18
When extreme, fear and anxiety can become debilitating [1] . 2 . Anxiety disorders impose a staggering burden on public health; they are common, costly, and contribute to the etiology of depression and substance abuse [2–4]. Existing treatments are inconsistently effective or associated with significant adverse effects [5,6], underscoring the need to develop a deeper understanding of the distributed neural circuits that control the expression of fear and anxiety. Converging lines of physiological and mechanistic evidence indicate that the central extended amygdalaincluding the central nucleus of the amygdala (Ce) and bed nucleus of the stria terminalis (BST)is a key hub in this circuitry and motivates the hypothesis that local alterations in the central extended amygdala can drive changes in remote regions of the brain in ways that promote the development and maintenance of anxiety, mood, and substance use disorders [7–13] (Fig. 1). Review article The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research Andrew S. Fox a, b, ⁎⁎, 1 [email protected] Alexander J. Shackman c, d, e, , 1 [email protected] a Department of Psychology and University of California, Davis, CA 95616, United States b California National Primate Research Center, University of California, Davis, CA 95616, United States c Department of Psychology, University of Maryland, College Park, MD 20742, United States d Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, United States e Maryland Neuroimaging Center, University of Maryland,College Park, MD 20742, United States Corresponding author s at: Department of Psychology, University of Maryland, College Park, MD 20742, United States. ⁎⁎ Corresponding author s at: Department of Psychology and , University of California, Davis, CA 95616, United States. 1 These Authors contributed equally to this work; the order of authors was determined by a coin flip. Abstract Anxiety disorders impose a staggering burden on public health, underscoring the need to develop a deeper understanding of the distributed neural circuits underlying extreme fear and anxiety. Recent work highlights the importance of the central extended amygdala, including the central nucleus of the amygdala (Ce) and neighboring bed nucleus of the stria terminalis (BST). Anatomical data indicate that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated to assemble states of fear and anxiety. Neuroimaging studies show that the Ce and BST are engaged by a broad spectrum of potentially threat-relevant cues. Likewise, m M echanistic work demonstrates that the Ce and BST are critically involved in organizing defensive responses to a wide range of threats. Studies in rodents have begun to reveal the specific molecules, cells, and microcircuits within the central extended amygdala that underlie signs of fear and anxiety, but the relevance of these tantalizing discoveries to human experience and disease remains unclear. Using a combination of focal perturbations and whole-brain imaging, a new generation of nonhuman primate studies is beginning to close this gap. This work opens the door to discovering the mechanisms underlying neuroimaging measures linked to pathological fear and anxiety, to understanding how the Ce and BST interact with one another and with distal brain regions to govern defensive responses to threat, and to developing improved intervention strategies. Keywords: Affective neuroscience; Anxiety disorders ; Bst/bnst BST/BNST (These are acronyms: It should be 'BST/BNST'); Emotion ; Individual differences ; Neuroimaging ; N onhuman primate

The central extended amygdala in fear and anxiety: Closing ...shackmanlab.org/wp-content/uploads/2017/11/fox... · [16,17,10,18,19]. This emphasis ... and have identified a novel

Embed Size (px)

Citation preview

Whenextreme, fear and anxiety can becomedebilitating [1].2. Anxiety disorders impose a staggering burden on public health; they are common, costly, and contribute to the etiology of depression and

substanceabuse[2–4].Existingtreatmentsareinconsistentlyeffectiveorassociatedwithsignificantadverseeffects[5,6],underscoringtheneedtodevelopadeeperunderstandingofthedistributedneuralcircuits

thatcontroltheexpressionoffearandanxiety.Converginglinesofphysiologicalandmechanisticevidenceindicatethatthecentralextendedamygdala—includingthecentralnucleusoftheamygdala(Ce)andbed

nucleusofthestriaterminalis(BST)—isakeyhubinthiscircuitryandmotivatesthehypothesisthatlocalalterationsinthecentralextendedamygdalacandrivechangesinremoteregionsofthebraininwaysthat

promotethedevelopmentandmaintenanceofanxiety,mood,andsubstanceusedisorders[7–13](Fig.1).

Reviewarticle

Thecentralextendedamygdalainfearandanxiety:Closingthegapbetweenmechanisticandneuroimagingresearch

AndrewS.Foxa,b,⁎⁎,1

[email protected]

AlexanderJ.Shackmanc,d,e,⁎,1

[email protected]

aDepartmentofPsychologyandUniversityofCalifornia,Davis,CA95616,UnitedStates

bCaliforniaNationalPrimateResearchCenter,UniversityofCalifornia,Davis,CA95616,UnitedStates

cDepartmentofPsychology,UniversityofMaryland,CollegePark,MD20742,UnitedStates

dNeuroscienceandCognitiveScienceProgram,UniversityofMaryland,CollegePark,MD20742,UnitedStates

eMarylandNeuroimagingCenter,UniversityofMaryland,CollegePark,MD20742,UnitedStates

⁎Correspondingauthorsat:DepartmentofPsychology,UniversityofMaryland,CollegePark,MD20742,UnitedStates.

⁎⁎Correspondingauthorsat:DepartmentofPsychologyand,UniversityofCalifornia,Davis,CA95616,UnitedStates.

1TheseAuthorscontributedequallytothiswork;theorderofauthorswasdeterminedbyacoinflip.

Abstract

Anxietydisordersimposeastaggeringburdenonpublichealth,underscoringtheneedtodevelopadeeperunderstandingofthedistributedneuralcircuitsunderlyingextremefearandanxiety.Recentworkhighlights

theimportanceofthecentralextendedamygdala,includingthecentralnucleusoftheamygdala(Ce)andneighboringbednucleusofthestriaterminalis(BST).AnatomicaldataindicatethattheCeandBSTformatightly

interconnectedunit,wheredifferentkindsof threat-relevant informationcanbe integrated toassemble statesof fearandanxiety.Neuroimaging studies show that theCeandBSTareengagedbyabroad spectrumof

potentiallythreat-relevantcues.Likewise,mMechanisticworkdemonstratesthattheCeandBSTarecriticallyinvolvedinorganizingdefensiveresponsestoawiderangeofthreats.Studiesinrodentshavebeguntoreveal

thespecificmolecules,cells,andmicrocircuitswithinthecentralextendedamygdalathatunderliesignsoffearandanxiety,buttherelevanceofthesetantalizingdiscoveriestohumanexperienceanddiseaseremainsunclear.

Usinga combinationof focalperturbationsandwhole-brain imaging, anewgenerationofnonhumanprimate studies isbeginning to close thisgap.Thisworkopens thedoor todiscovering themechanismsunderlying

neuroimagingmeasures linked topathological fearandanxiety, tounderstandinghowtheCeandBST interactwithoneanotherandwithdistalbrain regions togoverndefensive responses to threat,and todeveloping

improvedinterventionstrategies.

Keywords:Affectiveneuroscience;Anxietydisorders;Bst/bnstBST/BNST (Theseareacronyms:Itshouldbe'BST/BNST');Emotion;Individualdifferences;Neuroimaging;Nonhumanprimate

Here,weprovideanupdatedmini-reviewofthecontributionsoftheCeandtheBSTtofearandanxiety,focusingmostheavilyonstudiesinofhumansandnonhumanprimates(forotherrecentreviews,see

[16,17,10,18,19]. This emphasis reflects the fact that anxietydisorders aredefinedanddiagnosedon thebasis of subjective symptomsandhuman studies are essential for understanding theneuralmechanisms

supportingtheexperienceoffearandanxiety (Pleaseaddthefollowing2references:Pine,D.S.,&LeDoux,J.E.(2017).Elevatingtheroleofsubjectiveexperienceintheclinic:ResponsetoFanselowandPennington.AmericanJournalofPsychiatry,

174,1121-1122.||Zoellner,L.A.,&Foa,E.B.(2016).ApplyingResearchDomainCriteria(RDoC)tothestudyoffearandanxiety:Acriticalcomment.Psychophysiology,53,332-335.).Humanstudiesarealsocrucialforidentifyingthefeaturesof

animalmodelsthatareconservedand,hence,mostrelevanttounderstandinghumandiseaseandtodevelopingimprovedinterventionsforhumansuffering('forwardtranslation;'[20,21].Finally,humanstudiesafford

importantopportunitiesfordevelopingobjectivebiomarkersofdiseaseordiseaserisk[22]—acceleratingthedevelopmentofnewdiagnosticandtreatmentstrategies[23–25]—andforgeneratingnovelhypothesesthat

canbemechanisticallyassessedinanimalmodels('reversetranslation;'[26].Workinmonkeyscanbeconceptualizedasabridge,onethatlinkstheprecisemechanisticstudiesthatcanmostreadilybeperformedin

rodentstothecomplexitiesofhumanfeelingsandhumandisease.Thebrainsofmonkeysandhumansaregenetically,anatomically,andfunctionallysimilar,reflectingthetwospeciesrelativelyrecentevolutionary

divergence(25millionyearsagoformonkeysvs.70millionyearsagoforrodents;[27–30].Homologousbiologicalsubstrates,includingawell-developedprefrontalcortex(PFC),endowmonkeysandhumanswitha

sharedrepertoireofcomplexsocio-emotionalresponsestopotentialthreat[7,31],increasingthelikelihoodofsuccessfultranslationtohumandisease[32,33].

1AnatomyoftheCentralExtendedAcentralextendedamygdalaTheextendedamygdalaencompassesaheterogeneouscollectionofsubcorticalnucleialongthebordersoftheamygdalaandtheventralstriatum.Classicalstudiesofstructuralconnectivityfirstsuggestedthatthecentral

divisionoftheextendedamygdala—includingtheCe,lateralBST(BSTL),andportionsofthesublenticularextendedamygdala(SLEA;aneuronalbridgenestledwithinthesubstantiainnominata)—representsanintegrativeunit[34].

Indeed,ithaslongbeenrecognizedthattheamygdalaisconnectedtotheBSTviatwomajorfiberbundles:theventralamygdalofugalpathway(VA;sometimestermedtheansapeduncularis)andthestriaterminalis(ST)[35](Fig.2a).

MorerecentstudiesinmonkeyshaveconfirmedthattheCeandBSTLarestructurallyinterconnectedviathesetwodirectpathways(primarilyCe→BSTL)andhaveidentifiedanovelindirectpathwaycenteredontheSLEA(Ce↔

SLEA↔BSTL)[40,41] (Pleaseadd:Fudge,J.L.,Kelly,E.A.,Pal,R.,Bedont,J.L.,Park,L.,&Ho,B.(2017).BeyondtheclassicVTA:ExtendedamygdalaprojectionstoDA-striatalpathsintheprimate.Neuropsychopharmacology,42,1563-1576.

).Inparallel,magneticresonanceimaging(MRI)studieshaverevealedevidenceofbothstructural[42–44]andfunctionalconnectivitybetweentheCeandBST[42,20];Gorkaetal.,inpress;[46,41,47,48],reinforcingthehypothesis

thattheyrepresentafunctionallymeaningfulcircuit[34,8].

Fig.1Thecentralextendedamygdalahelpsorganizedefensiveresponsestothreat.Simplifiedschematicofkeyinputsandoutputstothecentralextendedamygdala(magenta)inhumansandotherprimates.Thecentralextendedamygdalaencompassesthe

centralnucleusoftheamygdala(Ce),whichliesinthedorsalamygdala,andthebednucleusofthestriaterminalis(BST),whichwrapsaroundtheanteriorcommissure.Asshownbythetranslucentwhitearrowatthecenterofthefigure,muchofthesensory

(yellow),contextual(blue),andregulatory(green)inputstothecentralextendedamygdalaareindirect(i.e.,poly-synaptic),andoftenfirstpassthroughadjacentamygdalanucleibeforearrivingattheCeorBST.Inprimates,projectionslinkingtheCewith

theBSTarepredominantlyfromtheCetotheBST.TheCeandBSTarebothpoisedtoorchestrateortriggermomentarynegativeaffectviaprojectionstodownstreamtargetregions(orange),suchastheperiaqueductalgrey(PAG).Inset:Coronalslices

depictingtherelativelocationsoftheCeandtheBST(magenta).Portionsofthisfigurewereadaptedwithpermissionfrom[14].TheCeandBSTregionsdepictedintheinsetisaredescribedin[]and ([47]R.M.Tillman,M.D.Stockbridge,B.M.Nacewicz,S.

Torrisi,A.S.Fox,J.F.SmithandA.J.Shackman,Intrinsicfunctionalconnectivityofthecentralextendedamygdala,bioRxiv2017.)[15].,respectivelyTheCeregiondepictedintheinsetwaskindlyprovidedbyDr.BrendonNacewicz.Abbreviations:Basolateral(BL),

Basomedial(BM),Central(Ce),Lateral(La),andMedial(Me)nucleioftheamygdala;Bednucleusofthestriaterminalis(BST).

alt-text:Fig.1

Fromananatomicalperspective,thecentralextendedamygdalaispoisedtointegratepotentiallythreat-relevantinformationandassemblestatesoffearandanxiety.Invasivetracingstudiesinrodentsandmonkeysshowthat

theCeandtheBSTreceivedirectandindirectprojectionsfrombrainregionsthatencodesensory,contextual,andregulatoryinformation[49](Fig.1).Bothregionsarepoisedtotriggersomatomotorandneuroendocrinesignsoffear

andanxietyviadensemono-andpoly-synapticprojectionstobrainstemandsubcorticaleffectorregions[9,49] (pleaseadd:Fudge,J.L.,Kelly,E.A.,Pal,R.,Bedont,J.L.,Park,L.,&Ho,B.(2017).BeyondtheclassicVTA:ExtendedamygdalaprojectionstoDA-striatalpathsintheprimate.Neuropsychopharmacology,42,1563-1576.)(Fig.1).Leveragingtheincreasedanatomicalresolutionaffordedbyultra-highfieldstrengthfunctionalMRI(7Tesla),humanstudiesindicatethatmanyofthesedownstreamregionsshowrobustfunctionalconnectivitywiththeCe

andtheBSTGorkaetal.,inpress;[48].OtherworkshowsthattheCeandBSTcontaincellswithsimilararchitectonicandneurochemicalfeaturesandthatthetworegionsshowsimilarpatternsofgeneexpression(foradetailed

Fig.2Imagingthecentralextendedamydalainnonhumanprimatesandhumans.(A)Diffusiontensorimaging(DTI).DeterministicDTIrevealstheevolutionarilyconservedwhitematterpathways(yellow)thatlinktheCe(magenta)totheBST(magenta)in

monkeys(left)andhumans(right).ImageskindlyprovidedbyDoTromp.(B)Functionalneuroimagingoffearandanxiety.Inmonkeys(left),metabolicactivityintheCeandtheBST(magentaarrows)isassociatedwithheightenedbehavioralandneuroendocrine

responsesduringprolonged(30min)exposuretoapotentiallythreateninghumanintruder’sprofile(n=592).Likewise,anautomatedmetameta-analysisofhumanimagingstudies(right)revealsactivationintheBSTandtheCeduringstudiesof‘fear’and/or

‘anxiety.’Figuredepictstheminimumconjunction(logical‘AND’)ofthresholdedforward-inferencemaps(q<0.01)automaticallygeneratedusingNeurosynth[36]forstudiestaggedwiththekeywords‘fear’(298studies)and/or‘anxiety’(312studies).Given

thestrengthsandlimitationsofautomatedmetameta-an (metashouldnotbeitalicized)alysis; (pleaseinsertthefollowing3referencesjustpriortothesemi-colon:Muller,V.I.,Cieslik,E.C.,Laird,A.R.,Fox,P.T.,Radua,J.,Mataix-Cols,D.,...Eickhoff,S.B.(inpress).Tensimplerulesforneuroimagingmeta-analysis.NeuroscienceandBiobehavioralReviews.|||Salimi-Khorshidi,G.,Smith,S.M.,Keltner,J.R.,Wager,T.D.,&Nichols,T.E.(2009).Meta-analysisofneuroimagingdata:acomparisonofimage-basedandcoordinate-basedpoolingofstudies.Neuroimage,45,810-823.|||Wager,T.D.,Atlas,L.Y.,Botvinick,M.M.,Chang,L.J.,Coghill,R.C.,Davis,K.D.,...Yarkoni,T.(2016).PainintheACC?ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,113,E2474-2475.)thisfindingsimply

indicatesthattheseregionsareroutinelyrecruitedbyavarietyofpotentiallythreat-relevantcues.Itdoesnotindicatethattheseregionsareconsistentlyco-activatedinparticularstudiesanditdoesnotimplythattheseregionsaresimilarlyresponsiveto

particularkindsofthreat(e.g.;uncertainordiffusedanger).(C)TheCeandtheBSTshowphasicandsustainedresponsestopotentiallythreat-relatedcuesinhumanimagingstudies.Left:TheBSTandneighboringregions(whitering)showsustained(<118-s)

activationduringtheuncertainanticipationofaversiveimages.Middle:TheCeshowssustainedactivation(30-s)duringexposuretoavirtualrealitycontextpairedwithunpredictableelectricshock.Right:TheCeandtheBST(blackarrows)bothshowphasic

responsestovideoclipsofanapproachingtarantula(4-s).Portionsofthisfigurewereadaptedwithpermissionfrom[37,8,9,38,12,13,39].

alt-text:Fig.2

review,see[8] (thereshouldbeaparenthesisafterthereference:[8])).Collectively,theseanatomicalobservationssuggestthattheCeandtheBSTrepresentanevolutionarilyconserved,functionallycoherentcircuitthatispoisedtouse

informationaboutthreat,context,andinternalstatestoinitiatearangeofdefensiveresponses.

2PhysiologyoftheCentralExtendedAcentralextendedamygdalaStudiesofnonhumanprimatesaffordanimportantopportunitytoobtainconcurrentmeasuresofnaturalisticdefensivebehaviors,neuroendocrineactivity,andbrainmetabolisminresponsetoarangeofethologicallyrelevant

threats,includingexplicitcues(i.e.,anunfamiliarhumanintruder’sprofile)andmorediffusecontexts(i.e.,anoveltestingcage)[7,10,31].Usingacombinationof18-fluorodeoxyglucose-positronemissiontomography(FDG-PET)and

well-establishedbehavioralassays,wehavedemonstratedthattheCeandBSTareexquisitelysensitivetopotentialdanger.Instudiesincludingbetween238and592monkeys,elevatedlevelsofmetabolicactivityintheCeandBST

areassociatedwithheightenedsignsoffearandanxiety(e.g.,freezing,cortisol)duringsustained(30-min)exposuretointruderthreat[9,50](Fig.2b).HeightenedmetabolicactivityintheCeandBSTisalsoassociatedwithelevated

defensiveresponsesduringsustainedexposuretoanunfamiliartestingcage(i.e.,intheabsenceofintruderthreat;[51,52].

Consistentwithworkinmonkeys,imagingresearchinhumanssuggeststhattheCeandBSTarebothengagedbyabroadrangeofthreat-relatedcuesandcontexts.Theamygdalarespondstoavarietyofthreat-relatedstimuli

[53–57]3andworkusinghigh-resolutionfMRIindicatesthatthedorsalregionoftheamygdalainthevicinityregionoftheCeisparticularlysensitivetoaversivevisualstimuli[58].Increasedactivationinthedorsalamygdalais,inturn,

associatedwithelevatedsignsandsymptomsofarousalinresponsetoacutethreat(e.g.,Pavlovianthreatcues;[59–65].Likewise,multi-voxelclassifieranalysessuggestthatthedorsalamygdalaisanimportantcomponentofalarger

circuitthatunderliesnegativeaffectelicitedbyaversiveimages[66].

LiketheCe,theBSTisrecruitedbyavarietyofpotentiallythreat-relevantcuesinhumans,includingemotionalfacesSladkyetal., inpress).Infact,asshowninFig.2banddescribed inmoredetail intheaccompanying

caption,anautomatedmetameta ('meta'shouldNOTbecapitalized)-analysisgeneratedusingNeurosynth[36]revealsthatstudiestaggedwiththekeywords‘fear’and/or‘anxiety’consistentlyrevealactivationinthevicinityoftheCeand

theBST, although the latter region is rarely labeled as such for a variety of reasons (e.g., omission fromautomated anatomical labeling tools; [8,9,19] (There is an extra reference inserted here. The 2015PNASpaper shouldNOTbe

included).4.LiketheCe,BSTactivationandfunctionalconnectivityco-varywiththreat-elicitedchangesinperipheralphysiologyandself-reportedfearandanxiety[68–70,39].

Amongresearchersfocusedonhumans,itiswidelybelievedthattheCeandBSTarefunctionallydissociable(forcriticalreviews,see[19,13].Inspiredbyanearliergenerationoflesionandinactivationstudiesinrodents[71],

thishypothesissuggeststhattheCe,ortheamygdalamoregenerally,rapidlyassemblesphasicresponsestoclear-and-immediatethreats(e.g.,acueassociatedwiththeimminentdeliveryofshock),whereastheBSTcomeson-line

moreslowlyandisresponsiblefororchestratingsustainedresponsestodangersthatarediffuse,uncertain,orremote.Thishypothesishasbeenadoptedwithminormodificationsbymanyinvestigatorsandcommentatorsandhaseven

beenincorporatedintotheNationalInstituteofMentalHealth(NIMH)ResearchDomainCriteria(RDoC)asAcuteThreat(‘Fear’)andPotentialThreat(‘Anxiety’) (https://www.nimh.nih.gov/research-priorities/rdoc/constructs/acute-

threat-fear.shtml;https://www.nimh.nih.gov/research-priorities/rdoc/constructs/potential-threat-anxiety.shtml;https://www.nimh.nih.gov/research-priorities/rdoc/negative-valence-systems-workshop-proceedings.shtml). (spaces should beinsertedaftereachofthesemi-colons)

Consistentwiththe‘double-dissociation’or‘strict-segregation’model,severalhumanimagingstudieshavedemonstratedthattheBSTshowspersistenthemodynamicresponsesduringtheuncertainanticipationofnoxious

stimuli,suchasshockoraversiveimages,whereasthedorsalamygdalashowstransientresponsesthataretime-lockedtotheonsetofthethreat-anticipationperiodortheactualdeliveryofthenoxiousstimulus7[72–75];Klumperset

al.,inpress (Klumpers,F.,Kroes,M.C.W.,Baas,J.,&Fernandez,G.(2017).Howhumanamygdalaandbednucleusofthestriaterminalismaydrivedistinctdefensiveresponses.JournalofNeuroscience,37,9645-9656.);[70,39].Inoneofthemore

compellingexamples,Somervilleandcolleaguespresentedeitheraversiveorneutralimages(3-secs)inrelativelylongblocks(118-secs)wherethetimingofimagepresentationswaseithercertainoruncertain(Fig.2c).Theseunique

designfeaturesareimportantbecausetheyaffordacrucialopportunitytodouble-dissociatephasic(to3-secscertainthreat)fromsustained(i.e.,to118-secsuncertainthreat)responsesinthesameindividuals.Analysesrevealed

transientactivationintheamygdalainresponsetothenegativeimages.Incontrast,theBSTshowedpersistentactivationfornegative-vs.-neutralblocksandforuncertain-vs.-certainblocks.Moreover,thelevelofsustainedactivation

intheBSTcloselytrackedmeandifferencesinself-reportedfearandanxietyacrossthefourblockedconditions(i.e.,uncertain-negative>certain-negative>uncertain-neutral>certain-neutral).Despitesomeimportantlimitations

(e.g.,perceptualconfounds,failingtotesttheRegion×Conditioninteraction),theseresultsareoftentakenasstrongsupportforthe‘strict-segregation’model.

Ontheotherhand,agrowingnumberofimagingstudiesaredifficulttoreconcilewiththehypothesisofstrictfunctionalsegregationbasedonthreatuncertaintyorduration(Fig.2c).Severalstudieshavereportedincreased

amygdalaactivationduringtheanticipationofuncertainthreat,bothinchildren[77]andinadults[37,78].Forexample,Andreattaandcolleaguesobservedsustainedactivation—confirmedusingafiniteimpulseresponseapproach—in

theregionof therightCeduringexposuretoavirtual-realitycontext (30-secs)pairedwithunpredictableelectricshocks.Leveragingagame-like ‘virtualpredator’paradigm,Mobbsandcolleaguesobserved significantlygreater

activationinthedorsalamygdalawhenthepredatorwasfirstencounteredandpresentednoimmediatedanger,relativetoasubsequentperiodwhenshockdeliverywasimminentandsignsandsymptomsoffearandanxietywere

maximal[79],whichrunscounter to the idea that thattheamygdala isprimarilyresponsible fororganizing transientresponses to immediateacutedanger.Herryandcolleaguesobservedpersistentlyelevatedamygdalaactivity in

humans(60-s)andmice(120-s)exposedtoatemporallyunpredictable,anxiogenictrainofauditorystimuli[]. (Herry,C.,Bach,D.R.,Esposito,F.,DiSalle,F.,Perrig,W.J.,Scheffler,K.,...Seifritz,E.(2007).Processingoftemporalunpredictability

inhumanandanimalamygdala.JournalofNeuroscience,27,5958-5966.)Other (pleaseinsertanewparagraphbreakhere,justbeforetheword'Other')workhasrevealedphasicresponsesintheregionoftheBSTtobriefthreats,suchasa4-secsvideoclipofanapproachingtarantula[80,74,38,81].Likewise,

Brinkmann and colleagues very recently demonstrated that the CeBST and the BSTCe show statistically indistinguishable responses to briefly presented (800 ms) aversive images Brinkmann et al., under review/personal

communication7/20/2017 (Brinkmann,L.,Buff,C.,Feldker,K.,Neumeister,P.,Heitmann,C.Y.,Hofmann,D., . . .Straube,T. (2018). Inter-individualdifferences in traitanxietyshapethe functionalconnectivitybetweenthebednucleusof thestria

terminalisandtheamygdaladuringbriefthreatprocessing.Neuroimage,166,110-116.)).Thelatterresultisparticularlycompellinggiventherelativelylargesample(n=93)andformaltestoftheRegion×Conditioninteraction.Itimplies

that themagnitudeofregionaldifferences (i.e.,Cevs.BST) ismuchsmaller than impliedbythestrictsegregationhypothesis,conditionalonunknownmoderators,or issimplynon-existent,at least forbrieflypresentedaversive

images.Another,relativelylargeimagingstudy(n=168)reportedphasicactivationoftheBSTinresponseto4-secsshock-predictivecues[83],indicatingthattheBSTissensitivetocertainthreat.Otherrecentworksuggeststhatthe

BSTismaximallyengagedwhenshock-threat ispsychologically imminent [84].These imagingobservationsarebroadlyconsistentwithevidence fromrecordingand loss-of-functionstudies in rodents indicating thata substantial

proportionofBSTneuronsexhibitshort-latencyresponsesduringexposuretobothacutethreat(e.g.,foot-ortail-shock)anddiffuselythreateningenvironments[85,17,86].

Onbalance, thebrain imaging literaturesuggests that theCeandBST,whilecertainlynot interchangeable,aremorealike thandifferent. Inaddition to theanatomical similaritiesdescribed in theprevioussection (e.g.,

connectivity,geneexpression),bothregionsrespond toabroadspectrumof threat-relatedcuesandcontextsandbotharecorrelatedwithconcurrentchanges inphysiologyandsubjectiveexperience.Variation in thestrengthof

functionalconnectivitybetween the tworegionshasbeenassociatedwith individualdifferences indispositionalanxiety inhumans []andmonkeys [Fox,Oler,Birn,Shackman,Alexander&Kalin,unpublishedobservations]. (the 1streference[]is:Brinkmann,L.,Buff,C.,Feldker,K.,Neumeister,P.,Heitmann,C.Y.,Hofmann,D.,...Straube,T.(2018).Inter-individualdifferencesintraitanxietyshapethefunctionalconnectivitybetweenthebednucleusofthestriaterminalisandtheamygdaladuringbriefthreatprocessing.Neuroimage,166,110-116.)Inhumans,theCeandtheBSTbothshowtransientresponsestoclear-and-immediatethreatandsustainedactivationincontextsassociatedwithuncertain,longer-lastingthreat.Both

regionsshowheightenedactivationinpatientswithanxietydisordersandindividualsatriskfordevelopingsuchdisordersBrinkmannetal.,inpress; (Brinkmann,L.,Buff,C.,Feldker,K.,Tupak,S.V.,Becker,M.P. I.,Herrmann,M.J.,&

Straube,T.(2017).Distinctphasicandsustainedbrainresponsesandconnectivityofamygdalaandbednucleusofthestriaterminalisduringthreatanticipationinpanicdisorder.PsychologicalMedicine,47,2675-2688.)[73];Buffetal.,inpress (Buff,C.,Brinkmann,L.,Bruchmann,M.,Becker,M.P.I.,Tupaka,S.,Herrmann,M.J.,&Straube,T.(2017).ActivityalterationsinthebednucleusofthestriaterminalisandamygdaladuringthreatanticipationinGeneralizedAnxietyDisorder.SocialCognitiveandAffectiveNeuroscience, 12, 1766-1774.); [89,90,12,91–93], although the studies to date have been small in size, have frequently relied on data acquisition and processing techniques that are less than optimal for resolving subtle

differencesinregionalfunction(e.g.,linearspatialnormalizationalgorithms,largesmoothingkernels),andprospectivelongitudinaldataaremostlylacking.Inmonkeys,individualsexpressingmoreintensesignsoffearandanxiety

show increasedFDGmetabolism in theCe andBSTduring sustained exposure to novel contexts andpotential threat. AlthoughFDG-PET lacks the temporal resolution needed to cleanly dissociate phasic from sustainedneural

responses,workinmonkeyshintsatsomepotentialdifferencesbetweenthetworegions—activityintheBSTisassociatedwithheritableindividualdifferencesinfearandanxiety2[8,9]andtheBSTappearstobeinvolvedinorganizing

persistentlyelevatedsignsoffearandanxietyfollowingthreatexposure(i.e.,mood‘spillover;'[94].Nevertheless,thecriticaltestsofregionaldifferenceshaveyettobeperformedinmonkeys(e.g.,Region×Condition;Foxetal.,in

press (Fox,A.S.,Lapate,R.C.,Davidson,R.J.,&Shackman,A.J.(2018).Thenatureofemotion:Aresearchagendaforthe21stcentury.InA.S.Fox,R.C.Lapate,A.J.Shackman,&R.J.Davidson(Eds.),Thenatureofemotion.Fundamentalquestions(2nd

ed.).NewYork:OxfordUniversityPress.);[19].Theupshotofthisworkisthattheavailableimagingliteratureprovides,atbest,mixedevidenceforclaims—includingthoseembodiedinRDoC—ofstrictfunctionalsegregationbetweenthe

CeandtheBSTonthebasisofthreatuncertaintyorduration(i.e.,‘theCemediatesphasicresponsestoclear-and-imminentdanger;theBSTmediatessustainedresponsestouncertainthreat’)—aconclusionthatechoesthatreached

byGungorandParéonthebasisofmechanisticworkinrodents[86].

Understandingtheneurobiologyofhumanfearandanxietyisimportant,bothconceptuallyandclinically.AsreviewedelsewhereFoxetal.,inpress (Fox,A.S.,Lapate,R.C.,Davidson,R.J.,&Shackman,A.J.(2018).Thenatureof

emotion:Aresearchagendaforthe21stcentury.InA.S.Fox,R.C.Lapate,A.J.Shackman,&R.J.Davidson(Eds.),Thenatureofemotion.Fundamentalquestions(2nded.).NewYork:OxfordUniversityPress.);[8,9,19],drawingstronginferenceabout

theneuralcircuitssupportingphasicandsustainedresponsestodifferentdimensionsofthreatrequirestheuseofwell-matchedtasks.Parametricmanipulationsofthreatprobability(ifthreatwilloccur),imminence(whenorwhereit

willoccur),andduration(asin[96,84,79,97,38]wouldbeparticularlyuseful.Theuseofdynamicparametrictasks(e.g.,wherethreatimminenceorprobabilityissmoothlyandcontinuouslyvaried)wouldalsoaffordpowerfulnew

opportunitiesforunderstandingthekindsofuncertaintymostrelevanttofearandanxietyandforidentifyingcircuitsinvolvedintriggeringbehavioralandphysiological‘phasetransitions’(e.g.,fromvigilancetobehavioralinhibitionto

activedefense;[98];[99].PutativedoubledissociationsneedtoberigorouslyassessedusingtheappropriateRegion×Conditioninteraction(asin[73,100],preferablyinadequatelypoweredsamples[101–103].Absentthat,claimsof

anatomicaldissociationareunwarranted.Likewise,concludingthataparticularbrainregionis‘notinvolved’inacomplex,multidimensionalpsychologicalfunction,like‘fear’or‘anxiety,’basedonanullstatisticaltestorasingleassay

isunwarranted.Givenmountingevidencethatfearandanxiety,likeotheremotions,reflectwidelydistributedneuralcircuits(e.g (Theother'uncited'referenceissupposedtobeincludedinthisblockofreferences:Shackman,A.J.,Fox,A.S.,&

Seminowicz,D.A.(2015).Thecognitive-emotionalbrain:Opportunitiesandchallengesforunderstandingneuropsychiatricdisorders.BehavioralandBrainSciences,38,e86.).,[104];NummenmaaandSaarimakiinpress;[106];ShackmanandFox,

inpress (Shackman,A.J.,&Fox,A.S.(2018).Howareemotionsorganizedinthebrain?InA.S.Fox,R.C.Lapate,A.J.Shackman,&R.J.Davidson(Eds.),Thenatureofemotion.Fundamentalquestions(2nded.).NewYork,NY:OxfordUniversityPress.);

[108],oneofthemostimportantchallengesforfutureresearchwillbetoextendmodelsoffearandanxietytoencompassinteractionsbetweenthecentralextendedamygdalaanddistalregionsofthebrain,apointthatwediscussin

moredetailinthefinalsection.

3MechanisticStudiesoftheCentralExtendedAstudiesofthecentralextendedamygdalaThere is ample evidence that that theCe and theBST are critical for assembling states of fear and anxiety. Summarizing the data available nearly a decade ago, just prior to thewidespread adoption of high-precision

optogeneticandchemogenetictechniques,Davisandcolleaguesoutlineda‘partial-dissociation’model,hypothesizingthattheCeplaysacriticalroleinorganizingbothimmediateandlonger-lastingresponsestothreat[85].Thismodel

suggeststhatphasicresponsesaremediatedbycircuitscoursingfromthebasolateralamygdala(BL)tothemedialdivisionoftheCe(CeM)andfromtheretodownstreameffectorregions.Incontrast,responsestomorepersistent

kindsofdanger—thosethatareuncertain,psychologicallydiffuse,orremoteintimeintimeorspace—werethoughttobemediatedbycircuitspassingfromthelateraldivisionoftheCe(CeL)tothelateraldivisionoftheBST(BSTL)

and,ultimately,toeffectorregions.

Morerecentworkinrodentmodelshasrefinedourunderstandingofthebrainbasesoffearandanxiety(e.g.,[109,110],whilehighlightingtheanatomicalandfunctionalcomplexityofthecentralextendedamygdala(e.g.,

[111,86,112,113]. Ithasbecomeabundantlyclear that theCeand theBST, likemanyotherbrain regions,harboravarietyofdistinctcell ‘types’—groupsofneurons that canbedistinguishedbasedonproteinexpression, firing

characteristics,connectivity,andotherfeatures—andthatdifferentcelltypeswithinthesameregionofthecentralextendedamygdala(e.g.,Ce)arefunctionallydissociable(e.g.,[112,113].Someoftheseneuronsareresponse-specific,

whileothersarethreat-specific.Forexample,PAG-projectingcellsintheCeMtriggerfreezing,whereasanindependent,butanatomicallyintermingled,setofmedulla-projectingneuronstriggerchangesincardiovascularactivity[113].

These response-specificneuronscanbeactivatedbydifferent threat-specificneurons.Forexample, serotonin receptor2a-expressingneurons in theCeLplayakey role in regulating thecompetitionbetween innateand learned

defensiveresponses:amplifyingfreezingelicitedbysustainedexposure(10-min)toinnatethreat(i.e.anodorderivedfromfoxfeces)andattenuatingfreezingtolearnedthreat(i.e.,aneutralodorassociatedwithfoot-shock)[114].

Thesekindsofobservationsunderscoretheconceptualimportanceofunderstandinghowdifferentcelltypesinthecentralextendedamygdalacontributetofearfulandanxietyousstatesandtraits.

Despitethiscomplexity,mechanisticworkinrodentsreinforcesthegeneralconclusionthatthemicrocircuitsresponsibleforassemblingphasicandsustainedresponsestothreatoverlapinthecentralextendedamygdala3

[115,86,116].Forexample,theCeandtheBSThavearebothbeenshowntobeimportantforassemblingsustainedresponsestodiffusethreat10(e.g.,[117–121,112];Mazzoneetal.,inpress;[123–125].ProjectionsfromtheBLtothe

Ceexertbi-directionalcontroloverdefensiveresponsestotheelevated-plusmaze(EPM)andopen-fieldtest,whichcanbeconsidereddiffuselythreateningcontexts[126];chemicalinactivationoftheCereducesdefensiveresponsesto

theelevated-plusmaze [127];andCRF-expressingneurons in theCemodulateconditioned freezing to threateningcontextsand longer-lasting (30-s) threatcuesAsoket al., inpress;[129].With regard to theBST, serotonergic

projectionsfromthedorsalraphetotheBSTmodulatetherecallofconditioneddefensiveresponsestobothcontextualandcuedthreats[130].Moreover,wWorkusingtemporallyunpredictableshockparadigmsdemonstratesthat

cannabinoidprojectionsfromtheBLandtheCetotheBSTarenecessaryforsustaineddefensiveresponsesinresponsetouncertaindanger[131].Thisobservation,whichharnessesataskadaptedfromthatofdevelopedbyDavis,

Walker,andcolleagues[132–134],providesimportantevidencethattheBL,Ce,andBSTallplayaroleinrespondingtouncertainordiffusethreat,consistentwithotherrecentwork(e.g.,[135–137].Whileourunderstandingremains

farfromcomplete,takentogether,theseobservationsshowthatspecificmicrocircuitswithinandbetweentheCeandtheBSTareimportantfororchestratingdefensiveresponsestoavarietyofthreats.

AlthoughthecausalcontributionoftheBSTtofearandanxietyhasyettobeexploredinhumansorotherprimates,monkeyswithfiber-sparingexcitotoxiclesionsoftheCeshowamarkedreductionindefensivebehaviorsand

endocrineactivityduringsustainedexposuretohumanintruderthreatandduringacuteexposuretoalivesnake[10,138,31].Likewise,humanswithamygdaladamageexhibitaprofoundlackoffearandanxietyinresponsetoboth

diffuselythreateningcontexts(e.g.,walkingthroughahauntedhouse,foraginginthepresenceofuncertainthreat)andacutethreat(e.g.,spiders,snakes,conditionedthreatcues)[139–141] (Areferenceismissingandshouldbeadded.

Thisisoneofthe'uncitedreferences'identifiedbythecopyeditor.Feinstein,J.S.,Adolphs,R.,&Tranel,D.(2016).AtaleofsurvivalfromtheworldofPatientS.M.InD.G.Amaral&R.Adolphs(Eds.),Livingwithoutanamygdala.NewYork:Guilford.).A

majorcaveatisthatsuchdeficitsmayreflectdamagetoaxonalfiberspassingthroughtheCeenroutetootherregions,suchastheBST,ormoresubtlekindsoflong-rangefunctionaldisconnection[142],apointthatwetakeupmore

fullyinthenextsection.

4ClosingtheGapbetweenMechanisticandImagingRgapbetweenmechanisticandimagingresearchTheCeandtheBSTareanatomicallycomplexandcanbepartitionedintomultiplesub-regions(Fig.1),eachcontainingavarietyofintermingledcelltypes[8,86].Althoughunfamiliartomanybrainimagers,recentlydeveloped

opto-andchemogenetictoolsprovidenumerousopportunitiesfordecipheringthiscomplexityandidentifyingthespecificcircuitcomponentsthatcontroldefensiveresponsestothreat[143–147].Developingabasicunderstandingof

thesemethods isakeysteptodissolvingartificialacademic ‘silos’anddevelopingmorethoughtfulhypothesesabouttheroleof thecentralextendedamygdala inhumanemotionandemotionaldisorders.Typically,aDNAvector

encodinga target ligandor receptor isengineered intoavirus.Thevirus is injected into thebrain, inducingexpressionof the targetprotein in the infectedregion (e.g.,BST).Regionalandcell-typespecificity isachievedusing

recombinase-dependentvirusesorcelltype-specificpromoterviruses.Forexample,aviruscontainingaCre-dependentvectorcanbeinjectedintotheCeoftransgenicmiceengineeredtoexpressCrerecombinaseinsomatostatin-

expressingneurons,resultinginselectiveexpressionofthetargetedreceptorproteininsomatostatin-expressingneuronsintheCe.Moresophisticatedapproachesenabletheinclusion(BooleanAND)orexclusion(BooleanNOT)of

cellswithspecificefferentorafferentprojections,specificbehavioralprofiles(e.g.,activatedbyrewardvs.punishment),orcombinationsofthesecriteria.Byoverexpressingreceptorsthatrespondtolight('optogenetics')ordesigner

drugswithminimallimitedoff-targeteffects('chemogenetics'),itispossibletoreversiblyactivateorsilencespecificcellpopulationsondemand.Theapplicationoftheseapproachestorodentmodelsoffearandanxietyhasrevealeda

levelofarchitecturalintricacyinthecentralextendedamygdalafarbeyondwhatcanberesolvedusingexistingneuroimagingtechniques,includingmutuallyinhibitorycircuitswithintheCethatcontrolfreezingandfleeing[111,114]

andneuronalpopulationswithintheBSTthatcanpromoteordampensignsoffearandanxietyGarcia-Garciaetal.inpress;[112].

Theseexcitingobservationsraisetwoveryimportantquestions.First,arethesemechanismsconservedinhumansandotherprimates?Ifso,thentheyarelikelytoberelevanttoourunderstandingofanxietydisordersand

couldguidethedevelopmentofimprovedtreatments[21].Second,whatroledotheseextendedamygdalamechanismsplayinthekindsoflarge-scalebraincircuitsthathavebeenlinkedtomaladaptivefearandanxietyinhumansand

monkeys?Whichmoleculesandmicro-circuitsunderlieheightenedactivationinthecentralextendedamygdalaandhowdotheyinfluencethefunction(i.e.,activity,functionalconnectivity)ofdistalregionsofthebrainimplicatedin

pathologicalfearandanxiety?Reconcilingthesetwolevelsofanalysis—oneglobal,theotherlocal—ismandatory,ifwearetodevelopacompleteandclinicallyusefulunderstandingoffearandanxiety.

Nonhumanprimateresearchprovidesapowerfulopportunitytocombinefocalperturbationtechniqueswithwhole-brainsurveysofbrainfunctionandhasbeguntoaddresssomeofthesefundamentalquestions.Forexample,

imagingstudiesinmonkeysdemonstratethatmetabolicactivityintheposteriororbitofrontalcortex(OFC)/anteriorinsulaisassociatedwithheightenedpassiveavoidanceofthreat(i.e.,freezing;[8].Althoughsurgicallesionsofthe

OFCmarkedlyreducethreat-elicitedfreezing,suggestingacausalrole[149,150],neuroimagingmeasurescollectedbeforeandaftersurgerysuggestthatthisanxiolyticeffectisproximallymediatedby‘downstream’alterationsinBST

metabolism[151](Fig.3a).ReducedBSTactivityhasalsobeenobservedinhumanswithOFCdamage[152],suggestingthatthiscircuitisconservedacrossprimatespecies(Fig.3b).Inmorerecentwork,Kalin,Fox,andcolleagues

haveextendedthisstrategytogain-of-functionstudies[153].Harnessingaviralvectorapproach,theydemonstratedthatoverexpressionofcorticotropin-releasinghormone(CRH)inthedorsalamygdalaincreasesdefensivebehaviors

duringsustainedexposuretopotentialthreat,consistentwithworkinrodentshighlightingtheimportanceoftheCeCRHsystemforrespondingtodiffuselythreateningcontexts,suchastheelevatedplus-maze[154].Thesebehavioral

changeswere associatedwith increasedmetabolism in the dorsal amygdala and posterior OFC aswell as enhanced functional connectivity between the two regions, highlighting the importance of a distributed brain network

underlyingfearandanxiety(Fig.4a).

Fig.3FocaldamagetotheventralPFCisassociatedwithdistalchangesinBSTfunction.(A)Monkeys.ExperimentallesionsoftheOFCreducethreat-elicitedfreezing(notdepicted)andBSTmetabolism(magentaarrow).Theorbitofrontalregionstargetedby

thesurgery(maroon)canbeseenfromthelateral(farleft)andbasalviews(middle).Bar-plotdepictsthesignificantGroup×TimeinteractionforBSTmetabolism.(B)Humans.DamagetotheventromedialPFC(vmPFC)isassociatedwithreducedperfusionin

theBST(magentaarrow).Theventromedialregionsshowingdamagecanbeseenfromthemid-sagittal(farleft)andbasalviews(middle).Bar-plotdepictsthesignificantreductioninrightBSTperfusioninthepatientgroup.Portionsofthisfigurewereadapted

withpermissionfrom[151,152].

alt-text:Fig.3

Otherrecentworkdemonstratesthefeasibilityofusingopto-andchemogeneticapproachesinnonhumanprimates(e.g.,[156–161]—includingcell-typespecificperturbationsinwild-type(i.e.,geneticallyunmodified)monkeys

[162]—andhighlightsthevalueofcombiningmechanisticinterventionsandcellularrecordingswithwhole-brainimagingtechniquesMazzoneetal.,inpress;[163];Parketal.,inpress (Park,S.H.,Russ,B.E.,McMahon,D.B.T.,Koyano,K.W.,Berman,R.A.,&Leopold,D.A.(2017).Functionalsubpopulationsofneuronsinamacaquefacepatchrevealedbysingle-unitfMRImapping.Neuron,95,971-981.);Shibaetal.,inpress (Shiba,Y.,Oikonomidis,L.,Sawiak,S.,Fryer,T.,Hong,Y.T.,Cockcroft,G.,...Roberts,A.C.(2017).Convergingprefronto-insula-amygdalapathwaysinnegativeemotionregulationinmarmosetmonkeys.BiologicalPsychiatry,82,895-903.)).Inalandmarkstudy,Graysonandcolleaguesshowedthattransientchemogeneticinactivationoftheamygdalaproduceswidespreadalterationsinintrinsicfunctionalconnectivity,includingdecreasedamygdala-BSTconnectivity,

decreased amygdala-OFC connectivity, and increases in corticocortical coupling [155] (Fig. 4b). This finding is consistent with work in rodents [26,166] and neurological patients [167–169] demonstrating that the behavioral

consequencesoffocalbraindamagecanemergefromphysiologicalalterationsindistalbrainregions(forarelatedperspective,see[106]. (aparenthesisshouldbeadded[106]).)Thesefindingshighlighttheimportanceofadistributed

circuitcenteredon,butnotlimitedto,thecentralextendedamygdalaandtheyunderscoretheaddedvalueofcombiningthefocalperturbationstrategiesthatarewidelyusedinrodentstudieswiththewhole-brainimagingtechniques

thatareroutinelyusedinbasicandclinicalresearchinhumans.

5ConclusionsThecentralextendedamygdalaplaysacrucialroleinevaluatingandrespondingtoabroadspectrumofthreat-relatedcuesandcontexts.Whiletheyarecertainlynotinterchangeable,theCeandtheBSTshowsimilarpatterns

ofconnectivity,cellularcomposition,neurochemistry,andgeneexpression.Botharesensitivetouncertainor temporallyremotethreat;bothco-varywiththreat-elicitedchanges inbehavior,physiology,andexperience;bothshow

phasic responses to acute threat; andboth showheightenedactivity during sustainedexposure todiffusely threatening contexts.Work in rodents indicates that both regionsplay a critical role in organizing sustaineddefensive

responsestoarangeofpotentiallythreateningcuesandcontexts.Moregenerally,studiesleveragingopto-andchemogenetictechniqueshavebeguntorevealthespecificmolecules,cells,andmicrocircuitswithinthecentralextended

Fig.4Nonhumanprimateresearchprovidesapowerfulnopportunitytocombinefocalmanipulationsoftheamygdalawithwhole-brainsurveysofbrainfunction.(A).Molecularactivation.UsingMRI-guidedinjectionsofaviralvector(upperleft),Kalin,Foxand

colleaguesoverexpressedcorticotropin-releasinghormone(CRH)inthedorsalamygdala.MRIimagedepictsthegadoliniumflume(white)inthetargetregion.PhotomicrographshowsCRH-expressingcellsinthesameregion(upperright).CRH

overexpressionintheamygdalaenhancedthreat-eliciteddefensiveresponses(notshown)andincreasedmetabolism(yellowclusters)inthedorsalamygdala(magentaarrow)andtheposteriorOFC(greenarrows).CRH-inducedincreasesindefensiveresponses

andmetabolismwerecorrelatedinbothregions(redclusters).(B)Chemogeneticinhibition.Leveragingachemogeneticapproach,GraysonandcolleaguesreversiblyinhibitedtheamygdalawhileusingfMRItoassessintrinsicfunctionalconnectivityacrossthe

brain.Aviralvectorencodinganinhibitorydesignerreceptorexclusivelyactivatedbyadesignerdrugwithminimaloff-targeteffects(DREADD)wasinjectedintotheamygdala(upperleft).Systemicadministrationofthedesignerdrugreversiblyinactivated

theamygdala(upperright).DREADDs-mediatedinhibitionoftheamygdalawasassociatedwithdecreasedamygdala-BSTconnectivity(magentaarrow),decreasedamygdala-OFCconnectivity,andincreasedcorticocorticalcoupling(lowerpanels).Inthecoronal

section,clusters(yellow)depicttheminimumconjunction(logical‘AND’)ofregionssignificantforfourdesigner-drugvs.vehiclecontraststhatweremadeavailablebyGraysonandcolleaguesonthepublisher’swebsite.Portionsofthisfigurewereadapted

withpermissionfrom[155,153].(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.) (shouldthislastcommentbeaddedtotheothercolorimages???)

alt-text:Fig.4

amygdalathatsupportsignsoffearandanxietyinratsandmice.Amajorchallengeistounderstandtherelevanceofthesediscoveriestohumanexperienceandhumandisease.Recentworkinnonhumanprimatesprovidesabridgeto

addressingthisfundamentalissue.Usingacombinationoffocalperturbationsandwhole-brainimaging,thisnewgenerationofnonhumanprimateresearchsetsthestagefordiscoveringthemechanismswithinthecentralextended

amygdalathatunderlieneuroimagingmetricslinkedtoextremefearandanxietyinhumans;forunderstandinghowtheCeandBSTfunctionallyinteractwithoneanotherandwithremoteregionsofthebrain,suchastheOFC;and

ultimatelyforacceleratingthedevelopmentofimprovedstrategiesfordiagnosing,treating,andpreventingpathologicalfearandanxiety.

ConflictofinterestAuthorsdeclarenoconflictsofinterest.

Uncitedreferences[170]and[171].

AcknowledgementsWegratefullyacknowledgeassistancefromL.Brinkmann,L.Friedman,B.Nacewicz,andD.Tromp;criticalfeedbackfromJ.Blackford,L.Pessoa,S.Padmala,and3anonymousreviewers;andfinancialsupport

fromtheCaliforniaNationalPrimateCenter;NationalInstituteofMentalHealth (NationalInstitutesofHealth)(DA040717,MH107444);UniversityofCalifornia,Davis;andUniversityofMaryland,CollegePark.

References[1]J.A.Salomon,J.A.Haagsma,A.Davis,C.M.deNoordhout,S.Polinder,A.H.HavelaarandT.Vos,DisabilityweightsfortheGlobalBurdenofDglobalburdenofdisease2013study,LancetGlob.Health3,2015,e712–723.

[2]M.G.Craske,M.B.Stein,T.C.Eley,M.R.Milad,A.Holmes,R.M.RapeeandH.U.Wittchen,Anxietydisorders,NatRevDis.Rev.Dis.Primers3,2017,17024.

[3]M.DiLucaandJ.Olesen,Thecostofbraindiseases:aburdenorachallenge?,Neuron82,2014,1205–1208.

[4]H.A.Whiteford,L.Degenhardt,J.Rehm,A.J.Baxter,A.J.Ferrari,H.E.ErskineandT.Vos,Globalburdenofdiseaseattributabletomentalandsubstanceusedisorders:findingsfromtheGlobalBurdenofDiseaseStudy

2010,Lancet382,2013,1575–1586.

[5]A.Bystritsky,Treatment-resistantanxietydisorders,Molecular.Psychiatry11,2006,805–814.

[6]G.GriebelandA.Holmes,50yearsofhurdlesandhopeinanxiolyticdrugdiscovery,NatureReviews.DrugDiscovery.Rev.DrugDiscov.12,2013,667–687.

[7]A.S.FoxandN.H.Kalin,Atranslationalneuroscienceapproachtounderstandingthedevelopmentofsocialanxietydisorderanditspathophysiology,AmericanJournalof.J.Psychiatry171,2014,1162–1173.

[8]A.S.Fox,J.A.Oler,A.J.Shackman,S.E.Shelton,M.Raveendran,D.R.McKayandN.H.Kalin,Intergenerationalneuralmediatorsofearly-lifeanxioustemperament,ProceedingsoftheNationalAcademyofSciencesUSA.National

Acad.Sci.U.S.A.112,2015,9118–9122.

[9]A.S.Fox,J.A.Oler,D.P.Tromp,J.L.FudgeandN.H.Kalin,Extendingtheamygdalaintheoriesofthreatprocessing,TrendsinNeurosciencesNeurosci.38,2015,319–329.

[10]N.H.Kalin,Mechanismsunderlyingtheearlyrisktodevelopanxietyanddepression:AtranslationalapproachEuropeanNeuropsychopharmacologyatranslationalapproach,Eur.Neuropsychopharmacol.27,2017,543–553.

[11]G.F.KoobandB.J.Mason,Existingandfuturedrugsforthetreatmentofthedarksideofaddiction,AnnualReviewofPharmacologyandToxicology.Rev.Pharmacool.Toxicol.56,2016,299–322.

[12]A.J.Shackman,C.M.Kaplan,M.D.Stockbridge,R.M.Tillman,D.P.M.Tromp,A.S.FoxandM.Gamer,Theneurobiologyofanxietyandattentionalbiasestothreat:Iimplicationsforunderstandinganxietydisordersin

adultsandyouth,JournalofExperimentalPsychopathology.Exp.Psychopathol.7,2016,311–342.

[13]A.J.Shackman,D.P.M.Tromp,M.D.Stockbridge,C.M.Kaplan,R.M.TillmanandA.S.Fox,Dispositionalnegativity:Aanintegrativepsychologicalandneurobiologicalperspective,PsychologicalBulletin.Bull.142,2016,

1275–1314.

[14]J.K.Mai,G.PaxinosandT.Voss,AtlasofthehumanbHumanBrain,3rded.,2007,AcademicPress;SanDiego,CA.

[15]J.D.Theiss,C.Ridgewell,M.McHugo,S.HeckersandJ.U.Blackford,Manualsegmentationofthehumanbednucleusofthestriaterminalisusing3TMRI,Neuroimage146,2017,288–292.

[16]S.N.Avery,J.A.ClaussandJ.U.Blackford,ThehumanBNST:Ffunctionalroleinanxietyandaddiction,Neuropsychopharmacology41,2016,126–141.

[17]T.D.GoodeandS.Maren,Roleofthebednucleusofthestriaterminalisinaversivelearningandmemory,LearningandMemory.Mem.24,2017,480–491.

[18]M.A.LebowandA.Chen,Overshadowedbytheamygdala:thebednucleusofthestriaterminalisemergesaskeytopsychiatricdisorders,Molecular.Psychiatry21,2016,450–463.

[19]A.J.ShackmanandA.S.Fox,Contributionsofthecentralextendedamygdalatofearandanxiety,JournalofNeuroscience.Neurosci.36,2016,8050–8063.

[20]R.M.Birn,A.J.Shackman,J.A.Oler,L.E.Williams,D.R.McFarlin,G.M.RogersandN.H.Kalin,Evolutionarilyconserveddysfunctionofprefrontal-amygdalarconnectivityinearly-lifeanxiety,Molecular.Psychiatry19,2014

915–922.

[21]S.E.Hyman,Backtobasics:luringindustrybackintoneuroscience,NatureNeuroscience.Neurosci.19,2016,1383–1384.

[22]C.W.Woo,L.J.Chang,M.A.LindquistandT.D.Wager,Buildingbetterbiomarkers:brainmodelsintranslationalneuroimaging,NatureNeuroscience.Neurosci.20,2017,365–377.

[23]D.Borsook,L.BecerraandR.Hargreaves,AroleforfMRIinoptimizingCNSdrugdevelopment,NatureReviews.DrugDiscovery.Rev.DrugDiscov.5,2006,411–424.

[24]D.Borsook,L.BecerraandR.Hargreaves,Biomarkersforchronicpainandanalgesia.Part1:theneed,reality,challengesandsolutions,DiscoveryMedicine.Med.11,2011,197–207.

[25]T.D.WagerandC.-W.Woo,fMRIinanalgesicdrugdiscovery,SciTranslMed.Transl.Med.7,2015,274fs276.

[26]E.A.Ferenczi,K.A.Zalocusky,C.Liston,L.Grosenick,M.R.Warden,D.AmatyaandK.Deisseroth,Prefrontalcorticalregulationofbrainwidecircuitdynamicsandreward-relatedbehavior,Science351,2016,aac9698.

[27]R.A.Gibbs,J.Rogers,M.G.Katze,R.Bumgarner,G.M.Weinstock,E.R.MardisandA.S.Zwieg,Evolutionaryandbiomedicalinsightsfromtherhesusmacaquegenome,Science316,2007,222–234.

[28]T.M.Preuss,Doratshaveprefrontalcortex?:TheRose-Woolsey-Akertprogramreconsidered,JCogNeurosci.Cog.Neurosci.7,1995,1–24.

[29]T.M.Preuss,Primatebrainevolutioninphylogeneticcontext,In:J.H.KaasandT.M.Preuss,(Eds.),EvolutionofNervousSytems4,2007,Elsevier;NY,3–34.

[30]S.P.Wise,Forwardfrontalfields:phylogenyandfundamentalfunction,TrendsinNeurosciencesNeurosci.31,2008,599–608.

[31]J.A.Oler,A.S.Fox,A.J.ShackmanandN.H.Kalin,Thecentralnucleusoftheamygdalaisacriticalsubstrateforindividualdifferencesinanxiety,In:D.G.AmaralandR.Adolphs,(Eds.),LivingwithoutanaWithoutan

Amygdala,2016,Guilford;NY.

[32]C.G.Jennings,R.Landman,Y.Zhou,J.Sharma,J.Hyman,J.A.MovshonandG.Feng,Opportunitiesandchallengesinmodelinghumanbraindisordersintransgenicprimates,NatureNeuroscience.Neurosci.19,2016,

1123–1130.

[33]T.KaiserandG.Feng,Modelingpsychiatricdisordersfordevelopingeffectivetreatments,NatureMedicine.Med.21,2015,979–988.

[34]G.F.AlheidandL.Heimer,Newperspectivesinbasalforebrainorganizationofspecialrelevanceforneuropsychiatricdisorders:thestriatopallidal,amygdaloid,andcorticopetalcomponentsofsubstantiainnominata,Neuroscience27,1988,1–39.

[35]W.J.Nauta,Fibredegenerationfollowinglesionsoftheamygdaloidcomplexinthemonkey,JournalofAnatomy.Anat.95,1961,515–531.

[36]T.Yarkoni,R.A.Poldrack,T.E.Nichols,D.C.VanEssenandT.D.Wager,Large-scaleautomatedsynthesisofhumanfunctionalneuroimagingdata,Nat.Methods8,2011,665–670.

[37]M.Andreatta,E.Glotzbach-Schoon,A.Muhlberger,S.M.Schulz,J.WiemerandP.Pauli,Initialandsustainedbrainresponsestocontextualconditionedanxietyinhumans,Cortex63,2015,352–363.

[38]D.Mobbs,R.Yu,J.B.Rowe,H.Eich,O.FeldmanHallandT.Dalgleish,Neuralactivityassociatedwithmonitoringtheoscillatingthreatvalueofatarantula,ProceedingsoftheNationalAcadademyofSciencesUSA.NationalAcad.

Sci.U.S.A.107,2010,20582–20586.

[39]L.H.Somerville,D.D.Wagner,G.S.Wig,J.M.Moran,P.J.WhalenandW.M.Kelley,Interactionsbetweentransientandsustainedneuralsignalssupportthegenerationandregulationofanxiousemotion,Cerebral.Cortex

23,2013,49–60.

[40]D.M.deCampoandJ.L.Fudge,Amygdalaprojectionstothelateralbednucleusofthestriaterminalisinthemacaque:comparisonwithventralstriatalafferents,JournalofComparativeNeurology.Comp.Neurol.521,2013

3191–3216.

[41]J.A.Oler,D.P.Tromp,A.S.Fox,R.Kovner,R.J.Davidson,A.L.AlexanderandJ.L.Fudge,Connectivitybetweenthecentralnucleusoftheamygdalaandthebednucleusofthestriaterminalisinthenon-humanprimate:neuronaltracttracinganddevelopmentalneuroimagingstudies,BrainStructFunct.Funct.222,2017,21–39.

[42]S.N.Avery,J.A.Clauss,D.G.Winder,N.Woodward,S.HeckersandJ.U.Blackford,BNSTneurocircuitryinhumans,Neuroimage91,2014,311–323.

[43]A.Kamali,H.I.Sair,A.M.Blitz,R.F.Riascos,S.Mirbagheri,Z.KeserandK.M.Hasan,Revealingtheventralamygdalofugalpathwayofthehumanlimbicsystemusinghighspatialresolutiondiffusiontensor

tractography,BrainStructFunct.Funct.221,2016,3561–3569.

[44]A.Kamali,D.M.Yousem,D.D.Lin,H.I.Sair,S.P.Jasti,Z.KeserandK.M.Hasan,Mappingthetrajectoryofthestriaterminalisofthehumanlimbicsystemusinghighspatialresolutiondiffusiontensortractography,

NeuroscienceLetters.Lett.608,2015,45–50.

[45]A.X.Gorka,S.Torrisi,A.J.Shackman,C.GrillonandM.Ernst,Intrinsicfunctionalconnectivityofthecentralnucleusoftheamygdalaandbednucleusofthestriaterminalis,Neuroimage2017,(inpress).

[46]J.A.Oler,R.M.Birn,R.Patriat,A.S.Fox,S.E.Shelton,C.A.BurghyandN.H.Kalin,Evidenceforcoordinatedfunctionalactivitywithintheextendedamygdalaofnon-humanandhumanprimates,Neuroimage61,2012,

1059–1066.

[47]R.M.Tillman,M.D.Stockbridge,B.M.Nacewicz,S.Torrisi,A.S.Fox,J.F.SmithandA.J.Shackman,Intrinsicfunctionalconnectivityofthecentralextendedamygdala,bioRxiv2017.

[48]S.Torrisi,K.O'Connell,A.Davis,R.Reynolds,N.Balderston,J.L.FudgeandM.Ernst,Restingstateconnectivityofthebednucleusofthestriaterminalisatultra-highfield,HumanBrainMapping.BrainMapp.36,2015,

4076–4088.

[49]J.L.FreeseandD.G.Amaral,Neuroanatomyoftheprimateamygdala,In:P.J.WhalenandE.A.Phelps,(Eds.),ThehumanaHumanAmygdala,2009,Guilford;NY,3–42.

[50]A.J.Shackman,A.S.Fox,J.A.Oler,S.E.Shelton,R.J.DavidsonandN.H.Kalin,Neuralmechanismsunderlyingheterogeneityinthepresentationofanxioustemperament,ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.NationalAcad.Sci.U.S.A.110,2013,6145–6150.

[51]A.S.Fox,S.E.Shelton,T.R.Oakes,R.J.DavidsonandN.H.Kalin,Trait-likebrainactivityduringadolescencepredictsanxioustemperamentinprimates,PLoSONEne3,2008,e2570.

[52]N.H.Kalin,S.E.Shelton,A.S.Fox,T.R.OakesandR.J.Davidson,Brainregionsassociatedwiththeexpressionandcontextualregulationofanxietyinprimates,Biological.Psychiatry58,2005,796–804.

[53]S.G.Costafreda,M.J.Brammer,A.S.DavidandC.H.Fu,Predictorsofamygdalaactivationduringtheprocessingofemotionalstimuli:ameta-analysisof385PETandfMRIstudies,BrainResearchReviews.Rev.58,2008,

57–70.

[54]P.Fusar-Poli,A.Placentino,F.Carletti,P.Landi,P.Allen,S.SurguladzeandP.Politi,Functionalatlasofemotionalfacesprocessing:avoxel-basedmeta-analysisof105functionalmagneticresonanceimagingstudies,JournalofPsychiatryandNeuroscience.PsychiatryNeurosci.34,2009,418–432.

[55]K.A.Lindquist,A.B.Satpute,T.D.Wager,J.WeberandL.F.Barrett,Thebrainbasisofpositiveandnegativeaffect:Eevidencefromameta-analysisofthehumanneuroimagingliterature,Cerebral.Cortex26,2016,

1910–1922.

[56]D.Sabatinelli,E.E.Fortune,Q.Li,A.Siddiqui,C.Krafft,W.T.OliverandJ.Jeffries,Emotionalperception:Mmeta-analysesoffaceandnaturalsceneprocessing,Neuroimage54,2011,2524–2533.

[57]K.Sergerie,C.ChocholandJ.L.Armony,Theroleoftheamygdalainemotionalprocessing:aquantitativemeta-analysisoffunctionalneuroimagingstudies,NeuroscienceandBiobehavioralReviews.Biobehav.Rev.32,2008

811–830.

[58]S.Hrybouski,A.Aghamohammadi-Sereshki,C.R.Madan,A.T.Shafer,C.A.Baron,P.SeresandN.V.Malykhin,Amygdalasubnucleiresponseandconnectivityduringemotionalprocessing,Neuroimage133,2016,98–110.

[59]D.T.Cheng,D.C.Knight,C.N.SmithandF.J.Helmstetter,Humanamygdalaactivityduringtheexpressionoffearresponses,BehavioralNeuroscience.Neurosci.120,2006,1187–1195.

[60]D.T.Cheng,J.RichardsandF.J.Helmstetter,Activityinthehumanamygdalacorrespondstoearly:ratherthanlateperiodautonomicresponsestoasignalforshock,Learning&Memory.Mem.14,2007,485–490.

[61]D.C.Knight,H.T.NguyenandP.A.Bandettini,Theroleofthehumanamygdalaintheproductionofconditionedfearresponses,Neuroimage26,2005,1193–1200.

[62]P.A.KragelandK.S.LaBar,Multivariateneuralbiomarkersofemotionalstatesarecategoricallydistinct,SocCognAffectNeurosci.Cogn.Affect.Neurosci.10,2015,1437–1448.

[63]K.S.LaBar,J.C.Gatenby,J.C.Gore,J.E.LeDouxandE.A.Phelps,Humanamygdalaactivationduringconditionedfearacquisitionandextinction:amixed-trialfMRIstudy,Neuron20,1998,937–945.

[64]S.vanWell,R.M.Visser,H.S.ScholteandM.Kindt,Neuralsubstratesofindividualdifferencesinhumanfearlearning:evidencefromconcurrentfMRI,fear-potentiatedstartle,andUS-expectancydata,CognAffect

BehavNeurosci.AffectBehav.Neurosci.12,2012,499–512.

[65]K.H.Wood,L.W.VerHoefandD.C.Knight,Theamygdalamediatestheemotionalmodulationofthreat-elicitedskinconductanceresponse,Emotion14,2014,693–700.

[66]L.J.Chang,P.J.Gianaros,S.B.Manuck,A.KrishnanandT.D.Wager,Asensitiveandspecificneuralsignatureforpicture-inducednegativeaffect,PLoSBiol.13,2015,e1002180.

[67]R.Sladky,N.Geissberger,D.M.Pfabigan,C.Kraus,M.Tik,M.WoletzandC.Windischberger,UnsmoothedfunctionalMRIofthehumanamygdalaandbednucleusofthestriaterminalisduringprocessingofemotional

faces,Neuroimage2017,inpress.

[68]R.P.Alvarez,N.Kirlic,M.Misaki,J.Bodurka,J.L.Rhudy,M.P.PaulusandW.C.Drevets,Increasedanteriorinsulaactivityinanxiousindividualsislinkedtodiminishedperceivedcontrol,Transl.Psychiatry5,2015,e591.

[69]L.Banihashemi,L.K.Sheu,A.J.MideiandP.J.Gianaros,Childhoodphysicalabusepredictsstressor-evokedactivitywithincentralvisceralcontrolregions,SocCognAffectNeurosci.Cogn.Affect.Neurosci.10,2015,474–485

[70]B.W.McMenamin,S.J.Langeslag,M.Sirbu,S.PadmalaandL.Pessoa,Networkorganizationunfoldsovertimeduringperiodsofanxiousanticipation,JournalofNeuroscience.Neurosci.34,2014,11261–11273.

[71]M.Davis,Neuralsystemsinvolvedinfearandanxietymeasuredwithfear-potentiatedstartle,AmericanPsychologist.Psychol.61,2006,741–756.

[72]R.P.Alvarez,G.Chen,J.Bodurka,R.KaplanandC.Grillon,Phasicandsustainedfearinhumanselicitsdistinctpatternsofbrainactivity,Neuroimage55,2011,389–400.

[73]L.Brinkmann,C.Buff,P.Neumeister,S.V.Tupak,M.P.Becker,M.J.HerrmannandT.Straube,Dissociationbetweenamygdalaandbednucleusofthestriaterminalisduringthreatanticipationinfemalepost-traumatic

stressdisorderpatients,HumanBrainMapping.BrainMapp.38,2017,2190–2205.

[74]D.W.Grupe,D.J.OathesandJ.B.Nitschke,Dissectingtheanticipationofaversionrevealsdissociableneuralnetworks,Cerebral.Cortex23,2013,1874–1883.

[75]M.J.Herrmann,S.Boehme,M.P.Becker,S.V.Tupak,A.Guhn,B.SchmidtandT.Straube,Phasicandsustainedbrainresponsesintheamygdalaandthebednucleusofthestriaterminalisduringthreatanticipation,

HumanBrainMapping.BrainMapp.37,2016,1091–1102.

[76]F.Klumpers,M.C.W.Kroes,J.BaasandG.Fernandez,Howhumanamygdalaandbednucleusofthestriaterminalismaydrivedistinctdefensiveresponses,JournalofNeuroscience.Neurosci.2017,(inpress).

[77]L.E.Williams,J.A.Oler,A.S.Fox,D.R.McFarlin,G.M.Rogers,M.A.JessonandN.H.Kalin,Fearoftheunknown:Uuncertainanticipationrevealsamygdalaalterationsinchildhoodanxietydisorders,

Neuropsychopharmacology40,2015,1428–1435.

[78]L.Lieberman,S.M.Gorka,S.A.ShankmanandK.L.Phan,Impactofpaniconpsychophysiologicalandneuralreactivitytounpredictablethreatindepressionandanxiety,ClinPsycholSci.Psychol.Sci.5(1),2017,52–63.

[79]D.Mobbs,J.L.Marchant,D.Hassabis,B.Seymour,G.Tan,M.GrayandC.D.Frith,Fromthreattofear:theneuralorganizationofdefensivefearsystemsinhumans,JournalofNeuroscience.Neurosci.29,2009,

12236–12243.

[80]J.M.Choi,S.PadmalaandL.Pessoa,Impactofstateanxietyontheinteractionbetweenthreatmonitoringandcognition,Neuroimage59,2012,1912–1923.

[81]W.S.Pedersen,N.L.Balderston,T.A.Miskovich,E.L.Belleau,F.J.HelmstetterandC.L.Larson,TheeffectsofstimulusnoveltyandnegativityonBOLDactivityintheamygdala,hippocampus:andbednucleusofthestria

terminalis,SocCognAffectNeurosci.Cogn.Affect.Neurosci.12,2017,748–757.

[82]L.Brinkmann,C.Buff,K.Feldker,P.Neumeister,C.Y.Heitmann,D.HofmannandT.Straube,(underreview/personalcommunication7/20/2017).Inter-individualdifferencesintraitanxietyshapethefunctionalconnectivitybetweenthebednucleusofthestriaterminalisandtheamygdaladuringbriefthreatprocessing,Neuroimage2017,(underreview/personalcommunication7/20/2017).

[83]F.Klumpers,M.C.Kroes,I.Heitland,D.Everaerd,S.E.Akkermans,R.S.OostingandJ.M.Baas,Dorsomedialprefrontalcortexmediatestheimpactofserotonintransporterlinkedpolymorphicregiongenotypeon

anticipatorythreatreactions,Biological.Psychiatry78,2015,582–589.

[84]C.H.Meyer,S.PadmalaandL.Pessoa,Trackingdynamicthreatimminence,bioRxiv2017.

[85]M.Davis,D.L.Walker,L.MilesandC.Grillon,Phasicvssustainedfearinratsandhumans:Rroleoftheextendedamygdalainfearvsanxiety,Neuropsychopharmacology35,2010,105–135.

[86]N.Z.GungorandD.Paré,Functionalheterogeneityinthebednucleusofthestriaterminalis,JournalofNeuroscience.Neurosci.36,2016,8038–8049.

[87]L.Brinkmann,C.Buff,K.Feldker,S.V.Tupak,M.P.I.Becker,M.J.HerrmannandT.Straube,Distinctphasicandsustainedbrainresponsesandconnectivityofamygdalaandbednucleusofthestriaterminalisduring

threatanticipationinpanicdisorder,PsychologicalMedicine.Med.2017,1–14,(inpress).

[88]C.Buff,L.Brinkmann,M.Bruchmann,M.P.I.Becker,S.Tupaka,M.J.HerrmannandT.Straube,ActivityalterationsinthebednucleusofthestriaterminalisandamygdaladuringthreatanticipationinGeneralized

AnxietyDisorder,SocialCognitiveandAffectiveNeuroscience.Cogn.Affect.Neurosci.2017,(inpress).

[89]A.N.Kaczkurkin,T.M.Moore,K.Ruparel,R.Ciric,M.E.Calkins,R.T.ShinoharaandT.D.Satterthwaite,Elevatedamygdalaperfusionmediatesdevelopmentalsexdifferencesintraitanxiety,Biological.Psychiatry80,2016,

775–785.

[90]A.L.Münsterkötter,S.Notzon,R.Redlich,D.Grotegerd,K.Dohm,V.AroltandU.Dannlowski,Spiderornospider?Neuralcorrelatesofsustainedandphasicfearinspiderphobia,Depressionand.Anxiety32,2015,

656–663.

[91]J.S.Stevens,Y.J.Kim,I.R.Galatzer-Levy,R.Reddy,T.D.Ely,C.B.NemeroffandK.J.Ressler,Amygdalareactivityandanteriorcingulatehabituationpredictposttraumaticstressdisordersymptommaintenanceafteracuteciviliantrauma,Biological.Psychiatry81,2017,1023–1029.

[92]T.Straube,H.J.MentzelandW.H.R.Miltner,Waitingforspiders:Bbrainactivationduringanticipatoryanxietyinspiderphobics,Neuroimage37,2007,1427–1436.

[93]M.A.Yassa,R.L.Hazlett,C.E.StarkandR.Hoehn-Saric,FunctionalMRIoftheamygdalaandbednucleusofthestriaterminalisduringconditionsofuncertaintyingeneralizedanxietydisorder,JournalofPsychiatric

Research.Psychiatr.Res.46,2012,1045–1052.

[94]A.J.Shackman,A.S.Fox,J.A.Oler,S.E.Shelton,T.R.Oakes,R.J.DavidsonandN.H.Kalin,Heightenedextendedamygdalametabolismfollowingthreatcharacterizestheearlyphenotypicrisktodevelopanxiety-relatedpsychopathology,Molecular.Psychiatry22,2017,724–732.

[95]A.S.Fox,R.C.Lapate,R.J.DavidsonandA.J.Shackman,Epilogue—Thenatureofemotion:Aaresearchagendaforthe21 stcentury,In:A.S.Fox,R.C.Lapate,A.J.ShackmanandR.J.Davidson,(Eds.),Thenatureofemotion.FundamentalqNatureofEmotion.FundamentalQuestions,2nded.,2017,OxfordUniversityPress;NewYork,(inpress)http://shackmanlab.org/wp-

content/uploads/2017/2007/fox_shackman_NoE_Epilogue_070917Final.pdf.

[96]D.E.Bradford,B.L.ShapiroandJ.J.Curtin,Howbadcoulditbe?:Alcoholdampensstressresponsestothreatofuncertainintensity,PsycholSci.Sci.24,2013,2541–2549.

[97]D.Mobbs,P.Petrovic,J.L.Marchant,D.Hassabis,N.Weiskopf,B.SeymourandC.D.Frith,Whenfearisnear:threatimminenceelicitsprefrontal-periaqueductalgrayshiftsinhumans,Science317,2007,1079–1083.

[98]D.Mobbs,C.C.Hagan,T.Dalgleish,B.SilstonandC.Prevost,Theecologyofhumanfear:survivaloptimizationandthenervoussystem,FrontNeurosci.Neurosci.9,2015,55.

[99]D.MobbsandJ.J.Kim,Neuroethologicalstudiesoffear,anxiety:andriskydecision-makinginrodentsandhumans,CurrentOpinioninBehavioralSciences.Opin.Behav.Sci.5,2015,8–15.

[100]L.H.Somerville,P.J.WhalenandW.M.Kelley,Humanbednucleusofthestriaterminalisindexeshypervigilantthreatmonitoring,Biological.Psychiatry68,2010,416–424.

[101]M.R.Munafò,B.A.Nosek,D.V.M.Bishop,K.S.Button,C.D.Chambers,N.P.duSertandJ.P.A.Ioannidis,Amanifestoforreproduciblescience,NatureHumanBehaviour.Hum.Behav.1,2017,21.

[102]R.A.Poldrack,C.I.Baker,J.Durnez,K.J.Gorgolewski,P.M.Matthews,M.R.MunafoandT.Yarkoni,Scanningthehorizon:towardstransparentandreproducibleneuroimagingresearch,NatureReviews.Neuroscience.Rev.

Neurosci.18,2017,115–126.

[103]D.SzucsandJ.P.Ioannidis,Empiricalassessmentofpublishedeffectsizesandpowerintherecentcognitiveneuroscienceandpsychologyliterature,PLoSBiol.15,2017,e2000797.

[104]P.A.Kragel,A.R.Knodt,A.R.HaririandK.S.LaBar,DecodingSpontaneousEmotionalStatesintheHumanBrainPLoSBiolspontaneousemotionalstatesinthehumanbrain,PLoSBiol.14,2016,e2000106.

[105]L.NummenmaaandH.Saarimaki,Emotionsasdiscretepatternsofsystemicactivity,NeuroscienceLetters,2017,(npress).

[106]L.Pessoa,Anetworkmodeloftheemotionalbrain,TrendsinCognitiveSciencesCogn.Sci.21,2017,357–371.

[107]A.J.ShackmanandA.S.Fox,Afterword:Hhowareemotionsorganizedinthebrain?,In:A.S.Fox,R.C.Lapate,A.J.ShackmanandR.J.Davidson,(Eds.),Thenatureofemotion.FundamentalqNatureofEmotion.FundamentalQuestions,2nded.,2017,OxfordUniversityPress;NewYork,NY.

[108]T.D.Wager,J.Kang,T.D.Johnson,T.E.Nichols,A.B.SatputeandL.F.Barrett,ABayesianmodelofcategory-specificemotionalbrainresponses,PLoSComputBiol.Biol.11,2015,e1004066.

[109]D.ParéandG.J.Quirk,Whenscientificparadigmsleadtotunnelvision:lessonsfromthestudyoffear,ScienceofLearning.Learn.2,2017,6.

[110]K.Yu,S.Ahrens,X.Zhang,H.Schiff,C.Ramakrishnan,L.FennoandB.Li,Thecentralamygdalacontrolslearninginthelateralamygdala,bioRxiv2017. (Yu,K.,Ahrens,S.,Zhang,X.,Schiff,H.,Ramakrishnan,C.,Fenno,L.,...Li,B.(2017).Thecentralamygdalacontrolslearninginthelateralamygdala.NatureNeuroscience,20,1680-1685.)

[111]J.P.Fadok,S.Krabbe,M.Markovic,J.Courtin,C.Xu,L.MassiandA.Luthi,Acompetitiveinhibitorycircuitforselectionofactiveandpassivefearresponses,Nature542,2017,96–100.

[112]S.Y.Kim,A.Adhikari,S.Y.Lee,J.H.Marshel,C.K.Kim,C.S.MalloryandK.Deisseroth,Divergingneuralpathwaysassembleabehaviouralstatefromseparablefeaturesinanxiety,Nature496,2013,219–223.

[113]D.Viviani,A.Charlet,E.vandenBurg,C.Robinet,N.Hurni,M.AbatisandR.Stoop,Oxytocinselectivelygatesfearresponsesthroughdistinctoutputsfromthecentralamygdala,Science333,2011,104–107.

[114]T.Isosaka,T.Matsuo,T.Yamaguchi,K.Funabiki,S.Nakanishi,R.KobayakawaandK.Kobayakawa,Htr2a-expressingcellsinthecentralamygdalacontrolthehierarchybetweeninnateandlearnedfear,Cell163,2015,

1153–1164.

[115]G.G.CalhoonandK.M.Tye,Resolvingtheneuralcircuitsofanxiety,NatureNeuroscience.Neurosci.18,2015,1394–1404.

[116]P.Tovote,J.P.FadokandA.Luthi,Neuronalcircuitsforfearandanxiety,NatureReviews.Neuroscience.Rev.Neurosci.16,2015,317–331.

[117]P.Botta,L.Demmou,Y.Kasugai,M.Markovic,C.Xu,J.P.FadokandA.Luthi,Regulatinganxietywithextrasynapticinhibition,NatureNeuroscience.Neurosci.18,2015,1493–1500.

[118]N.A.Crowley,D.W.Bloodgood,J.A.Hardaway,A.M.Kendra,J.G.McCall,R.Al-HasaniandT.L.Kash,Dynorphincontrolsthegainofanamygdalaranxietycircuit,CellRep.14,2016,2774–2783.

[119]S.Duvarci,E.P.BauerandD.Paré,Thebednucleusofthestriaterminalismediatesinter-individualvariationsinanxietyandfear,JournalofNeuroscience.Neurosci.29,2009,10357–10361.

[120]C.Glangetas,L.Massi,G.R.Fois,M.Jalabert,D.Girard,M.DianaandF.Georges,NMDA-receptor-dependentplasticityinthebednucleusofthestriaterminalistriggerslong-termanxiolysis,NatCommun.Commun.8,

2017,14456.

[121]J.H.Jennings,D.R.Sparta,A.M.Stamatakis,R.L.Ung,K.E.Pleil,T.L.KashandG.D.Stuber,Distinctextendedamygdalacircuitsfordivergentmotivationalstates,Nature496,2013,224–228.

[122]C.M.Mazzone,D.Pati,M.Michaelides,J.DiBerto,J.H.Fox,G.TiptonandT.L.Kash,AcuteengagementofGq-mediatedsignalinginthebednucleusofthestriaterminalisinducesanxiety-likebehavior,Molecular.

Psychiatry2017,inpress(inpress).

[123]C.Moller,L.Wiklund,W.Sommer,A.ThorsellandM.Heilig,Decreasedexperimentalanxietyandvoluntaryethanolconsumptioninratsfollowingcentralbutnotbasolateralamygdalalesions,BrainResearch.760,

1997,94–101.

[124]J.M.ZimmermanandS.Maren,Thebednucleusofthestriaterminalisisrequiredfortheexpressionofcontextualbutnotauditoryfreezinginratswithbasolateralamygdalalesions,NeurobiologyofLearningand

Memory.Learn.Mem.95,2011,199–205.

[125]J.M.Zimmerman,C.A.Rabinak,I.G.McLachlanandS.Maren,Thecentralnucleusoftheamygdalaisessentialforacquiringandexpressingconditionalfearafterovertraining,LearningandMemory.Mem.14,2007,

634–644.

[126]K.M.Tye,R.Prakash,S.Y.Kim,L.E.Fenno,L.Grosenick,H.ZarabiandK.Deisseroth,Amygdalacircuitrymediatingreversibleandbidirectionalcontrolofanxiety,Nature471,2011,358–362.

[127]C.M.Moreira,S.Masson,M.C.CarvalhoandM.L.Brandao,Exploratorybehaviorofratsintheelevatedplusmazeisdifferentiallysensitivetoinactivationofthebasolateralandcentralamygdaloidnuclei,Brain

ResearchBulletin.Bull.71,2007,466–474.

[128]A.Asok,A.Draper,A.F.Hoffman,J.Schulkin,C.R.LupicaandJ.B.Rosen,Optogeneticsilencingofacorticotropin-releasingfactorpathwayfromthecentralamygdalatothebednucleusofthestriaterminalisdisruptssustainedfear,Molecular.Psychiatry2017,(inpress).

[129]M.W.PittsandL.K.Takahashi,Thecentralamygdalanucleusviacorticotropin-releasingfactorisnecessaryfortime-limitedconsolidationprocessingbutnotstorageofcontextualfearmemory,Neurobiologyof

LearningandMemory.Learn.Mem.95,2011,86–91.

[130]C.A.Marcinkiewcz,C.M.Mazzone,G.D'Agostino,L.R.Halladay,J.A.Hardaway,J.F.DiBertoandT.L.Kash,Serotoninengagesananxietyandfear-promotingcircuitintheextendedamygdala,Nature537,2016,97–101.

[131]M.D.Lange,T.Daldrup,F.Remmers,H.J.Szkudlarek,J.Lesting,S.GuggenhuberandH.C.Pape,CannabinoidCB1receptorsindistinctcircuitsoftheextendedamygdaladeterminefearresponsivenesstounpredictable

threat,Molecular.Psychiatry22,2017,1422–1430.

[132]T.Daldrup,J.Remmes,J.Lesting,S.Gaburro,M.Fendt,P.MeuthandT.Seidenbecher,Expressionoffreezingandfear-potentiatedstartleduringsustainedfearinmice,GenesBrainBehav.14,2015,281–291.

[133]L.Miles,M.DavisandD.Walker,Phasicandsustainedfeararepharmacologicallydissociableinrats,Neuropsychopharmacology36,2011,1563–1574.

[134]D.L.WalkerandM.Davis,Roleoftheextendedamygdalainshort-durationversussustainedfear:atributetoDr.LennartHeimer,BrainStructFunct.Funct.213,2008,29–42.

[135]A.C.Felix-Ortiz,A.Beyeler,C.Seo,C.A.Leppla,C.P.WildesandK.M.Tye,BLAtovHPCinputsmodulateanxiety-relatedbehaviors,Neuron79,2013,658–664.

[136]A.C.Felix-Ortiz,A.Burgos-Robles,N.D.Bhagat,C.A.LepplaandK.M.Tye,Bidirectionalmodulationofanxiety-relatedandsocialbehaviorsbyamygdalaprojectionstothemedialprefrontalcortex,Neuroscience321,

2016,197–209.

[137]S.C.Lee,A.Amir,D.HauflerandD.Pare,Differentialrecruitmentofcompetingvalence-relatedamygdalanetworksduringanxiety,Neuron96,2017,81–88,e85(e85).

[138]N.H.Kalin,S.E.SheltonandR.J.Davidson,Theroleofthecentralnucleusoftheamygdalainmediatingfearandanxietyintheprimate,JournalofNeuroscience.Neurosci.24,2004,5506–5515.

[139]A.Bechara,D.Tranel,H.Damasio,R.Adolphs,C.RocklandandA.R.Damasio,Doubledissociationofconditioninganddeclarativeknowledgerelativetotheamygdalaandhippocampusinhumans,Science269,1995,

1115–1118.

[140]J.S.Feinstein,R.Adolphs,A.DamasioandD.Tranel,Thehumanamygdalaandtheinductionandexperienceoffear,CurrentBiology.Biol.21,2011,1–5.

[141]C.W.Korn,J.Vunder,J.Miró,L.Fuentemilla,R.HurlemannandD.R.Bach,Amygdalalesionsreduceanxiety-likebehaviorinahumanbenzodiazepine-sensitiveapproach-avoidanceconflicttest,Biological.Psychiatry82

2017,522–531.

[142]M.DavisandP.J.Whalen,Theamygdala:vigilanceandemotion,Molecular.Psychiatry6,2001,13–34.

[143]J.L.Gomez,J.Bonaventura,W.Lesniak,W.B.Mathews,P.Sysa-Shah,L.A.RodriguezandM.Michaelides,Chemogeneticsrevealed:DREADDoccupancyandactivationviaconvertedclozapine,Science357(6350),2017,

503–507.

[144]C.K.Kim,A.AdhikariandK.Deisseroth,Integrationofoptogeneticswithcomplementarymethodologiesinsystemsneuroscience,NatureReviewsNeuroscience.Rev.Neurosci.18,2017,222–235.

[145]B.L.Roth,DREADDsforNneuroscientists,Neuron89,2016,683–694.

[146]K.S.Smith,D.J.Bucci,B.W.LuikartandS.V.Mahler,DREADDs:Uuseandapplicationinbehavioralneuroscience,BehavioralNeuroscience.Neurosci.130,2016,137–155.

[147]J.S.Wiegert,M.Mahn,M.Prigge,Y.PrintzandO.Yizhar,Silencingneurons:Ttools,applicationsandexperimentalconstraints,Neuron95,2017,504–529.

[148]A.L.Garcia-Garcia,S.Canetta,J.M.Stujenske,N.S.Burghardt,M.S.Ansorge,A.DranovskyandE.D.Leonardo,SerotonininputstothedorsalBNSTmodulateanxietyina5-HAreceptor-dependentmanner,Molecular.

Psychiatry2017,(inpress).

[149]N.H.Kalin,S.E.SheltonandR.J.Davidson,Roleoftheprimateorbitofrontalcortexinmediatinganxioustemperament,Biological.Psychiatry62,2007,1134–1139.

[150]P.H.Rudebeck,R.C.Saunders,A.T.Prescott,L.S.ChauandE.A.Murray,Prefrontalmechanismsofbehavioralflexibility:emotionregulationandvalueupdating,NatureNeuroscience.Neurosci.16,2013,1140–1145.

[151]A.S.Fox,S.E.Shelton,T.R.Oakes,A.K.Converse,R.J.DavidsonandN.H.Kalin,Orbitofrontalcortexlesionsalteranxiety-relatedactivityintheprimatebednucleusofstriaterminalis,JournalofNeuroscience.Neurosci.30

2010,7023–7027.

[152]J.C.Motzkin,C.L.Philippi,J.A.Oler,N.H.Kalin,M.K.BaskayaandM.Koenigs,Ventromedialprefrontalcortexdamagealtersrestingbloodflowtothebednucleusofstriaterminalis,Cortex64,2015,281–288.

[153]N.H.Kalin,A.S.Fox,R.Kovner,M.K.Riedel,E.M.Fekete,P.H.RoseboomandJ.A.Oler,Overexpressingcorticotropin-releasinghormoneintheprimateamygdalaincreasesanxioustemperamentandaltersitsneural

circuit,Biological.Psychiatry80,2016,345–355.

[154]L.Regev,M.Tsoory,S.GilandA.Chen,Site-specificgeneticmanipulationofamygdalacorticotropin-releasingfactorrevealsitsimperativeroleinmediatingbehavioralresponsetochallenge,Biological.Psychiatry

71,2012,317–326.

[155]D.S.Grayson,E.Bliss-Moreau,C.J.Machado,J.Bennett,K.Shen,K.A.GrantandD.G.Amaral,Therhesusmonkeyconnectomepredictsdisruptedfunctionalnetworksresultingfrompharmacogeneticinactivationofthe

amygdala,Neuron91,2016,453–466.

[156]A.Afraz,E.S.BoydenandJ.J.DiCarlo,Optogeneticandpharmacologicalsuppressionofspatialclustersoffaceneuronsrevealtheircausalroleinfacegenderdiscrimination,ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.Natl.Acad.Sci.U.S.A.112,2015,6730–6735.

[157]M.A.Eldridge,W.Lerchner,R.C.Saunders,H.Kaneko,K.W.Krausz,F.J.GonzalezandB.J.Richmond,Chemogeneticdisconnectionofmonkeyorbitofrontalandrhinalcortexreversiblydisruptsrewardvalue?,Nature

Neuroscience.Neurosci.19(1),2016,37–39.

[158]A.Gerits,R.Farivar,B.R.Rosen,L.L.Wald,E.S.BoydenandW.Vanduffel,Optogeneticallyinducedbehavioralandfunctionalnetworkchangesinprimates,CurrentBiology.Biol.22,2012,1722–1726.

[159]M.Jazayeri,Z.Lindbloom-BrownandG.D.Horwitz,SaccadiceyemovementsevokedbyoptogeneticactivationofprimateV1,NatureNeuroscience.Neurosci.15,2012,1368–1370.

[160]Y.Nagai,E.Kikuchi,W.Lerchner,K.I.Inoue,B.Ji,M.A.EldridgeandT.Minamimoto,PETimaging-guidedchemogeneticsilencingrevealsacriticalroleofprimaterostromedialcaudateinrewardevaluation,

NatCommun.Commun.7,2016,13605.

[161]A.Yazdan-Shahmorad,C.Diaz-Botia,T.L.Hanson,V.Kharazia,P.Ledochowitsch,M.M.MaharbizandP.N.Sabes,Alarge-scaleinterfaceforoptogeneticstimulationandrecordinginnonhumanprimates,Neuron89,2016

927–939.

[162]W.R.Stauffer,A.Lak,A.Yang,M.Borel,O.Paulsen,E.S.BoydenandW.Schultz,Dopamineneuron-specificoptogeneticstimulationinrhesusmacaques,Cell166,2016,1564–1571,e1566(e1566).

[163]M.MichaelidesandY.L.Hurd,DREAMM:abiobehavioralimagingmethodologyfordynamicinvivowhole-brainmappingofcelltype-specificfunctionalnetworks,Neuropsychopharmacology40,2015,239–240.

[164]S.H.Park,B.E.Russ,D.B.T.McMahon,K.W.Koyano,R.A.BermanandD.A.Leopold,Functionalsubpopulationsofneuronsinamacaquefacepatchrevealedbysingle-unitfMRImapping,Neuron2017,(inpress).

[165]Y.Shiba,L.Oikonomidis,S.Sawiak,T.Fryer,Y.T.Hong,G.CockcroftandA.C.Roberts,Convergingprefronto-insula-amygdalapathwaysinnegativeemotionregulationinmarmosetmonkeys,Biological.Psychiatry2017,(inpress).

[166]T.M.Otchy,S.B.Wolff,J.Y.Rhee,C.Pehlevan,R.Kawai,A.KempfandB.P.Olveczky,Acuteoff-targeteffectsofneuralcircuitmanipulations,Nature528,2015,358–363.

[167]E.CarreraandG.Tononi,Diaschisis:past,presentfuture,Brain137,2014,2408–2422.

[168]M.Corbetta,M.J.Kincade,C.Lewis,A.Z.SnyderandA.Sapir,Neuralbasisandrecoveryofspatialattentiondeficitsinspatialneglect,NatureNeuroscience.Neurosci.8,2005,1603–1610.

[169]A.Fornito,A.ZaleskyandM.Breakspear,Theconnectomicsofbraindisorders,NatureReviews.Neuroscience.Rev.Neurosci.16,2015,159–172.

[170]J.S.Feinstein,R.AdolphsandD.Tranel,AtaleofsurvivalfromtheworldofPatientS.M,In:D.G.AmaralandR.Adolphs,(Eds.),LivingwithoutanaWithoutanAmygdala,2016,Guilford;NewYork.

[171]A.J.Shackman,A.S.FoxandD.A.Seminowicz,Thecognitive-emotionalbrain:Oopportunitiesandchallengesforunderstandingneuropsychiatricdisorders,BehavioralandBrainSciences.BrainSci.38,2015,e86.

[172]J.E.LeDoux,Anxious,UsingthebraintounderstandandtreatfearandaBraintoUnderstandandTreatFearandAnxiety,2015,Viking;NY.

[173]AmericanPsychiatricAssociation,DiagnosticandstatisticalmanualofmentaldStatisticalManualofMentalDisorders,5thed.),2013.

[174]J.Kagan,Brainandemotion,EmotionReview,2017,(inpress).

[175]D.Watson,K.StantonandL.A.Clark,Self-reportindicatorsofnegativevalenceconstructswithintheresearchdomaincriteria(RDoC):Aacriticalreview,JournalofAffectiveDisorders.Affect.Disord.216,2017,58–69.

[176]M.A.Fullana,B.J.Harrison,C.Soriano-Mas,B.Vervliet,N.Cardoner,A.Avila-ParcetandJ.Radua,Neuralsignaturesofhumanfearconditioning:anupdatedandextendedmeta-analysisoffMRIstudies,Molecular.

Psychiatry21,2016,500–508.

[177]M.L.Mechias,A.EtkinandR.Kalisch,Ameta-analysisofinstructedfearstudies:implicationsforconsciousappraisalofthreat,Neuroimage49,2010,1760–1768.

[178]E.A.Antoniadis,J.T.Winslow,M.DavisandD.G.Amaral,Roleoftheprimateamygdalainfear-potentiatedstartle:effectsofchroniclesionsintherhesusmonkey,JournalofNeuroscience.Neurosci.27(28),2007,

7386–7396.

[179]S.W.Derbyshire,A.K.Jones,F.Gyulai,S.Clark,D.TownsendandL.L.Firestone,Painprocessingduringthreelevelsofnoxiousstimulationproducesdifferentialpatternsofcentralactivity,Pain73,1997,431–445.

[180]D.W.Grupe,J.Wielgosz,R.J.DavidsonandJ.B.Nitschke,Neurobiologicalcorrelatesofdistinctpost-traumaticstressdisordersymptomprofilesduringthreatanticipationincombatveterans,PsychologicalMedicine.

Med.46,2016,1885–1895.

[181]P.Petrovic,K.Carlsson,K.M.Petersson,P.HanssonandM.Ingvar,Context-dependentdeactivationoftheamygdaladuringpain,JournalofCognitiveNeuroscience.Cogn.Neurosci.16,2004,1289–1301.

[182]J.C.Pruessner,K.Dedovic,N.Khalili-Mahani,V.Engert,M.Pruessner,C.BussandS.Lupien,Deactivationofthelimbicsystemduringacutepsychosocialstress:evidencefrompositronemissiontomographyand

functionalmagneticresonanceimagingstudies,Biological.Psychiatry63,2008,234–240.

[183]T.D.Wager,C.E.Waugh,M.Lindquist,D.C.Noll,B.L.FredricksonandS.F.Taylor,Brainmediatorsofcardiovascularresponsestosocialthreat:partI:Reciprocaldorsalandventralsub-regionsofthemedialprefrontal

cortexandheart-ratereactivity,Neuroimage47,2009,821–835.

Footnotes2Ithasbecomeincreasinglycommontodrawadistinctionbetween‘fear’and‘anxiety’(e.g.,[172].Yetlaypeople,scholarsinotherareas,theAmericanPsychiatricAssociation’sDiagnosticandStatisticalManual[173],andevendomain

expertsoftenusethesetermsininterchangeable,inconsistent,oroverlyinclusivewaysKagan,inpress;[12,13,175].Toavoidmisunderstanding,wehaveadoptedtheundifferentiatedterm‘fearandanxiety’(foramoredetailed

discussionofnomenclature,seeFoxetal.,inpress; (Fox,A.S.,Lapate,R.C.,Davidson,R.J.,&Shackman,A.J.(2018).Thenatureofemotion:Aresearchagendaforthe21stcentury.InA.S.Fox,R.C.Lapate,A.J.Shackman,&R.J.Davidson(Eds.),The

natureofemotion.Fundamentalquestions(2nded.).NewYork:OxfordUniversityPress.)[19].UnderstandingtheneurobiologyoffearandanxietyisboththeoreticallyandclinicallyimportantandrequiresthatwedeterminehowtheCe,the

BST,andotherbrainregionsworktogethertoevaluateandrespondtodifferentkindsofthreat.Weurgeotherresearcherstoeschewpotentiallyproblematicredefinitionsofeverydaylanguageand,instead,focusonthespecific

parametersofthethreat,thecontextinwhichitoccurs(e.g.,prospectsforescape),andtheneurobehavioralresponse(e.g.,timecourse),includingsubjectiveexperience.

3Interestingly,theamygdalaisnotconsistentlyrecruitedbyconditionedthreatcuesinhumanfMRIstudies[176,177],contrarytoelectrophysiologicalandmechanisticworkinrodents,monkeys,andhumans[178,139,116].Inaddition,

QueriesandAnswersQuery:Theauthornameshavebeentaggedasgivennamesandsurnames(surnamesarehighlightedintealcolor).Pleaseconfirmiftheyhavebeenidentifiedcorrectly.Answer:Yes

Query:Pleasecheckthepresentationofauthorfootnoteandcorrectifnecessary.Answer:OKas-is

Query:PleasenotethatthereferencestylehasbeenchangedfromaName–DatestyletoaNumberedstyleasperthejournalspecifications.Answer:OK

Query:“YourarticleisregisteredasbelongingtotheSpecialIssue/Collectionentitled“NSL”.IfthisisNOTcorrectandyourarticleisaregularitemorbelongstoadifferentSpecialIssuepleasecontactm.saravanan2@elsevier.comimmediatelypriortoreturningyourcorrections.”Answer:Isentanemail.Thisreviewshouldbeassignedtothespecialissueco-editedbyTorWagerandAlexShackman

Query:Pleasecheckthehierarchyofthesectionheadingsandcorrectifnecessary.Answer:Willdo

Query:Thissectioncomprisesreferencesthatoccurinthereferencelistbutnotinthebodyofthetext.Pleaseciteeachreferenceinthetextor,alternatively,deleteit.Answer:Seemyearliercommentsandnotes

Query:Oneormoresponsornamesandthesponsorcountryidentifiermayhavebeeneditedtoastandardformatthatenablesbettersearchingandidentificationofyourarticle.Pleasecheckandcorrectifnecessary.Answer:NationalInstitutesofHealth

Query:PleaseupdateRefs."[67],[122],[45],[76],[82],[87],[88],[95],[105],[128],[148],[164],[165],[174]"Answer:Allofthereferencesthathavechangedarenotedinmyothercomments

severalgroupshavereported‘de-activation’oftheamygdalainavarietyofaversiveparadigms[80,179,180,70,84,79,181–183].Themechanismsunderlyingtheseeffectsremainenigmatic.

4AlthoughautomatedanatomicallabelingtoolsdonotyetincludetheBST,probabilisticmasksarenowavailableforthesupracapsularportion[15,48],asshowninFig.1.ItcanalsobehelpfultoassesswhetherprovisionalBSTclusters

lieoutsideofneighboringregionsincorporatedinprobabilisticatlases(aBooleanNOTwithnucleusaccumbens,pallidum,caudate,putamen,thalamus,andventricles)(Klumpers,Kroes,Baas,&Fernandez,inpress (Klumpers,F.,Kroes,M.C.W.,Baas,J.,&Fernandez,G.(2017).Howhumanamygdalaandbednucleusofthestriaterminalismaydrivedistinctdefensiveresponses.JournalofNeuroscience,37,9645-9656.);[19].

Highlights

• Centralextendedamygdala(EAc)encompassesCeandBST.

• EAcisengagedbyarangeofthreat-relevantcues.

• Optogenetic/chemogeneticstudiesrevealkeymoleculesandmicrocircuits.

• Next-generationnonhumanprimatestudies….

• …bridgethegapbetweenmechanisticworkinrodentsandimagingstudiesinhumans.