performanceas the ultrasonic or chemical relaxation process. Theresults in table 1 and table 3 indicate that, the ul-trasonic-chemical relaxation treatment offered thehighest value for the constant dimensional parameter,Us , in all fabrics. As we mentioned above, in this statethe influence of three factors, cavitations, heat anddetergent, tend to produce most shrinkage on the allknitted fabrics in comparison to the above methods.The average of Us value after the ultrasonic-chemicalrelaxation treatment is closer to the ideal value whichderived from the ideal interlock structure [7]. Therefore,we can conclude that, the ultrasonic-chemical rela-xation method is a more efficient relaxation treatment on

    the stitches shape regularity and the dimensionalstability of weft-knitted fabrics than common relaxationtreatments or ultrasound relaxation method.

    CONCLUSIONS

    In present study, the attempts have been made to attaina more effective relaxation treatment on the surfaceregularity and dimensional properties of interlock knit-ted fabrics. According to pervious definition of knittedfabrics surface regularity [11], the quality of non-de-fective fabric depends on the regularity of the fabricsurface which is related to the direction of stitches inthe ideal fabric as an almost fully relaxed fabric.Therefore we used the pervious approach, based onthe image processing technique and Radon trans-formation analyses to investigate the rhythm of stitchesshape enhancement during various relaxation proces-ses. The results show that the most regular knittedstructure is obtained after the ultrasonic-chemical rela-xation treatment. This process is not only a more effec-tive finishing treatment on the dimensional properties ofinterlock knitted fabrics, but also has a greater effect onthe stitch shape enhancment and knitted fabric surfaceregularity. So we propose the ultrasonic-chemical rela-xation treatment as a new relaxation method that ismore effective on knitted-fabrics regularity and dimen-sional stability.

    217industria textil„ 2010, vol. 61, nr. 5

    BIBLIOGRAPHY

    [1] Munden, D. L . The geometry and dimensional properties of plain knit fabrics. In: Journal of the Textile Institute, 1959, vol. 50, p. 448[2] Knapton, J . J . F . , Ahrens, F . J . , Ingenthron, W. W., Fong, W. The dimensional properties of knitted wool fabrics. Part

    II: 1 x 1,2 x 2 Rib, and half-cardigan structures. In: Textile Research Journal, 1968, vol. 38, p. 1 013 [3] Knapton, J . J . F . The dimensional properties of some wool double-jersey structures in relaxation and laundering. In: Journal of the

    Textile Institute, 1973, vol. 64, issue 3, p. 128 [4] Jedd i , A. A. A. , Otaghsara , M. R. T . The effect of yarn twist and fiber percentage in blends on the dimensional properties of

    the interlock structure. In: Journal of the Textile Institute, 1999, vol. 90, p. 541[5] Semnan i , D. , Lat i f i , M. , Hamzeh, S. , Jedd i , A. A. A. A new aspect of geometrical and physical principles applicable to the

    estimation of textile structures: ideal model for knitted stitch. In: Journal of the Textile Institute, 2003, vol. 94, p. 202[6] Leaf , G. A. V. A property of buckled elastic rod. In: Journal Appl. Phys., 1958, issue 9, p. 71[7] Jedd i , A. A. A. , Dab i r ian , H. Ideal stitch model for interlock-knitted fabric. In: Journal of the Textile Institute, 2008, vol. 65, p. 155[8] Cel ik , O. , Ucar , N. Er tugru l , S. In: Fibers and textiles in Eastern Europe, 2005, vol. 13, issue 3, p. 47[9] Fur fer i , R. , Govern i , L . Machine vision tool for real-time detection of defects on textile raw fabrics. In: Journal of the Textile

    Institute, 2007, vol. 99, p. 57[10] Ghaz i Sae id i , R. , Lat i f i , M. , Sha ikhzadeh Na jar , S. , Ghaz i Sae id i , A. Computer vision-aided fabric inspection system

    for on-circular knitting machine. In: Textile Research Journal, 2005, vol. 75, p. 492[11] Semnan i , D. , She ikhzadeh, Na jar , S. New intelligent method of evaluating the regularity of weft-knitted fabrics by computer

    vision and grading development. In: Textile Research Journal, in press[12] Semnan i , D. , Ghahramanzade, F. Protection of weft knitted fabrics against X-ray by using lead powder coating. In: Industria

    Textil„, 2009, vol. 60, issue 2, p. 64[13] Canny, J . A computational approach to edge detection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,

    vol. 8, issue 6, p. 679[14] Anand, S. C. , Brown, K. S. M. , H igg ins , L . G. , Ho lmes, D. A. , Ha l l , M. E. , Conrad, D. Effect of laundering on the

    dimensional stability and distortion of knitted fabrics. AUTEX Research Journal, 2002, issue 2, p. 85

    Authors:HAMID REZA SANJARI

    DARIUSH SEMNANIMOHAMMAD SHEIKHZADEH

    Department of Textile EngineeringIsfahan University of Technology

    Isfahan 84156-83111, Irane-mail: [email protected];

    [email protected]

  • Previous researches [1, 2] have demonstrated thatthe laser treatment enhances the thermal-physio-logical comfort of the woolens, namely an increasedhydrophilicity and dyeability are achievable, similarly toother non-conventional treatments [3â5]. In order toinitialize the dyeing processes, the fibre requires atreatment with some softening agents. Therefore, aclear correlation is needed between all the effects,between the chemical aqueous treatments and the fibresurface, in order to avoid their removal during sub-sequent wash cycles; consequently, both physical andchemical sorption is required. This means that, a highlevel of fibres free movement in the textiles is desirable,for the shape recovery after washing, as well as toavoid shrinkage. Thus, all these processes require themodification of the wool surface properties, both for thesubsequent textile applications, and for the optimizationof functionalization/thermal-physiological comfort [6â9].Exposure to a suitable laser can produce surfaces thatare more reactive and affect the surface properties,without changing the desirable properties of the bulkmaterial.There is a competition between surface and bulk, re-sulting in a thermal-dynamic stabilization at the nano

    level of the crystalline (polymorphic) structure, while itremains meta-stable in bulk [10].As a result, the aim of this paper is to investigate thechemical and physical composition of the laser treatedwool surface. The understanding of the surface com-position can provide more information about the surfaceproperties induced to the laser treated wool.

    EXPERIMENTAL PARTMaterials and treated samples Samples of wool fabric were treated using a LPX 200Excimer 248 nm KrF. The samples were irradiated di-rectly by a laser beam without using focusing lenses.Laser energies, like fluency and number of pulses, werevaried from one experiment to another, in order to studytheir effects upon samples. The laser fluency varied inthe range 29â43 mJ/cm2, and the number of pulsesbetween 0 and 4, the pulse repetition being kept con-stant at 1 Hz to avoid any possible heat accumulation.During the laser treatment, the control of the sampletemperature was very important. Irradiation parametersusing a LPX 200 Excimer Laser 248 nm KrF with lensof 100 mm are given in table 1 [1].

    Spectroscopic studies on the wool surface modifications induced by UV excimer laser irradiation

    NARCISA VRŒNCEANU ANA-MARIA GRIGORIUDIANA COMAN AURELIA GRIGORIU

    REZUMAT â ABSTRACT â INHALTSANGABE

    Studii spectroscopice asupra modific„rilor de suprafa˛„ ale l‚nii, induse de tratamente laser excimer UVRezultatele unor investiga˛ii anterioare au eviden˛iat cre∫terea hidrofiliei suprafe˛ei ˛es„turilor din l‚n„, Ón urma unui tratament de iradiere culaser excimer UV, determin‚nd intensificarea proceselor de vopsire ∫i finisare, datorit„ modific„rii suprafe˛ei fibrelor de l‚n„, Ón sensul cre∫teriireactivit„˛ii acestora. Œn acest studiu, compozi˛ia chimic„ a suprafe˛elor ˛es„turilor din l‚n„ considerate model ∫i a celor iradiate cu laser a fostcaracterizat„ printr-un protocol experimental const‚nd din coasistarea c‚torva tehnici spectroscopice, ∫i anume: spectroscopie FT - IR- ATR,XPS ∫i colorimetrie prin reflexie. Rezultatele experimentale ale acestor metode au fost analizate Ón detaliu, iar datele ob˛inute prin coroborareaacestor tehnici, au fost corelate cu o caracteristic„ notabil„ â capacitatea de umectare, at‚t a fibrelor netratate, c‚t ∫i a celor tratate cu laserUV â folosit„ la evaluarea prelucrabilit„˛ii din cadrul unor tehnologii textile ulterioare, compatibile unor scopuri industriale. Cuvinte-cheie: tratament laser, spectroscopie XPS, spectroscopie FTIR-ATR, colorimetrie prin reflexie

    Spectroscopic studies on the wool surface modifications induced by UV excimer laser irradiationPrevious investigation results revealed the hydrophilicity improvement of wool textile surfaces after their exposure to an excimer UV laserirradiation treatment. Such an improvement enhances the wool dyeing and finishing processes, fact that might be due to the change of thewool fibers surface into a more reactive one. In this paper, the chemical composition of the control and the laser treated wool surface wascharacterized by an experimental protocol consisting in FTIR- ATR, XPS and reflection colorimetry. The experimental results are thoroughlydiscu