25
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL

The case for High energy neutrino astronomy

  • Upload
    nani

  • View
    44

  • Download
    0

Embed Size (px)

DESCRIPTION

The case for High energy neutrino astronomy. Eli Waxman Weizmann Institute, ISRAEL. High energy n ’ s: A new window. MeV n detectors: Solar & SN1987A n ’ s Stellar physics (Sun ’ s core, SNe core collapse) n physics >0.1 TeV n detectors: Extend n horizon to extra-Galactic scale - PowerPoint PPT Presentation

Citation preview

Page 1: The case for High energy neutrino astronomy

The case forHigh energy neutrino astronomy

Eli WaxmanWeizmann Institute, ISRAEL

Page 2: The case for High energy neutrino astronomy

High energy’s: A new windowMeV detectors:• Solar & SN1987A ’s• Stellar physics (Sun’s core, SNe core collapse) physics

>0.1 TeV detectors:• Extend horizon to extra-Galactic scale MeV detectors limited to local (Galactic)

sources [10kt @ 1MeV1Gton @ TeV , TeV/MeV~106

]• Study “Cosmic accelerators” [p, pp ’s’s] physics

Page 3: The case for High energy neutrino astronomy

The 1020eV challengeR

B eBRBRRBR

ccV p c

vcv

v/1~1 2

cec

BRL p22

2

v/21v

84

v

v

sun122

20,

2

L10/v

pcL

2R

tRF=R/c)

l =R/

2 2

[Waxman 95, 04, Norman et al. 95]

• AGN (Steady): ~ 101 L>1014 LSun few brightest ~1/100 Gpc3 d >> 100Mpc ?? AGN flares

• GRB (transient): ~ 102.5 L>1017 LSun L~ 1018LSun

[Farrar & Gruzinov 08]

[Blandford 76; Lovelace 76]

[Waxman 95, Vietri 95, Milgrom & Usov 95]

Page 4: The case for High energy neutrino astronomy

• GRB: 1020LSun, MBH~1Msun, M~1Msun/s, ~102.5

• AGN: 1014 LSun, MBH~109Msun, M~1Msun/yr, ~101

• MQ: 105 LSun, MBH~1Msun, M~10-8Msun/yr, ~100.5

Source physics

Energy extraction

Jet acceleration

Jet content (kinetic/Poynting)

Particle acceleration

Radiation mechanisms

Page 5: The case for High energy neutrino astronomy

Clues: CR phenomenology

Cosmic-ray E [GeV]

log [dJ/dE]

1 106 1010

E-2.7

E-3

Heavy Nuclei

Protons

Flattening,Near isotropy,Heavy light (?)

Galactic heavy(“hypernovae” Z~10 to 1019eV)

X-Galactic, ?Light

[Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]

Page 6: The case for High energy neutrino astronomy

%23.

sysEE

Constraints: Flux & Spectrum

[Waxman 1995;

Bahcall & Waxman 03]

[Kashti & Waxman 08]

Esys/E~20%

3344

5.192

)1()(,0,yrerg/Mpc10)3.0(7.0

)(0,eV10

zzfx

zfEzdEndE x

Particle acc.; SFR , AGN, GRB

1)(,eV)10cutoff(7.0,yrerg/Mpc103.1 18344

zfx

[Berezinsky et al. 08]

Page 7: The case for High energy neutrino astronomy

Clues: AnisotropyGalaxy density integrated to 75MpcCR intensity map (source~gal)

[Waxman, Fisher & Piran 1997]

Biased (source~gal for gal>gal )

[Kashti & Waxman 08]

• Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Few fold increase >99% CL, but not 99.9% CL• Correlation with AGN ? VCV catalogue: 99% CL Swift catalogue: 84% (98% a posteriori) CL low-luminosity AGN? Simply trace LSS!

[Auger collaboration 07]

[George et al. 08]

Page 8: The case for High energy neutrino astronomy

>1019eV cosmic rays: Clue summary• Spectrum (+Xmax) likely X-Galactic protons• Anisotropy + Spectrum likely “Conventional” sources• L constraint likely Transient sources

• Ep2dN/dEp~ 0.7x1044 erg/Mpc3 yr

• What next for Auger?

Identify (narrow spectrum) point source(s)?

Page 9: The case for High energy neutrino astronomy

HE Astronomy• p + N + 0 2 ; + e+ + e + + Identify UHECR sources Study BH accretion/acceleration physics

• E2dn/dE=1044erg/Mpc3yr + p<1:

• If X-G p’s:

Identify primaries, determine f(z)

3

282

)1(,1)(for5,1

srscmGeV10

zzf

ddj

[Waxman & Bahcall 99; Bahcall & Waxman 01]

srscmGeV10)eV10( 2

8192

ddj

Page 10: The case for High energy neutrino astronomy

AGN models??

BBR05

Page 11: The case for High energy neutrino astronomy

Experiments• Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km3

IceCube: +660/yr OM (05/06, 06/07) 4800 OM=1 km3s - Mediterranean Antares: 10 lines (Nov 07), 750 OM 0.05 km3

Nestor: (?) 0.1 km3

km3Net: R&D 1 km3

•UHE: Radio Air shower Aura, Ariana (in Ice) Auger () ANITA (Balloon) EUSO (?) LOFAR

Page 12: The case for High energy neutrino astronomy

Generic GRB fireball ’s• If: Baryonic jet, internal shocks

(Weak dependence on model parameters)

• Background free:

2GeV3.0// peV10,eV1010,MeV1 5.14165.2 p

yrkm/20

eV10,srscm

GeV102.0

2

5.142

82

J

WB

2.0pf

[Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]

;yrkm/TeV1005.0

104~ 22

3

EJ oA

TeV1005.2TeV1007.1

EE

Page 13: The case for High energy neutrino astronomy

The current limit[Achterberg et al. 07 (The IceCube collaboration)]

Page 14: The case for High energy neutrino astronomy

- physics & astro-physics• decay e:: = 1:2:0 (Osc.) e:: =

1:1:1 appearance experiment

• GRBs: - timing (10s over Hubble distance) LI to 1:1016; WEP to 1:106

• EM energy loss of ’s (and ’s) e:: = 1:1:1 (E>E0) 1:2:2 GRBs: E0~1015eV

• Combining E<E0, E>E0 flavor measurements may constrain CPV [Sin13 Cos]

[Waxman & Bahcall 97]

[Rachen & Meszaros 98; Kashti & Waxman 05]

[Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07]

[Blum, Nir & Waxman 05]

Page 15: The case for High energy neutrino astronomy

Outlook• Particle+Astro-phys. Open Q’s - >1011GeV particles: primaries, f(z), origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ…) Energy extraction from BH accretion Relativistic plasma physics - “Conventional” astrophysics (starburst ISM) - appearance Timing LI to 1:1016; WEP to 1:106

Flavor ratios CPV

• New HE , CR and detectors >103 km2 hybrid >1019eV CR detectors~1 km3 (=1Gton) 1-1000TeV detectors>>1 km3 [radio,…] >>1000TeV detectors

10MeV—10GeV -ray satellite (AGILE, GLAST) >0.1TeV (ground based) -ray telescopes (Milagro, HESS, MAGIC, VERITAS)

Identified point so

urces

Diffuse

Page 16: The case for High energy neutrino astronomy

Composition cluesHiRes 2005

Page 17: The case for High energy neutrino astronomy

GRB proton/electron accelerationElectrons

• MeV ’s:

• <1:

• e- () spectrum:

• e- ()energy production

erg/s1052L

5.210

2/ eee ddn

yrMpcerg10erg10

yrGpc5.0

3445.53

32

e

ee dnd

[Waxman 95, 04]

Protons• Acceleration/expansion:

• Synchrotron losses:

• Proton spectrum:

• p energy production:

erg/s10/1025.22

20,5.50 pL

4/14/320,

2 ms10/10 tp

2/ ppp ddn

yrMpcerg10)3.0(6.0 3

442 p

pp dnd

Page 18: The case for High energy neutrino astronomy

The GRB “GZK sphere”• LSS filaments: D~1Mpc, fV~0.1, n~10-6cm-3, T~0.1keV B=(B2/8nT~0.01 (B~0.01G), B~10kpc

• Prediction:

p

D

B

few~)eV103( 20GRBsN[Waxman 95; Miralda-Escude &

Waxman 96, Waxman 04]

BBVGRBs

GRB

BBVp

DelaySpread

BBVp

fDN

R

fDdcd

fDd

2220

3

2

2

2052

2/120

2/10

10~)eV10(

yrGpc/5.0~

eV10/Mpc100/yr10~~~

eV10/Mpc100/3.0

Page 19: The case for High energy neutrino astronomy

GRB Model Predictions

[Miralda-Escude & Waxman 96]

Page 20: The case for High energy neutrino astronomy
Page 21: The case for High energy neutrino astronomy

AMANDA &IceCube

Page 22: The case for High energy neutrino astronomy

The Mediterranean effort• ANTARES (NESTOR, NEMO) KM3NeT

Page 23: The case for High energy neutrino astronomy

Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA

Robert Gendler

M82 M81

Page 24: The case for High energy neutrino astronomy

A lower bound: Star bursts• Star burst galaxies: - Star Formation Rate ~103Msun/yr >> 1 Msun/yr “normal” (MW) - Density ~103/cc >> 1/cc “normal” - B ~1 mG >> 1G “normal”

• Most stars formed in (z>1.5) star bursts

• High density + B: CR e-’s lose all energy to synchrotron radiation CR p’s lose all energy to production

[Loeb & Waxman 06]

[Quataert et al. 06]

Page 25: The case for High energy neutrino astronomy

eepnpp ,

Synchrotron radio calibration

[Loeb & Waxman 06]