45
Shlomo Caspi and Lucas Brouwer* Lawrence Berkeley National Laboratory, Berkeley, CA USA December 11 th 2012 The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field Magnet Program * PhD student UC Berkeley EDMS 1259004

The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Shlomo Caspi and Lucas Brouwer*

Lawrence Berkeley National Laboratory, Berkeley, CA

USA

December 11th 2012

The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field Magnet Program

* PhD student UC Berkeley EDMS 1259004

Page 2: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Superconducting Magnet Program (SMP)

• LBNL Superconducting base program R&D on high field magnets is exploring a new dipole magnet (CCT) that specifically promises to reduce high stress on coils while maintaining field quality and efficiency.

Diego Arbelaez, Lucas Brouwer, Daniel Dietderich, Helene Felice, Ray Hafalia, Etienne Rochepault, Soren Prestemon

Arno Godeke, Dan Cheng, Xiaorong Wang, Abdi Salehi, Charles Swenson, Tiina Salmi

2 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 3: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Outline

• Introduction

– Short historical perspective of high field accelerator magnets

• The Canted-Cosine-Theta (CCT) – A new approach

• The CCT and the present LHC dipole

• A conceptual 18T CCT dipole magnet

• Other CCT applications

• Conclusions

3 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 4: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

33 years of progress in Nb3Sn technology

An historical perspective:

1979-2012

4 Superconducting Magnet Group - S.Caspi 12/11/2012

Target

Page 5: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Introduction -Types of superconducting dipoles

5 Superconducting Magnet Group - S.Caspi 12/11/2012

D20

RD series

HD series 2D view

Page 6: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Introduction -Types of superconducting dipoles

Block with stress management

Managed coil blocks, plates and laminar spring

Direction of current

New

Canted-Cosine-Theta (CCT)

With stress interception

6 Superconducting Magnet Group - S.Caspi 12/11/2012

TAMU

3D view

Page 7: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

The CCT - History of the concept

• Published paper by D.I. Meyer and R. Flasck in 1970 (D.I. Meyer, and R. Flasck “A new configuration for a dipole magnet for use in high energy physics

application”, Nucl. Instr.and Methods 80, pp. 339-341, 1970.)

• Renewed interest during the past decade

7 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 8: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

CCT Motivation

• Substantial reduction in coil stress – No accumulation of Lorentz forces in the windings

– Small and large apertures

• A high field quality over 85% of the bore. – Intrinsic to the geometry

• A Modular concept with nesting different conductor types – One style fits all

– Natural for grading

• Combined function

8 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 9: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

The CCT dipole cross-section

cos~zJ 0~J

9 Superconducting Magnet Group - S.Caspi 12/11/2012

Areas of current are proportional to cos-theta approaching a perfect dipole current density distribution

Page 10: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

The CCT coil termination

Lambertson-Coupland Termination cos~zJ

Harmonic components over such “ends” integrate to zero

10 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 11: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

“Ends” - Termination Harmonics

Dipole field

Sextupole

integrates to

zero

Decapole

integrates to

zero

11 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 12: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

CCT – Stress Interception

Stress interceptors

(Ribs), thin on the mid-

plane thick at the poles

Single conductor turn

Ribs are part of

the stress

collector (Spar)

12 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 13: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Structural Interception – airplane wing

The lift force to the skin is transfer to ribs that are tied to a spar connected to the fuselage

MAIN SPAR Ties all the

RIBS together

RIBS Transfers the skin

loads to the SPAR

13 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 14: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Splitting the force and intercepting Stress

The Lorentz force is split into two orthogonal components:

1. The Lorentz forces along the coil’s surface (azimuthal and axial, not only in theta) are intercepted by ribs (no accumulation)

2. Intercepted forces are carried by the spar to which the ribs are connected

3. The radial Lorentz force are partially restrained by the spars and an outer structure

Ribs and Spars = “Cable-in-Conduit”

14 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 15: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Example: a CCT type LHC dipole

15 Superconducting Magnet Group - S.Caspi 12/11/2012

Same bore size and cable as LHC dipole

56 ! bore [mm]

15.35 ! Layer 1 width [mm]

2.15 ! Layer 1 thick [mm]

1.25 ! Layer 1 keystone angle [deg]

15 ! Layer 1 tilted angle [deg]

0.45 ! Layer 1 mid-plane rib thickness) [mm]

0.2857 ! Layer 1 Asc/Acable

15.35 ! Layer 2 width [mm]

1.73 ! Layer 2 thick [mm]

0.9 ! Layer 2 keystone angle [deg]

12.54 ! Layer 2 tilted angle [deg]

0.45 ! Layer 2 mid-plane rib thickness) [mm]

0.2462 ! Layer 2 Asc/Acable

Same straight section of 0.7m using 41m of cable

Page 16: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Example: a CCT LHC dipole

16 Superconducting Magnet Group - S.Caspi 12/11/2012

• Field

• Field quality

• Stored Energy

• Stress

• Conductor length

Comparison of a canonical LHC dipole with an equivalent CCT

56mm

137

137

693

Coil

Ribs and Spar

Page 17: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Short-sample comparison at 1.9 K

Short-Sample LHC

With-Iron

CCT

With-Iron

56 mm bore, 2 layers, same cables

B0 (T) 9.7 9.2

Bmax (T) 10.0 9.6

Imax (kA) 13.8 15.67

Je (A/mm^2) 419 475

E (kJ/m) 334 294

Inductance

(mH/m) 3.48 2.39*

Stheta (MPa) 88 ~ 8

* Courtesy of Jeoren Van Nugteren

17 Superconducting Magnet Group - S.Caspi 12/11/2012

• Lower field, proportional to slanted angle cos(15)=0.966

• Low stress

• Similar stored energy and inductance

• Similar conductor length

For this comparison we chose to

keep the same bore, number of

layers, strand sizes and cable sizes.

Choosing other parameters would

have raise the field.

Page 18: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

CCT

18 Superconducting Magnet Group - S.Caspi 12/11/2012

Field (Bmod) around

inner bore

Field (Bmod) between

layers

Page 19: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

CCT – Harmonics (no-iron)

19 Superconducting Magnet Group - S.Caspi 12/11/2012

CCT - less than 2 units

at 85% of the bore

LHC

b3 ~ 3 units

b5 ~ -1 unit

Page 20: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Field profiles along the z axis

20 Superconducting Magnet Group - S.Caspi 12/11/2012

No iron

Page 21: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Stress on Ribs and Spar

Turn

Ribs

Radial Stress ~ Cos(theta)

Normal Stress

~ Sin(theta)

21 Superconducting Magnet Group - S.Caspi 12/11/2012

Radial forces are intercepted

by spars and structure

Page 22: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Modeling and Minimum symmetry

Coil

Spar with

Ribs

Coil Minimum

Symmetry

22 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 23: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Lamination

Ribs

Conductor

23 Superconducting Magnet Group - S.Caspi 12/11/2012

Lamination can simplify analysis

Reduce cost

Reduce losses

Page 24: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Lamination - 10.05 mm thick

24 Superconducting Magnet Group - S.Caspi 12/11/2012

Ribs and Spar

Coil

Coil Ribs and Spar

The lamination hold exactly one

turn of coil, rib and spar

Page 25: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Lamination

25 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 26: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Laminated Model in TOSCA Bmod (14.85 kA)

26 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 27: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Mechanical Analysis

27 Superconducting Magnet Group - S.Caspi 12/11/2012

We have just started stress analysis on the coil ribs and spar.

1. Need to demonstrate that stress interception works, the force carried by

the spar and the ribs should withstand the force

2. Three mechanical models in progress

ANSYS Workbench

one lamination at 10T and 20T

ANSYS Classical - one lamination

CASTEM– one turn at 10T and 20T

Page 28: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Workbench - Ribs and Spar

10T - Axial deformation spar and ribs

28 Superconducting Magnet Group - S.Caspi 12/11/2012

20T – Azimuthal stress spar and ribs

Page 29: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

CASTEM Model – 20T

front behind

Rib + ring + coil Axial displacement

29 Superconducting Magnet Group - S.Caspi 12/11/2012

Coil Rib Spar (3mm)

Von-Mises Stress (MPa) 0-55 0-200 200-400

Coil Von-Mises Stress

Page 30: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Example – 6 layers 18T dipole, 56mm bore

• 3D analysis, no iron

• 6 layers graded.

• Coil is 60mm thick (no spars*)

• Current 10.5 kA

• Bore field 18 T at 1.9K

• Intercepted stress < 30MPa

30 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 31: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Example – 6 layers 18T dipole, 56mm bore

Layer 1, 30 strands

Layer 2, 26 strands

Layer 3, 22 strands

Layer 4, 18 strands

Layer 5, 14 strands

Layer 6, 12 strands

56mm

31 Superconducting Magnet Group - S.Caspi 12/11/2012

• Proof of principle

• Spars omitted*

• Spars and stress

analysis will be next

* Adding spars of

any size will not

change the field

in the bore

Page 32: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Example – Load lines (no iron)

Stored Energy:

18T

10.5kA

2.22 MJ/m

44 mH/m

32 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 33: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Field along the magnet center

33 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 34: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Mid-plane Stress - without interception

34 Superconducting Magnet Group - S.Caspi 12/11/2012

The mid-plane stress

in each of the layers

if the Lorentz force is

not intercepted

Page 35: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Normal stress cable-rib - with interception

Tangential Stress (Normal to Rib)

35 Superconducting Magnet Group - S.Caspi 12/11/2012

The Lorentz stress in

each of the layers if

the Lorentz force is

intercepted

Page 36: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Other Applications – A curved CCT dipole for a gantry

36 Superconducting Magnet Group - S.Caspi 12/11/2012

*D. S. Robin, C. Sun, A. Sessler, W. Wan,

M. Yoon

Page 37: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

A “pure” dipole field

Bd=5T

37 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 38: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

A “pure” quadrupole field

G=-25T/m,

Single layer

Double layers

38 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 39: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

A “pure” sextupole field

S=400 T/m2

Double layers

Single layer

39 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 40: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Combined Function - Dipole+Quad+Sextupole

Bd=5T, G=-2.26T/m, S=1.3 T/m2

40 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 41: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Other Applications – ECR

41 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 42: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Summary

1. A New Magnet Type – Canted-Cosine-Theta

2. Generic design – for all NbTi, Nb3Sn, HTS, simplified tooling

3. Stress interception not accumulation (independent of the # of turns)

4. A linear structure (not dominated by conductor Young’s modulus)

5. High field quality over an extended range (no optimization, better quality)

6. Magnet “end harmonics” naturally integrate to zero (no end spacers)

7. Combined function field, (offsets in geometric errors included)

8. Islands and wedges replaced by ribs

9. Grading using a single strand with different cables, hybrids Nb3sn+HTS

10. Possible no conductor insulation (to ground only, ceramic coating)

11. Extended technology to curved coils and other type magnets

42 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 43: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Need to Explore

1) Fabrication: - Nb3Sn dimensional changes during heat treatment

- Electrical integrity (conductor to spar)

2) Mechanics: - Structure, pre-stress, cool-down

- Shear stress at interface

3) Protection: - protection scheme

- protection heaters and other instrumentation

4) Short-sample and training

43 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 44: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Possible Next Steps

1. Subscale demonstrators – a 3T-4T, 56mm bore NbTi dipole

2. Subscale demonstrators – a small bore HTS dipole (YBCO)

3. Subscale demonstrators – a 12T, 56mm bore Nb3Sn dipole

4. A full scale ~20T design

44 Superconducting Magnet Group - S.Caspi 12/11/2012

Page 45: The Canted-Cosine-Theta Dipole (CCT) For LBNL High Field … · 2018. 11. 15. · J z ~ cos- ~ 0 6J-12/11/2012 Superconducting Magnet Group - S.Caspi 9 Areas of current are proportional

Selected References

1. D. S. Robin, D. Arbelaez, S. Caspi, A. Sessler, C. Sun, W. Wan, and M. Yoon, Nucl. Instrum. Meth. Phys. Res.A 659 (2011) 484-493.

2. S. Caspi, D. Arbelaez, H. Felice, R. Hafalia, D. Robin, C.Sun, W. Wan and M. Yoon, Conceptual Design of a 260 mm Bore 5T

Superconducting Curved Dipole Magnet for a Carbon Beam Therapy Gantry, IEEE Trans. Appl. Superconduct., Vol. 22, no. 3, p.

4401204, (2012).

3. C. Sun, D. Arbelaez, S. Caspi, D. Robin, A. Sessler, W. Wan and M. Yoon, Compact beam delivery system for ion beam therapy,

Proceedings of IPAC2011, San Sebastian, Spain p. 3633-3635 (2011).

4. S. Caspi, D. Arbelaez, L. Brouwer, D. Dietderich, R. Hafalia, D. Robin, A. Sessler, C. Sun, and W. Wan, Progress in the Design of a Curve

Superconducting Dipole for a Therapy Gantry, Proceedings of IPAC2012, New Orleans, Louisiana, p. 4097-4099 (2012).

5. D.I. Meyer, and R. Flasck, A new configuration for a dipole magnet for use in high energy physics applications, Nucl. Instrum. Meth.,

pp. 339-341, 1970.

6. C.L. Goodzeit, M.J. Ball, and R.B. Meinke, The Double-Helix dipole-a novel approach to accelerator magnet design, IEEE Trans. Appl.

Superconduct., Vol. 13, no. 2, pp. 1365-1368, June 2003.

7. A.V. Gavrilin, et al.,New concepts in transverse field magnet design, IEEE Trans. Appl. Supercond.,Vol.13, no. 2, pp.1213-1216,June

2003.

8. A. Devred, et al., Overview and status of the next European dipole joint research activity, Supercond. Sci. Technol. 19, pp 67-83, 2006.

9. C. Goodzeit, R. Meinke, M. Ball, Combined function magnets using double-helix coils, Proceedings of the Particle Accelerator

Conference, 2007 PAC IEEE, pp. 560-562, 2007.

10. S. Caspi, D.R. Dietderich, P. Ferracin, N.R. Finney, M.J. Fuery, S.A. Gourlay, and A.R. Hafalia, Design, Fabrication, and Test of a

Superconducting Dipole Magnet Based on Tilted Solenoids, IEEE Trans. Appl. Supercond, Vol. 17, part 2, pp. 2266-2269, 2007.

11. H. Witte, T. Yokoi, S.L. Sheehy, K. Peach, S. Pattalwar, T. Jones, J. Strachan, N. Bliss, The Advantages and Challenges of Helical Coils

for Small Accelerators-A Case Study, IEEE Transactions on Applied Superconductivity, Vol. 2, p. 4100-4110 (2012)

12. S. Caspi, S. Gourlay, R. Hafalia,, A. Lietzke, J. O'Neill, C. Taylor and A. Jackson, The use of pressurized bladders for stress control of

superconducting magnets, IEEE Trans. on Appl. Superconductivity, Vol, 11, no 1, p. 2272-2275 (2001).

13. S. Caspi, D. Arbelaez, L. Brouwer, D. R. Dietderich, H. Felice, R. Hafalia, D. Robin, C.Sun, W. Wan, A Canted Cosine-Theta Curved

Superconducting Dipole Magnet for a Particle Therapy Gantry, Nucl. Instrum. Meth. To be published 2012/13

14. L. J. Laslett, S. Caspi, and M. Helm, Configuration of coil ends for multipole magnets, Particle Accelerators, 1987, Vol. 22, pp. 1-14.

45 Superconducting Magnet Group - S.Caspi 12/11/2012