22
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from orbit.dtu.dk on: Mar 15, 2021 The fascinating diatom frustule—can it play a role for attenuation of UV radiation? Ellegaard, Marianne; Lenau, Torben Anker; Lundholm, Nina; Maibohm, Christian; Friis, Søren Michael Mørk; Rottwitt, Karsten; Su, Yanyan Published in: Journal of Applied Phycology Link to article, DOI: 10.1007/s10811-016-0893-5 Publication date: 2016 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Ellegaard, M., Lenau, T. A., Lundholm, N., Maibohm, C., Friis, S. M. M., Rottwitt, K., & Su, Y. (2016). The fascinating diatom frustule—can it play a role for attenuation of UV radiation? Journal of Applied Phycology, 28(6), 3295–3306. https://doi.org/10.1007/s10811-016-0893-5

The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 15, 2021

The fascinating diatom frustule—can it play a role for attenuation of UV radiation?

Ellegaard, Marianne; Lenau, Torben Anker; Lundholm, Nina; Maibohm, Christian; Friis, Søren MichaelMørk; Rottwitt, Karsten; Su, Yanyan

Published in:Journal of Applied Phycology

Link to article, DOI:10.1007/s10811-016-0893-5

Publication date:2016

Document VersionPeer reviewed version

Link back to DTU Orbit

Citation (APA):Ellegaard, M., Lenau, T. A., Lundholm, N., Maibohm, C., Friis, S. M. M., Rottwitt, K., & Su, Y. (2016). Thefascinating diatom frustule—can it play a role for attenuation of UV radiation? Journal of Applied Phycology,28(6), 3295–3306. https://doi.org/10.1007/s10811-016-0893-5

Page 2: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

1

Thefascinatingdiatomfrustule–canitplayaroleforattenuationofUVradiation?

MarianneEllegaard1,TorbenLenau2,NinaLundholm3,ChristianMaibohm4,SørenMichaelMørkFriis4,KarstenRottwitt4,YanyanSu1

1DepartmentofPlantandEnvironmentalSciences,UniversityofCopenhagen,Thorvaldsensvej40,1871Frederiksberg,[email protected];phone:+4535320024

2DepartmentofMechanicalEngineering,TechnicalUniversityofDenmark,Produktionstorvet,Building426,2800KongensLyngby,Denmark

3TheNaturalHistoryMuseumofDenmark,UniversityofCopenhagen,Sølvgade83S,DK-1307CopenhagenK,Denmark

4DepartmentofPhotonicsEngineering,TechnicalUniversityofDenmark,ØrstedsPlads343,2800KongensLyngby,Denmark

Keywords:UVprotection,photonics,photobiology,nano-patterning,diatom

Reference: Ellegaard, M., Lenau, T. A., Lundholm, N., Maibohm, C., Friis, S. M. M., Rottwitt, K., & Su, Y. (2016). The fascinating diatom frustule—can it play a role for attenuation of UV radiation? Journal of Applied Phycology. doi:10.1007/s10811-016-0893-5

Page 3: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

2

Abstract

Diatomsareubiquitousorganismsinaquaticenvironmentsandareestimatedtoberesponsiblefor20-25%ofthetotalglobalprimaryproduction.Auniquefeatureofdiatomsisthesilicawall,calledthefrustule.Thefrustuleischaracterizedbyspeciesspecificintricatenano-patterninginthesamesizerangeaswavelengthsofvisibleandultraviolet(UV)light.Thishaspromptedresearchintothepossibleroleofthefrustuleinmediatinglightforthediatoms´photosynthesisaswellasintopossiblephotonicapplicationsofthediatomfrustule.Oneofthepossiblebiologicalroles,aswellasareaofpotentialapplication,isUVprotection.InthisreviewweexplorethepossibleadaptivevalueofthesilicafrustulewithfocusonresearchontheeffectofUVlightondiatoms.WealsoexplorethepossibleeffectofthefrustulesonUVlight,fromatheoretical,biologicalandanappliedperspective,includingrecentexperimentaldataonUVtransmissionofdiatomfrustules.

Introduction

Thediatomsareuniqueamongalgaeinthatthecelliscompletelyenclosedinacontinuoussilica-basedcover,thefrustule.Thefrustuleisasarulebuiltmoreorlesslikeapetridish,withaninnerandoutervalve,connectedbygirdlebands(Fig.1).Diatomsarealsospecialamongeukaryoticmicroalgaeasduetothefrustuletheyhaveafixedcellshape,andtheylackflagellainthevegetativestages.Diatomsareubiquitousorganismsinaquaticenvironmentsandcanbedominantprimaryproducersinallaquatichabitats,includingice.Theyarethusestimatedtoberesponsiblefor20-25%ofthetotalglobalprimaryproduction(Nelsonetal.1995).Diatomspeciesdiversityisfarfromdiscoveredatpresent.Some10,000specieshavebeenformallydescribed,butitisestimatedthattherealnumberofspeciesis10-20timeshigher(Guiry2012).Traditionally,speciesdescriptionshavebeenbasedondetailsintheintricatenanoscalepatternofholesinthefrustuleandeachspeciesthushasitsowndistinctpatternwhichisreproducedatcelldivision.Whilebenthicdiatomshaveevolvedaspecializedmodeofmovementviaaslitthroughthefrustulecalledtheraphe,plankticdiatomsarenon-motileandarethereforedependentonbuoyancyandwatermovementtostaysuspendedinthephoticzone.Asthefrustuleisgenerallydenserthanbothseawaterandfreshwater,itwouldseemtobeanimpedimenttophotosyntheticorganismsdependentonstayingupinthephoticzone.Possibleadaptiverolesofthediatomfrustulehavethereforebeenexplored,fromthepointofviewthatthefrustulemustgiveadaptiveadvantagesthatoff-setthisseemingdisadvantage.Wewillfocusontheevidenceforaroleinprotectingthediatomcellfromultravioletradiation(UV)damage.Thatthefrustuleinteractswithlightisclearalreadywhenstudyingfrustulesunderthelightmicroscope(Fig.2b).This,andthefactthatsomefrustules,suchasthatshowninFig.2b,lookverysimilartoaverythinsliceofaphotoniccrystalfiberormicro-structuredopticalfiber,haspromptedintensiveresearchintopossiblephotonicapplicationsofdiatomfrustule.InthisreviewwewillfocusonpotentialforUVprotectiveapplications.

Review

Thesuggestedadaptivefunctionsofthediatomfrustule

Thediatomfrustulehasbeensuggestedtobeaby-productofotheradaptationsratherthangivinganadaptiveadvantageperse.Thussomeauthorsstatethatitismetabolicallycheaptoproducerelativetoothertypesofcellcovering(only2%oftheenergybudgetofthecell;Raven1983)althoughotherauthors

Page 4: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

3

questionthis(FinkelandKotrc2010;Lavoieetal2016).Medlin(2002)putforwardthehypothesisthat,becausesilicametabolismplaysanimportantroleinresistingaging,thesilicafrustuleismainlyaby-productofthis.Otheradaptiveadvantageshavebeensuggested,includingadeliberateincreaseofthedensityofcells,alteringsinkingrateviaspinedevelopment,resistingturgorchangesandresistancetoparasites(reviewedbyRavenandWaite2004).However,thesuggestionswhichhavereceivedmostsupportare:1.defenseagainstpredation,2.proton/pHbufferingand3.modulationoflightwithinthecell.Totestthefirsthypothesis(defenseagainstpredation)Hammetal.(2003)performedastudywheretheytestedthestrengthofdifferentlyshapedfrustules(threespecies),usingglassmicroneedlestopressthecellandmeasuringtheforcenecessarytobreaksinglecells.Theyconcludethatallthreeshapesofcellstestedareremarkablystrongduetotheirarchitectureandthematerialpropertiesofthesilica.Thesecondhypothesis,pHbuffering,hasreceivedsupportfrombothlaboratorytestingoftheefficacyofdiatombiosilicaasapHbuffer(MilliganandMorel2002)andfromtheorieslinkingmajoreventswithintheevolutionaryhistoryofdiatomstochangesinatmosphericCO2levels,andtherebypHinaquaticsystems(e.g.Armbrust2009).Athirdsuiteofhypothesesdealwithdifferentaspectsofcontrollingthelightregimewithinthediatomcell(Fuhrmanetal.2004),byfunctioningasaphotoniccrystal(Fuhrmanetal.2004),byscatteringvisiblelight(RavenandWaite2004)orbyreflecting,absorbingorscatteringlightintheUVrange(below380nm;Davidsonetal.1994;RavenandWaite2004).InthisreviewwefocusonthepossibleroleoffrustulesinmodulatingUVlight,aswellasdiscussingwhichcharacteristicsofthediatomfrustulearecentraltothephotoniceffects.

Photonicapplicationsordiatombiology?

Whendiscussingpotentialphotonicutilizationsofdiatomfrustules,thelightenvironmentthatdiatomsareadaptedtoundernaturalconditionsshouldbetakenintoaccount.Whenlightenterswater,itbecomespartiallypolarizedandisabsorbedmorestronglythaninairinawavelengthdependentway.Red,orangeandyellowarequicklyabsorbedbythewater,onlypenetratingmetersbelowthesurfacewhilebluelightisnotstronglyabsorbedbywaterandcanpenetratemuchdeeper,dependingontheconcentrationofdissolvedmatterandparticles(Depauwetal.2012;seealsoFig.2).AcoupleofmetersbelowthesurfacealmosthalfoftheintegratedlightintensitywillbeintheUVspectralregion,i.e.below400nm,comparedtoonlyabout3%atgroundlevel(JohnsenandSosik2004).DiatomsthusliveinalightenvironmentdominatedbyUVandbluelight,supportingtheideathatthefrustulemayplayaroleinUVlightprotection.Asmoststudiesaimedatcharacterizingthephotonicpropertiesofdiatomfrustulesandelucidatingtheirindustrialpotentialaredoneonrinsedfrustules,theorganicmaterialinthecellcontentistakenintoaccountinneithermeasurementsnorsimulations.Further,mostofthesestudiesareperformedorsimulatedinair,contrarytotheaquaticnaturalhabitatofthediatoms(althoughthereareexceptions,e.g.DeTommasietal.2010;DiCaprioetal.2014;Hsuetal.2012;LeDuffetal.2016).Thereforethecalculatedeffectsoftheseexperimentsandsimulationsapplytothefrustule,andforuseinapplicationsofrinsedfrustules,butcannotgivefullbiologicalanswersastohowthelivingdiatomsbenefitbytheinteractionsbetweenthefrustuleandlight.Thesedifferencesbetweenmeasurementsonrinsed(andoftenseparated)frustulesandthediatominitsnaturalhabitataresummarizedinFig.2.

Anotheraspecttobeconsideredistheorientationofthefrustule.Undernaturalconditions,inaquaticplankticenvironments,lightwillhitthediatomcellfromtheoutsideofthefrustule(theconvexside),butsomeofthelightmayalsobeaffectedbythe(concave)insideoftheoppositevalveasitpassesthroughthe

Page 5: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

4

cell.Underexperimentalconditionstotesttheeffectofthefrustulenano-patternonincidentlight,thefrustuleswilltypicallyhavebeencleanedoforganicmaterial(cellcontentandanyorganiccovering)andthefrustulewillbeseparatedintoitsparts–thetwovalvesandthegirdlebands(seeFig.1).Typically,measurements(andsimulations)havebeendoneonasinglevalve.Itisnotalwaysclearfromwhichdirectionthelightishittingthevalve,andthequestionishowtheorientationofthevalveaffectsthemeasurements.Dothephotonicpropertiesdifferdependingonwhethertheincidentlighthitsthevalvefromwhatwastheoutsideortheinsideofthecell?Formeasurementsonalayeroffrustules,anotherquestioniswhetheristhereapatterntohowasinglevalvewillnormallyfallwheninadropofwateroranotherliquidmatrix.Basedonthe(sparse)literaturetodateonthis,andonourownunpublisheddata,theanswertoboththesequestionsappearstobeyes.Preliminaryresultsindicatethatinadropofliquidthevalvesfallapproximatelyonethirdmoreoftenwiththeinsideup(Gösslingetal.pers.comm.).Thiscan,however,becontrolledasshownbyWangetal.(2012),wherethevalvesaremadetoallfaceinthesamedirectionbysuspensionandsubsequentlyextractingtheliquid.Wehaveobserveddifferencesinourmeasurementswithregardtointerferencepoints,dependentonthewaythevalvesarefacing(unpublisheddata).ThisisingoodagreementwithfindingsbyRomannetal.(2015),wherenointerferencepoints(seee.g.Maibohmetal.2015a)areobservedwhenthevalveisfacingwiththeoutsidetowardsthemicroscopeintransmissionexperiments.

EffectsofUV-light

UVlightisingeneraldetrimentaltolivingorganisms(althoughnearUVlightmaybephotosyntheticallyactive;XuandGao2010)aswellasmanyman-madematerials;theshorterthewavelength,themoredamaging(withtheeffectfurtherenhancedbyresonantbehavioratspecificwavelengthsfrompossibleabsorptionpeaks).EffectsofincreasedUVlevelsonlivingdiatomshavebeenstudiedinachangedglobalclimatescenariosincehuman-inducedreductionsintheozonelayerofthestratospherewerereporteddecadesago(e.g.Wuetal.2014).Polarregions(receivingincreasingUVlight)aswellasmountainhabitats(naturallyhighUVradiation)havebeenthepreferredhabitatsforUVresearchonalgae.AsmostUVradiationisnotphotosyntheticallyactive,cellstrategieswouldthusbeexpectedtobeeithertoavoidortolerateUVradiation(HolzingerandLütz2006).AUV-inducedeffectisdependentonthelevelofUV,thedurationoftheexposure,thespectralcompositionofthelightintheUVrange,thesensitivityoftheorganism(s)investigated,physiologicalstatus,ambientnutrientconditionsandtemperature(Bumaetal.1996;CullenandLesser1991;LitchmanandNeale2005;Hessenetal.2012).UVradiationharmscellsthroughabsorptionbynucleicacidsandproteinsandhenceinhibitingDNAtranslation,replicationandtranscription(Bumaetal.1995;HolzingerandLütz2006).ButcomparisonsamongstudiesofUVeffectsonalgaearehamperedbydifficultiesincomparingradiationconditionswhichcannotberecalculatedandthuscompared(HolzingerandLütz2006).Thus,infuturestudiesofthepossibleeffectsofthefrustuleonUVlight,itwouldbeadvantageoustostandardizethemethodofregisteringUVintensityandwavelength.

AdecreaseinphotosynthesishasbeenthemostprominentUVeffectinalgae(Waringetal.2006;HolzingerandLütz2006),anddecreasesinbiomassand/orgrowthrateofdiatomsexposedtoUVradiationarecommonlyreported(e.g.Reizopoulouetal.2000;Nahonetal.2010),buttheeffectandtherecoverycapabilityafterUVexposuresapparentlyvaryamongspecies(Bumaetal.1996),asspeciescompositioninexposedcommunitiesarereportedtochangewithtime(Reizopoulouetal.2000).ThisagreeswithvaryingeffectsofUVamongcultureddiatomspeciesbothwithregardtoresponseandsensitivitytoUV(Karentzet

Page 6: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

5

al.1991;Davidsonetal.1994;Waringetal.2006;Hessenetal.2012;Scholzetal.2014),evenamongspecieswithinagenus(Hargravesetal.1993).ThishasraisedspeculationsastowhydifferencesinUV-effectsvarymoreindiatomsthaninotheralgalgroupswheretheresponsescanoftenbecorrelatedtocellsizeduetosizerelatedeffectsonself-shadingandUV-absorbingcompounds(Waringetal.2006andreferencesherein).Onepossibleexplanationcouldbethatthisdifferenceisduetospeciesspecificdifferencesinthepatternofholesorothercharacteristicsofthefrustule.

ChronicUV-Bexposureondiatomshasoftenbeenrelatedtoincreasesincellvolume(duetoadecouplingbetweencellgrowthandcelldivision)anddecreasesingrowthrates(Karentzetal.1991;Bumaetal.1995;1996;HolzingerandLütz2006andreferencestherein;Nahonetal.2010;Scholzetal.2014).Anincreaseinnumberofchloroplastsandthusincellularpigmentcontenthasbeenobservedinsomediatoms(Bumaetal.1996),whereasothershavefoundareductioninpigmentation(Lohmannetal.1998).Othersagainshowedanincreaseinpotentialphotoprotectivepigmentslikediadinoxanthinanddiatoxanthin(Döhler1995;Leuetal.2006).Inastudyonlong-termacclimation,severaldiatomspeciesacclimatedbychangingphotosynthesisrelatedpigments,whereasonespecies,Amphoracoffeaeformis,lackedthesepigmentchanges(Rechetal.2005).IthasbeensuggestedthatUVabsorbingcompounds,mycosporine-likeaminoacids(MAAs),chemicallyboundtothediatomfrustuleprovidediatomswithUVprotectingproperties(Ingallsetal.2010),andtheyexplainalackofincreaseinMMAsindiatomsinresponsetoUV,incontrasttoflagellates(Davidsonetal.1994),toberelatedtothetightassociationwiththefrustule(Ingallsetal.2010).ThishypothesisissupportedbyhighMAAcontentintwocentricdiatomspeciesrelatedtolackofUVeffectonphotosynthesis,asopposedtolowerMAAconcentrationsintwopennatediatomsaffectedbyUV(Helblingetal.1996).

Nitrate-limitationincreasesthesensitivityofdiatomstoUVlightduetoadecreaseinphotochemicalquantumyield(CullenandLesser1991;Scholzetal.2014).Moreover,ithasbeenreportedthatthesensitivityofdiatomstoUVradiationcouldbeincreasedbyelevatedCO2duetoareductioninrelativeelectrontransportrate(Wuetal.2012).AnadditionalstressfordiatomshasbeenobservedundercertainsalinityconditionscombinedwithUVradiation,andthiscombinedeffectisspecies-dependent(Döhler1984;Rijstenbil2005).

InspiteofthereportedeffectsofUVradiation,somestudiesfindnoeffectofUVondiatoms,orlesseffectthanonflagellates(Villafaneetal.1995;Vernet2000;LitchmanandNeale2005;Guihéneufetal.2010;Hessenetal.2012:Wuetal.2012).Sofarnoexplanationhasbeenfoundforthisdifference.WehypothesizethatitisthediatomfrustuleanditscharacteristicswhichreflectorabsorbtheUVandthereforeprotectthediatomcellsagainstUV.Thisissupportede.g.byobservationsofdiatomsnotrespondingtoUVwithachangeinfattyacidcompositionorhavingverylowamountsofMMAsincontrasttomanyothermicroalgaelikedinoflagellates(Jeffreyetal.1999,Guihéneufetal.2010andreferencesherein).AlsoJeffreyetal(1994)underlinedthatthesurvivalofdiatomsexposedtoUVdidnotcorrelatewithabsorptionbye.g.pigments.Potentialindustrialapplicationsofdiatomfrustules

Similartootheralgalgroups,potentialindustrialapplicationsofdiatomsincludebiofuels(e.g.Levithanetal.2014),bioplastics(Hempeletal.2011)andotherusesoftheorganiccellcontents(Bozartetal.2009).Uniqueamongthealgae,however,istheadditionalpotentialforapplicationsofinorganicmaterial:the

Page 7: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

6

silicafrustule.Geologicaldepositsrichinprehistoricdiatomremains,calleddiatomaceousearth,arealreadyindustriallyexploitedfore.g.filtering(ParkinsonandGordon1999).

Inrecentdecades,diatomfrustuleshavebeenthefocalpointforintenseopticalstudiesduetotheirinherentstronginteractionwithlight(includingUVradiation)andpotentialindustrialusesofspecificcharacteristics.Theideasforpotentialapplicationsforthesilicafrustuleincludephotoniccrystals(Fuhrmanetal.2004,Yamanakeetal.2008;deStefanoetal.2009),chemicalsensors(deStefanoetal.2009),microlenses(deStefanoetal.2007a),enhancedlightharvestinginsolarcells(Ottesen2011),lightfocusingcapabilitiesandapplicationsofthis,suchasopticalswitches(DeTommasietal.2010;Maibohmetal.2015a;Ferraraetal.2014).DuetothedestructiveeffectsofUVlightonlivingorganismsandmanytypesofmaterials,andduetotheunwantedeffectsassociatedwithmanytypesofUVprotectionthereisgreatinterestinfindingnovelmeansofUVprotectionwithoutdeleteriousaspects.UVprotectionisimportante.g.toprotectpolymersfromdeteriorationwhenexposedtosunlightandfortheprotectionofhumanskininsunlotions.ThepotentialadvantageofusingdiatomsasUV-filterswouldbethatitmaybepossibletoselectivelyreflectorabsorbcertainwavelengths.Suchafilterthereforehasthepotentialnottoimpactthecolorofthematerial.Itwouldforinstancebepossibletomakedurabletransparentpolymersandlacquerswithlastingpropertiesinsunlight.ThemosteffectiveUV-filterusedforpolymersiscarbonblackwhichabsorbsnotonlyUVbutalsootherwavelengthsoflightandthereforeappearblack(Coleman2011).ThereareotheradditivestopolymersthatpreventdegradationfromUV-lightincludingHinderedAmineLightStabilizers(HALS)thatworkbytrappingfreeradicalsformedduringphoto-oxidationofthepolymer(Gijsman2011)thusextendingthelifetimeofthepolymer.SunlotionstypicallyprotectstheskinfrombothUVA(400-320nm)andUVB(320-290nm)light.

Parameterscentraltophotonicapplicationsofdiatomfrustules

Forapplicationpurposesitisnotnecessarytoknowthefullinteractionbetweenthelightandthefrustule.Itisenoughtoknowtheeffectswhichareimportanttotheapplicationneeded.

Developmentofsophisticatedmethodsandequipment,whichhaverevealedmaterialcompositionandthreedimensional(3D)structure,havestrengthenedthepotentialforapplicationsofthefrustule.Whenlightinteractswiththefrustule,someeffectscaneasilybeobservedinalightmicroscope(Fig.2b,c).Theintricate,semitransparent,nano-structuredfrustulecauseslighttobetransmittedormultiplereflectedfromthedifferentinterfacesgivingrisetophaseshiftsaswellasfrequencydependentconstructiveanddestructiveinterference(ParkerandTownlee2007;Gordonetal.2009;Maibohmetal.2015a,b).Inadditiontotheseeasilyobservedopticalphenomenamoresophisticatedopticaleffectshavebeentheorized,i.e.wave-guidingandband-gaps(Fuhrmannetal.2004).Ifdiatomfrustulesaretobeusedinindustrialapplicationsweneedtodeterminewhichaspectsarecentralforthedesiredapplication.Althoughthereishugemorphologicalvariationamongtheindividualspeciesofdiatoms,thisreviewdiscusscommontraitsaswellasidentifydifferences(seee.g.Maibohmetal.2015b)whichcanbeexploitedforapplicationpurposes.

Structuralpropertiesofthediatomfrustule

Diatomscanroughlybedividedintotwodifferentgroupsbasedontheirvalvesymmetry,thecentrics(radiallysymmetrical)andthepennates(bilaterallysymmetrical).Forbothforms,thevalveisavery

Page 8: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

7

complex3Dstructure,asseeninFig.1andingraphenereproductions(Panetal.2014).ThesizefeaturesofnanopatternofthevalvevaryfromspeciestospeciesandareintheorderofwavelengthsofUV-Ctonearinfraredlight.Thisincludesphotosyntheticallyactiveradiation(PAR)(400-700nm),indicatingthatPARlightwillbestronglyinfluencedwhenitinteractswiththefrustule.ThisisseenwhenlightinthePARwavelengthrangeistransmittedthroughthefrustule;theporestructureinteractswiththelightandcreatesawavelengthdependentinterferencepattern(DeTommasietal.2010;Maibohmetal.2015a).Thestructurealsointeractswiththelightinawaythatitredirectslighttowardsthecellinteriorevenwhenlightisstrikingthefrustuleatanotheranglethannormalincidence(Maibohmetal.2015c).

Materialpropertiesofthediatomfrustule

Thefrustulematerialispredominantlysilicaprecipitatedbydiatomsfromsilicicacidwithspecies-specificsizeandpatternofholes.ThespecificsilicastructureofthefrustuleisusualcharacterizedasamorphoushydratedsilicabuttherehavealsobeenindicationsfromX-raydiffractionstudiesthatpartofthefrustulecouldbecomposedofα-quartzwithagrainsizeoffewtenthsofmicrometers(Goswamietal.2012).Inadditiontothis,traceimpuritiessuchasaluminum,magnesium,ironandtitaniumcanbepartofthefrustulematerial(Butcheretal.2005).Thesetraceimpuritiesaretakenupfromthewaterenvironmentandincorporatedintothefrustulebythediatomcell.

Simulationoflightinteractionwiththefrustulestructure

ThetransmissionoflightthroughadiatomvalvecanbesimulatedusingMaxwell’sequations,whichgovernthepropagatingelectromagneticfield.Ageometricalopticsapproachisinsufficientbecause,asdescribedabove,thestructuresofthevalveareonthesamescaleasthewavelengthofvisibleandUVlight;hence,diffractionplaysanimportantrole,andsomeinterferencepatternsarereadilyobservedalreadyunderanormallightmicroscope(Fig.2b,c).Accuratenumericalmodellingofthethree-dimensionallystructuredvalverequiresmanycomputationalresourcessoitisdesirabletosimplifythemodelofthevalveandfocusonfewofitsfeatures.Forsuchsimulations,thevalveisgenerallyassumedtobeaplaneglasssurfacewithapatternofairholes,whichresemblesthelargerholesononesideofthevalveasseeninFig.2b.Somestudieshavealsomodelledtheotherplaneofthevalve,eitherincludingthemoreintricateholestructure(DeTommasietal.2010),orasahomogeneoussurfaceabsentofholes(Yamanakaetal.2008).Intheliterature,twodifferentschemesofsimulationapproacheshavebeenpursued:oneconsidersthetransmissionoflightthroughtheplaneofthevalvewherelightpassesthroughtheholes,andthesilicawallsareconsideredopaqueorpartlytransparent;theedgesoftheholesareconsequentlyresponsiblefordiffractionofthepropagatingbeam.ThetheorybehindthisandanumericalalgorithmtocarryoutthisapproachwasdescribedbyDelenetal.(1998).Theaimofthisapproachistoexplainthelens-lesslightfocusingobservedbyDeStefanoetal.(2007a),whereitwasfoundthatthearrayoflargerholesinthevalveplaysacriticalroleinunderstandingthecomplexdiffractionpatternbehindthevalve;thesmallerholesontheotherplaneofthevalve(inthecribrum)wereignoredinthatmodel.Later,thesameapproach,includingthesmallerholeshowever,wasusedtopredictthat,forvisiblelight,multiplefocuspointsarefoundascloseas100-200µmfromtheplaneofthevalve,butthatnosuchfocusingisfoundforshorterwavelengthsintheUVregime(DeTommasietal.2010).Whilethelatterpredictionremainsunconfirmedbyexperimentalinvestigations,arecentstudyshowedexcellentagreementbetweenexperimentaldataandtheoryandwithoutthesmallerholesinthevisibleregime(Maibohmetal.2015a),thusvalidatingthisnumericalapproach.

Page 9: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

8

TheothercommonapproachfoundintheliteratureisthepropagationoflightintheplaneofthevalveasfirstpresentedbyFuhrmannetal.(2004);itisshownthatthevalvemayactasawaveguideinwhichtheopticalpropertiesaredeterminedbytheperiodicstructureofthelargeairholesinthedirectionofpropagation.Suchastructuremayleadtophotonicbandgaps(PBG;seelater)dependingontheparametersofthespecificstructureandtherefractiveindexcontrastbetweenthevalvematerialandthematerialsintheholes(airorwater).ThestudybyFuhrmannetal.(2004)andalaterstudybyKieuetal.(2014)shownoPBGforaccuratemodelsofdiatomfrustules.Ontheotherhand,ithasbeenshownthatiftherefractiveindexofthefrustuleisincreasedto2.4(whichmayberealizedbymaterialsubstitutionasmentionedbelow)afullPBGisfoundatawavelengthof2.2µm(DeStefanoetal.2009).Thissuggeststhatthefrustulemayfinduseinindustryasanewopticalchemicalsensor(DeStefanoetal.2009).

BesidesthediscoveryofPBGs,thestudyofphotonicbandsgivesmoreinformationabouttheinteractionoflightwiththediatomfrustule:inanotherstudy,strongabsorptionwasfoundintheblueregionofvisiblelightandpartoftheUVAregionbytransmittinglightthroughafrustule(Yamanakaetal.2008).Simulationsofthephotonicbandsofanaccuratemodelofthefrustuleshowedthatastronginteractionbetweenthefrustuleandlightofwavelengthsintheshorterpartofthevisiblespectrum.

Photoluminescence

Poroussilica,oneofthemainconstituentfrustulematerials,isknowntoemitphotoluminescence(PL)inthevisiblespectralregionwhenirradiatedwithUV-light(Cullisetal.1997).ThediatomfrustulescanalsoexhibitPLwithoneormorespectralpeakswhichcanbemoreorlesspronounced(Butcheretal.2003,2005;deStefanoetal.2007b;Mazumderetal.2010;Vijietal.2014).Thusresearchershaveforexcitationusedwavelengthsof325nm,withemissionat539.4nm(deStefanoetal.2009)and300,370and380–allwithemissionat440nm(Mazumderetal.2010;Vijietal.2014).ExperimentsshowgreatdifferencesinPLactivityamongdiatomspeciesandevenamongdiatomsfromsametheculture,fromnoPLactivitytointensitiesmeasurablewiththenakedeye(Butcher2005;Maibohmetal.2015c).Ourownexperimentswithcultivateddiatoms,fromthesameculture,showlowPLactivityorsometimesnoPLatall;underliningthattheuptakeofmineralsfromthesurroundingsandotherinfluencingparameterstothePLactivityareofimportanceontheindividualcelllevel(Maibohmetal.2015c).Forapplicationpurposesthelocalenvironmentofthecleanedfrustuleshasahugeinfluence.Anoxygen-containingatmosphereworksasafastquencherofPLactivitywhileacontrolledatmosphere,asinaultrahighvacuumsystem,thefrustulePLactivityhasbeenshowntoactasagassensorbybindingvarioustypesofgassesandtherebyeitherquenchorenhancethePLactivity(deStefanoetal.2007b).ThepositionandshapeofthePLspectrumisdependentontheUVexcitationwavelength,andthepresenceofmultiplepeaks,i.e.multiplede-excitationpathways,isattributedtonon-uniformcrystallitesize,trappingstatesandimpuritiesinthefrustules(Goswamietal.2012).ThePLspectrumisdominatedbypeaksfromtheamorphoussilica,butitisalsoaffectedbythesmallamountsoftraceimpuritiesinthefrustule.Uptakeoftraceelementswillchangetheabsorptionandtransmissioncharacteristicsofthefrustuleagain,thedegreedependingontheelementandtheconcentrationofit.Thenaturalamountoftraceimpuritiesvaries,dependingonthehabitat,andthetraceimpuritiescaneitherbedepositedinthefrustulebythecelloradsorbedtothefrustuledirectlyfromtheenvironment(deJongeetal.2010).ThePLcanalsobeaffectedbyadsorptionofmaterialwhichquenches,enhancesoraltersthePLspectra(deStefanoetal.2007b;Galeetal.2009;Vijietal.2014).ChangesinPLspectrahavebeenusedasanoveltypeofgassensorwherebindingabsorptionofmolecules

Page 10: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

9

onthefrustulesleadstoameasureablechange(deStefanoetal.2007b).Metaldopedfrustulescanalsobestimulatedbyanelectriccurrentandsubsequentlyemitelectroluminescence(Jeffryesetal.2008).

Photonicbandgaps,wave-guidingandBraggscattering

Thesethreephotonicphenomenaareofcentralrelevanceandinterestforstudyingdiatomfrustules,particularlywithregardtothepossibilityforusingdiatomfrustulestoselectivelyscreenoutspecificwavelengthsoflight.

Photoniccrystalsareperiodicstructuresthatphotonsofcertainwavelengthscannotpropagatethrough.Thenon-propagatingwavelengthorusualthebandwidthofnon-propagatingwavelengthsconstitutestheso-calledphotonicbandgap(PBG).FormationofaPBGinastructurecanbeviewedasthesynergeticinterplaybetweenthemacroscopicBraggscatteringresonance(whichstemsfromtheperiodicstructureofalternatingmaterialandcreatesstopgapswhentheperiodofthestructurecoincideswithanintegernumberofhalfthewavelengthofthelight)andthemicroscopicscatteringresonance,whichstemsfromthesingleunitcellofthestructure,calledtheBrillouinzoneandisrelatedtohowthestructureisordered.Inthecaseofthediatomfrustule,themacroscopicscatteringwouldbefromtheholes(consistingofwateror,whencleaned,air)alternatingwiththesilicawalls.Themicroscopicscatteringwouldbefromhowtheholesarearrangedinthefrustule,forinstanceahexagonalstructure.IfboththemacroscopicandmicroscopicresonanceoccursatthesamewavelengthformationofaPBGisgreatlyenhanced.Thewavelengthorratherthebandwidthoverwhichlightisnottransmitteddependsalsoonthedifferenceinrefractiveindexbetweenthetwomaterialsofthemicrostructure.Ingeneral,thelargerthedifferenceinrefractiveindex,theeasieritistoobtainaPBG.ThecenterwavelengthandthebandwidthofthePBGarethereforedeterminedbythemacroscopicperiodicity(i.e.thedistancebetweentheholesandthesizeoftheholes),microscopicsymmetry(howtheholesarearrangedcomparedtoeachother),materialcompositionandpolarizationofthelight.Thepropagationdirectionofthelightintheabovesectionispresumedtobeintheplaneofthealternatingstructuresandthereforelightneedstobecoupledto(orredirectedto)thestructureinthisplane.Thecomplexityofthephotoniccrystal,andtherebytherelationbetweenthebeforementionedparametersincreaseswiththeneedofmultiplepropagationdirectionswhichincludesaPBG.WavelengthsincludedinthePBGandinthepropagationdirectionofthePBGisreflectedfromthestructureandmanyapplicationsbenefitfromthestrongwavelength-dependentpropagationoflight.Manyoftheseapplicationsdonotevenrequirethattheperiodicallymodulatedmaterialexhibitallpropertiesofphotoniccrystalsbutonlythat,lightisreflecteddifferentlydependingonitswavelength,i.e.themacroscopicBraggscattering.Thiseffectcanbeseeninthecolorsofcertainbutterflieswherethescatteringiswavelengthdependentandthereforethespectralresponsealsodependsontheobserver.

Diatomwallshaverepeatednanostructures(Figs1,2b)intherelevantsizerangeofPARandUVlightandhavebeenshowntohavecertaincharacteristicsofphotoniccrystals.Theorderedstructureoftheholeshasindicatedthepossibilityofphotonicbandgapswhenlightispropagatinginthevalveplane.Thishasbeencalculatedforbothvalvesandgirdlebandsbuthasneverbeenshownexperimentally(Fuhrmannetal.2004;Yamanakaetal.2008).IftheaimistopreventtheshortwaveUV-light(280-380nm)fromenteringthecell,diatomwallswithaperiodicityofholesoftheorderof200-250nmmaybeexpectedtodothiswhileallowingvisiblelighttopassthrough.However,calculationsshowthattherefractiveindexcontrastbetweensilica(1.45)andeitherwater(1.33)orair(1)togetherwithperiodicity,symmetryand

Page 11: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

10

polarizationisnotenoughtoformafullPBGinthefrustule.Furthermore,therefractiveindexcontrastbetweenwaterandthefrustuleinnaturalenvironmentofdiatomsisalsotoolowforefficientBraggscatteringbuttheperiodicstructureisstillshowntohaveastrongabsorptioninthebluespectralregion(Fuhrmannetal.2004;Yamanakaetal.2008).Whenacleanedfrustuleisilluminatedinair,therefractiveindexcontrastislargeenoughforefficientBraggscatteringandatleastpartialphotonicbandgapsoccur.Thisisseenintransmissionmeasurementsandcalculationswherespecificwavelengthsareattenuatedmorethanothers(Fuhrmannetal.2004;Yamanakaetal.2008;Kieuetal.2014).

Inexperimentalmeasurementswheretheincidentlightstrikesthefrustulenormaltothesurface,onlyaweakcouplingoflighttothevalveplaneoccursandtheindexcontrastoftheperiodicstructuregivingrisetoasmalleffect.Furthermore,onlythedirecttransmittedandscatteredoutofplanecontributionofthelightfromthefrustuleisobservedandnotthelightguidedinthevalveplane,makingitdifficulttoprobethetruephotonicbandgapstructureofthefrustule.Iftheangleofincidenceisvariedfromnormal,awavelengthdependentredirectionofthelighttowardsthecellinteriorisobserved.Thisindicatesastronginteractionbetweenthelightandthefrustuleindicatingastrongeffectoftheperiodicstructure(Romannetal.2015,Maibohmetal.2015c).Tofurtherincreasetherefractiveindexcontrastandtherebyenhancetheinteractioneffectbetweenlightandthefrustule,silicacanbesubstitutedinthegrowthmediumwithhighlevelsofthetracesubstances(Townleyetal.2007;Jeffryesetal,2008;Langetal.2013).Duetothefactthateventhetraceamountofimpuritiesmayinfluencephotoniccharacteristicsofthefrustule,cultivationconditionsmustbecontrolledtoensurereproducibleproductsforindustrialapplications.Oritcanbedoneby3Dstructuralpreservingchemicalsubstitutionafterremovaloforganicmaterialinthecleaningprocess(Sandhageetal.2002;Baoetal.2009;vanEyndeetal.2013).Tofurtherquantifyandunderstandthelight-frustuleinteraction,itsimplicationonbiologicalfunctionsofthediatomandthepossibleindustrialapplications,moreadvancedphotonicstudieshavetobeconducted.

TestsoftheeffectofthefrustuleonUVlight

Wehavefoundthatfourofthestudiesaimedatdeterminingpotentialindustrialapplicationsofdiatomfrustuleshaveanalyzedormodelledtheeffectofthefrustulesilicaandnano-patternonUVlight,experimentallyinvestigatingatotalofthreecentricspeciesaswellasperformingsimulations.InastudyontheopticalpropertiesofthecentricdiatomArachnoidiscussp.,Ferreraetal.(2014)simulatedthefocusingeffectofafrustuleinaironUV-lightof300nmandfoundthatthefocusingspotsatthiswavelengthstartedca.900µmfromthevalve,incontrasttofocusingspotsofPARlight(640nm),whichstartedatca.200µm.TheyalsomeasuredtransmittanceintensityprofileatUVBandfoundthespotintensitylowanddistancefarfromthevalve.Inapreviousstudy(onCoscinodiscuswailesii;DeTomassietal.2010)theyshowedbysimulationthatinwaterorcytoplasm,thefocusingspotsforPARwouldbeclosertothevalve.DeTomassietal.(2010)furthertestedtheeffectofavalveofCoscinodiscuswailesiionlightat280nm,andshowedthat,incontrasttolightatPARwavelengthsandabove(532nm,633nm&1000nm),thevalveformednofocusingspotsatthetestedUVwavelength.Goswamietal.(2010)studiedUV-luminescencepropertiesofCyclotellameneghiniana.InaUV-visiblespectroscopyanalysisofasinglevalvetheyfoundpeakabsorbanceat274nm.DeStefanoetal(2007b)simulatedUVshieldingpropertiesofpennateandcentricdiatomsbydigitalizingscanningelectronmicrographsoftwodifferentfrustules(fromThallassiosirarotulaorCoscinodiscuswailesiiandCocconeisscutellum).Davidsonetal.(1994)studiedtheeffectofUV-BirradiationongrowthandsurvivalofsixdifferentAntarcticdiatoms(Nitzschialecointei,N.curta,Proboscisalata,

Page 12: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

11

Thallasiosiratumida,Odentellaweisflogii,Chaetocerossimplex).Theirfocuswasthusonthebiologyofthediatoms(seediscussionabove)ratherthanonpotentialindustrialapplications;however,oneoftheparameterswhichtheyanalyzedwasabsorptionspectraoftherinsedvalves.Theyfoundthatgenerallyforallsixspeciesabsorbancefellalongthespectrum250-800nm.Theycalculatedthat,oftotalUV-Babsorbance,ca.20%wasduetothefrustule.Thiscould,however,beduestrictlytothematerialpropertiesofthesiliceousfrustuleandnottotheporestructure.MostofthesestudiesweredoneoncleanedfrustulesinairwheretheindexcontrastisgreaterthatinwaterandthereforethereispotentialforstrongerBragg-scattering.Therefore,asdiscussedpreviously,itcanbedifficulttoextrapolatetheseresultstoUV-protectionforlivediatomsinawateryenvironment.

TestsofUVandPARspectraofsinglefrustulesandlayersoffrustulesandwholecells

Experimentsaimedattesting,forpotentialapplications,methodsforcoatingasurfacewithbothrinsedfrustulesandcellsdriedwithcellcontentwerecarriedouttoexploreifthetransparencywasdifferentforUVandvisiblewavelengthswhendiatomswerearbitrarilydriedontoaglassplate(Fig.3).

LighttransmissionwasmeasuredfortwospeciesofCoscinodiscus:C.graniiandC.concinnus.Bothdriedintactdiatomswithcellcontents(dead,butwithremnantsofcellcontents)anddiatomvalvesrinsedoforganicmaterialwereused.ThediatomsweredrippedontoaUV-transparentquartzsilicamicroscopeglassplateanddriedatroomtemperature.Theprocesswasrepeatedseveraltimestoincreasetheconcentration.Inspiteofthis,wedidnotalwaysachieveahighdegreeofcoverageontheglassplate.TransparencyspectraweremeasuredusingaShimadzuUV-2600spectrometerwithbuild-inlightsourcesandintegratingsphere.MicroscopepicturesweretakenusinganOlympusGX41lightmicroscope.Allmeasurementswererepeatedatleasttwice.

AllsampleshadthehighesttransmissionforthelongestwavelengthsandthelowestintheshortwaveUV-spectrumasshowninFig.4.ForrinseddriedfrustulesofC.concinnusthetransmittancewasreducedfromca.67%toca.60%inthevisiblepartofthespectrumfrom700-400nm.IntheUV-Bregion(from320-280nm)thereductionwasfromca.57%toca.53%,i.e.theslopeofthetransmittancereductionwassteeperintheUV-Bregion.AsimilartendencywasseenforC.granii,buttheconcentrationoffrustuleswaslowandthereforethesignalwaslesspronounced.Forthedrieddiatomswithcellcontents,thereductionintransparencyissteeperandstartsat500nm.ForC.granii,thereductionwithintheUV-AandUV-Bspectrum(400-280nm)isfrom14to3%.ForC.concinnus,thereductionintheUV-spectrumisfrom24to9%.Thetransmissionvariedforthedifferentsamplesdependingontheconcentrationofthediatoms.Fortherinseddiatomfrustulestheconcentrationvariedbetween45and85%andforthedriedlivingdiatomsitwas85-95%asshownintable1andillustratedinFig.3.

ThesepreliminaryresultsindicatethatthevalvesaremoretransparenttolightinthevisiblespectrumthanintheUVspectrum,orinotherwordsthatthevalvesfiltersomeoftheUVlight.Thistendencybecomesmorepronouncedtheshorterthewavelength.Forthecleanedvalves,thefilteringeffectintheUVspectrumisseeminglyrathersmall(below10%).However,thiseffectislikelytobecomelargerifacompletecoverageisachieved.Inthemeasuredsamplesonlyabout45-95%ofthesurfaceareawascovered.Toestimatethesizeoftheexpectedspectraltransmissionforacompletecoveragethedatawasnormalizedtothedegreeofcoverageonthequartzmicroscopeglassbymultiplyingwiththefoundcoveragepercentage.TheresultingcurvesinFig.5showthattransparencyishigherforC.concinnus

Page 13: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

12

comparedtoC.graniiforcleanedfrustulesandfordiatomsdriedwithcontent.C.concinnusalsohasarelativelylowertransparenceintheUV-area.ThetransparencylevelforC.graniiwas30-40%(lowestfortheshortestwavelengths)whichwassimilartothetransmissionobservedthroughasinglevalvedrop-castedonquartz(Fig.6).ThelightbeamwasinthiscasemaskedwithapinholetoonlyallowlightthroughasinglefrustuleasshowninFig.1a.

Formanypotentialindustrialapplicationsitwillbenecessarytoincorporatethediatomsintosomekindofamatrix,e.g.paintorcreme.Thisraisesquestionsofhowtoachievethis,howhighadegreeofcoverageisnecessaryforthedifferentapplicationsandwhetherthelayermustbeuniformand/orflat.

Forthediatomsdriedintactwithcellcontent,amuchmorepronouncedfilteringcanbeobserved.ForC.graniionly3%ofshortwaveUV-Bat280nmisallowedthroughthesampleincontrasttothe28%transmittanceforred700nmlight.Inadditiontothepresenceofcellcontents,anotherdifferencebetweenthetwotreatmentsisthatinthecaseofthediatomsdriedintactwithcellcontents,thefrustuleisintactwiththetwovalvesstilltogether.Thismeansthatthelightwillalwaysstrikethesideofthevalvefacingtotheoutsideofthecell,andasmentionedpreviously,thereappeartobedifferencesinthephotonicpropertiesdependingonwhichsideofthevalveisfacingtowardsthelight.

ThetendencyinthesefindingsisinconcordancewiththefindingsbyNoyesandcolleagues(2008).TheymeasuredlighttransparencyinthediatomC.wailesiiandfoundapproximately80%forredlight(633nm),30%forgreenlight(543nm)and20%forbluelight(472nm).Theyexplainthevaryingdegreeoftransparencywithdiffractionintheholestructureandpointoutthatitisthelargeholesontheinsideofthevalvethatareresponsibleforthediffraction.Similarly,asstatedpreviously,Goswamietal.(2010)foundpeakabsorbanceofthefrustuleofCyclotellameneghinianaat274nmandDavidsonetal.(1994)foundthatthefrustulesofsixdifferentspeciesaccountedforca.20%ofthetotalUVabsorbance.

Summary/Conclusions

Ouroverallconclusionisthat,whileonlyafewspecieshavebeentestedsofar,theresearchintotheroleofdiatomfrustulesinUVprotectionshowgreatpotential,bothwithregardtodiatombiologyandpotentialapplications.

- LessthantendiatomspecieshavebeentestedforeffectsofthefrustuleonUVlight.- Studiesshowthatthefrustuleaccountsforupto20%reflectance/absorbanceintheUVspectrum- Lightfocusingdistancedependsonthewavelength,withlongerdistancesforUVlight.Thiscould,

however,beveryspeciesdependent,becauseofthedifferencesinperiodicstructuresbetweenspecies.

- Therearetwogeneralapproachestomodelingphotoniceffectsofdiatomfrustules.Oneconsidersthetransmissionoflightthroughtheplaneofthevalvewithlightpassingthroughtheholes,andthesilicawallsmoreorlessopaque.Theotherconsidersthepropagationoflightintheplaneofthevalveandfocussesontheperiodicstructureofthelargerholes.

- PhotoluminescenceeffectsareseenwhenilluminatingfrustuleswithUVlight.Thesearestrongestundervacuumconditions.

Page 14: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

13

- Theabilitytocompletelyexcludelightofcertainwavelengths(PBGs)dependsontherefractiveindexbetweenthefrustuleandthematrixaswellastheperiodicityofthenanostructure.SofarcompletePGBshavenotbeenexperimentallyshownindiatoms.

- LivingdiatomshaveamorevariableresponsetoUVlightthanothergroupsofalgae–thiscouldbeduetodifferencesinUVpropertiesofthefrustule

- ImportantelementstoconsiderforUV-mediatingeffectsare:theperiodicityofthelargeholes(areolae),therefractivecontrastbetweenthefrustuleandthemedium,theorientationofthevalves,thedegreeofcoverageofalayeroffrustules.Thesmallholes(inthecribrum;seefigure1)andcentralareaappeartobelessimportant.

Acknowledgements

ThisworkwasfundedbyTheDanishResearchCouncil(projectALPHA12-127569).SandraWalbyhelpedwithlaboratoryworkandJacobSnebjørnBrøggerKristensendidpreliminarystudiesontransmissionthroughaspin-coatedlayeroffrustules.TomasBenzonhelpedwithgraphicsinfigure2.Threeanonymouseviewersarethankedfortheircommentsthathelpedimprovethemanuscript.

References

1. ArmbrustEV(2009)Thelifeofdiatomsintheworld´soceans.Nature459:185-1922. BaoZ,ErnstEM.YooS,SandhageKH(2009)SynthesesofPorousSelf-SupportingMetal-Nanoparticle

Assemblieswith3DMorphologiesInheritedfromBiosilicaTemplates(DiatomFrustules).AdvMater21:474-478

3. BozarthA,MaierU-G,ZaunerS(2009)Diatomsinbiotechnology:moderntoolsandapplications.ApplMicrobiolBiotechnol82:195–201

4. BumaAGJ,vanHannenEJ,VeldhuisMJW,RozaL,GieskesWWC(1995)MonitoringUV-BinducedDNAdamageinindividualdiatomcellsbyimmunofluorescentthyminedimerdetection.JPhycol31:314-321

5. BumaAGJ,ZemmelinkHJ,SjollemaK,GieskesWWC(1996)UVBradiationmodifiesproteinandphotosyntheticpigmentcontent,volumeandultrastructureofmarinediatoms.MarEcolProgSer142:47-54

6. ButcherKSA,FerrisJMPhillipsMR.(2003)Photoluminescenceandcathodoluminescencestudiesofdiatoms—nature'sownnano-poroussilicastructures.In:CashionJ,FinlaysonT,PaganinD,SmithA,TroupG(Eds.)Proceedingsofthe27thAandNZCondensedMatterandMaterialsMeeting,4–7February,CharlesSturtUniversity,WaggaWagga,NSW,p.51

7. ButcherKSA,FerrisJM,PhillipsMR,Wintrebert-FouquetM,JongWahJW,JovanovicN,VyvermanW,ChepurnovVA(2005)Aluminescencestudyofporousdiatoms.MaterSciEngC25:658-663

8. ColemanEA(2011)Polymeradditives.In:KutzM(ed)AppliedPlasticsEngineeringHandbook,WilliamAndrew,pp.419-428.doi:10.1016/b978-1-4377-3514-7.10021-2

9. CullenJJ,LesserMP(1991)Inhibitionofphotosynthesisbyultraviolet-radiationasafunctionofdoseanddosagerate–resultsforamarinediatom.MarBiol111:183-190.

10. CullisAG,CanhamLT,CalcottPDJ(1997)Thestructuralandluminescencepropertiesofporoussilicon.JApplPhysics82:909

11. DavidsonAT,BramichD,MarchantHJ,McMinnA(1994)EffectsofUV-BirradiationongrowthandsurvivalofAntarcticmarinediatoms.MarBiol199:507-515

12. DelenN,HookerB(1998)Free-spacebeampropagationbetweenarbitrarilyorientedplanesbasedonfulldiffractiontheory:afastFouriertransformapproach.JOptSocAmA15:857-867

Page 15: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

14

13. DepauwFA,RogatoA,d'AlcalaMR,FalciatoreA(2012)Exploringthemolecularbasisofresponsestolightinmarinediatoms.JExpBot63:1575-1591

14. DöhlerG(1995)ImpactofUV-AandUV-BirradianceonthepatternsofpigmentsandN-15-ammoniumassimilationofthetropicalmarinediatomBellerocheayucatanensis.BotMar38:513-518.

15. DöhlerG(1984)EffectofUV-BRadiationontheMarineDiatomsLauderiaannulataandThalassiosirarotulaGrowninDifferentSalinities.MarBiol83:247-253

16. vanEyndeE,TytgatT,SmitsM,VerbruggenSW,HauchecorneB,LenaertsS(2013)Biotemplateddiatomsilica–titaniamaterialsforairpurification.PhotochemPhotobiolSci12:690-695

17. FerraraMA,DardanoP,DeStefanoL,ReaI,CoppolaG,RendinaI,CongestriA,AntonucciA,DeStefanoM,DeTommasiE(2014)OpticalPropertiesofDiatomNanostructuredBiosilicainArachnoidiscussp:Micro-OpticsfromMotherNature.PLOSONE9DOI:0103750

18. FinkelZV,KotrcB(2010)Silicausethroughtime:Macroevolutionarychangeinthemorphologyofthediatomfrustule.GeomicrobiolJ27:596-608

19. FuhrmannT,LandwehrS,ElRharbi-KuckiM,SumperM(2004)Diatomsaslivingphotoniccrystals.ApplPhysB78:257–260

20. GaleDK,GutuT,JiaoJ,ChangCH,RorrerGL(2009)PhotoluminescenceDetectionofBiomoleculesbyAntibody-FunctionalizedDiatomBiosilica.AdvFunctMater19:926–933

21. GijsmanP(2011).PolymerStabilization.InKutzM(ed)AppliedPlasticsEngineeringHandbook,WilliamAndrew,pp.375–399.doi:10.1016/b978-1-4377-3514-7.10021-2

22. GuihéneufF,FouquerayM,MimouniV,UlmannL,JacquetteB,TremblinG(2010)EffectofUV-stressonthefattyacidandlipidclasscompositionintwomarinemicroalgaePavlovalutheri(Pavlovophyceae)andOdontellaaurita(Bacillariophyceae).JApplPhycol22:629-638

23. GordonR,LosicD,TiffanyMA,NagySS,SterrenburgFA(2009)TheGlassMenagerie:diatomsfornovelapplicationsinnanotechnology.TrendsBiotechnol27:116-27

24. GoswamiB,ChoudhuryA,BuragohainAK(2012)Luminescencepropertiesofananoporousfreshwaterdiatom.Luminescence27:16-19

25. GuiryMD(2012)Howmanyspeciesofalgaearethere?JPhycol48:1057–106326. HammCE,MerkelR,SpringerO,JurkojkP,MaierC,PrechtelK,SmetacekV(2003)Architectureand

materialpropertiesofdiatomshellsprovideeffectivemechanicalprotection.Nature421:841-84327. HargravesPE,ZhangJ,WangR,ShimizY(1993)GrowthcharacteristicsofthediatomsPseudonitzschia

pungensandP.fraudulentaexposedtoultravioletradiation.Hydrobiol269:207-21228. HelblingEW,ChalkerBE,DunlapWC,Holm-HansenO,VillafañeVE(1996)Photoacclimationof

Antarcticmarinediatomstosolarultravioletradiation.JExpMarBiolEcol204:85–10129. HempelF,BozarthAS,LindenkampN,KlinglA,ZaunerS,LinneU,SteinbüchelA,MaierUG(2011)

Microalgaeasbioreactorsforbioplasticproduction.MicrobCellFact10:8130. HessenDO,FrigstadH,FaerovigPJ,WojewodzicMW,LeuE(2012)UVradiationanditseffectsonP-

uptakeinarcticdiatoms.JExpMarBiolEcol411:45-5131. HolzingerA,LützC(2006)AlgaeandUVradiation:Effectsonultrastructureandrelatedmetabolic

functions.Micron37:190-20732. IngallsAE,WhiteheadK,BridouxMC(2010)Tintedwindows:ThepresenceoftheUVabsorbing

compoundscalledmycosporine-likeaminoacidsembeddedinthefrustulesofmarinediatoms.GeochimCosmochimActa74:104–115

33. JeffryesC,GutuT,JiaoJ,RorrerGL(2008)MetabolicInsertionofNanostructuredTiO2intothePatternedBiosilicaoftheDiatomPinnulariasp.byaTwo-StageBioreactorCultivationProcess,ACSnano2:2103-2112

34. deJongeMD,HolznerC,BainesSB,TwiningBS,IgnatyevK,DiazJ,HowardDL,LegniniD,MiceliA,McNultyI,JacobsenCJ,VogtS(2010)Quantitative3DelementalmicrotomographyofCyclotellameneghinianaat400-nmresolution.PNAS107:15676–15680

Page 16: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

15

35. Johnsen,S.,Sosik,H.(2004)Sheddinglightonthelightintheocean.OceanusMagazine43:36. KarentzD,CleaverJE,MitchellDL(1991)Cellsurvivalcharacteristicsandmolecularresponsesof

Antarcticphytoplanktontoultraviolet-Bradiation.JPhycol27:326-34137. KieuK,LiC,FangY,CohoonG,HerreraOD,HildebrandM,SandhageKH,NorwoodRA(2014)

Structure-basedopticalfilteringbythesilicamicroshellofthecentricmarinediatomCoscinodiscuswailesii.OptExpress22:15992-15999

38. LeuE,WangbergSA,WulffA,Falk-PetersenS,OrbaekJB,HessenDO(2006)EffectsofchangesinambientPARandUVradiationonthenutritionalqualityofanArcticdiatom(Thalassiosiraantareticavar.borealis).JExpMarBiolEcol337:65-81

39. LangY,delMonteF,RodriguezBJ,DockeryP,FinnDP,PanditA(2013)IntegrationofTiO2intothediatomThalassiosiraweissflogiiduringfrustulesynthesis.SciRep3,articlenumber3205.

40. LavoieM,RavenJA,LevassaurM(2016)Energycostandputativebenefitsofcellularmechanismsmodulatingbuoyancyinaflagellatemarinephytoplankton.JPhycol52:239-251.

41. LevithanO,DinamarcaJ,HochmanG,FalkowskiPG(2014)Diatoms:afossilfuelofthefuture.TrendsBiotechnol32:117-124

42. LitchmanE,NealePJ(2005).UVeffectsonphotosynthesis,growthandacclimationofanestuarinediatomandcryptomonad.MarEcolProgSer300:53-62.

43. LohmannM,DöhlerG,HuckenbeckN,VerdiniS(1998)EffectsofUVradiationofdifferentwavebandsonpigmentation,15N-ammoniumuptake,aminoacidpoolsandadenylatecontentsofmarinediatoms.MarBiol130:501-507

44. MazumderN,GogoiR,KalitaRD,AhmedGA,BuragohainAK(2010)Luminescencestudiesoffreshwaterdiatomfrustules.IndianJPhys84:665-669

45. MaibohmC,FriisSMM,EllegaardM,RottwittK(2015a)InterferencepatternsandextinctionratioofthediatomCoscinodiscusgranii.OptExpress23:DOI:10.1364/OE.23.009543

46. MaibohmC,FriisSMM,SuY,RottwittK(2015b).Comparingopticalpropertiesofdifferentspeciesofdiatoms.ProcofSPIEVol.936093600B-1

47. MaibohmC,NielsenJH,RottwittK(2015c)Lightinteractionwithnano-structureddiatomfrustule,fromUV-AtoNIR.MSRadvanceshttp://dx.doi.org/10.1557/adv.2015.15

48. MedlinLK(2002)Whysilicaorbetteryetwhynotsilica?Speculationsastowhythediatomsutilizesilicaastheircellwallmaterial.DiatomRes17:453-459

49. MilliganAJ,MorelFMM(2002)Aprotonbufferingroleforsilicaindiatoms.Science297:1848-185050. NahonS,CharlesF,LantoineF,VétionG,EscoubeyrouK,DesmaladesM,PruskiAM(2010)Ultraviolet

radiationnegativelyaffectsgrowthandfoodqualityofthepelagicdiatomSkeletonemacostatum.JExpMarBiolEcol383:164-170

51. NelsonDM,TreguerP,BrzezinskiMA,LeynaertA,QueguinerB(1995)Productionanddissolutionofbiogenicsilicainocean–revisedglobalestimates,comparisonwithregionaldataandrelationshiptobiogenicsedimentation.GlobalBiogeochemCyc9:359–372

52. NoyesJ,SumperM,VukusicP(2008)Lightmanipulationinamarinediatom.JMatRes23:3229-323553. OttesenP.(2011)Processingandcharacterizationofdiatomsforlightharvestingmaterialsonsolar

cells.Mastersthesis,NorwegianUniversityofScienceandTechnology54. PanZ,LerchSJL,XuL,LiX,ChuangY-J,HoweJY,MahurinSM,DaiS,HildebrandM(2014)

Electronicallytransparentgraphenereplicasofdiatoms:anewtechniquefortheinvestigationoffrustulemorphology.SciRep4:6117

55. ParkerAR,TownleyHE(2007)Biomimeticsofphotonicnanostructures.NatureNanotechnol2:347-5356. ParkinsonJ,GordonR(1999)Beyondmicromachining:thepotentialofdiatoms.TrendsBiotechnol17:

190-19657. RavenJA(1983)Thetransportandfunctionofsiliconinplants.BiolRev58:179–207

Page 17: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

16

58. RavenJA,WaiteAM(2004)Theevolutionofsilicificationindiatoms:inescapablesinkingandsinkingasescape?NewPhytol162:45-61

59. RechM,MougetJL,Morant-ManceauA,RosaP,TremblinG(2005)Long-termacclimationtoUVradiation:effectsongrowth,photosynthesisandcarbonicanhydraseactivityinmarinediatoms.BotMar48:407-420

60. ReizopoulouS,SantasP,DanielidisD,HaderDP,SantasR(2000)UVeffectsoninvertebrateanddiatomassemblagesofGreece.JPhotochemPhotobiolB56:172-180

61. RijstenbilJW(2005)UV-andsalinity-inducedoxidativeeffectsinthemarinediatomCylindrothecaclosteriumduringsimulatedemersion.MarBiol147:1063–1073

62. RomannJ,ValmaletteJ-C,RøysetA,EinarsrudM-A(2015)Opticalpropertiesofsinglediatomfrustulerevealedbyconfocalmicrospectroscopy.OptLett40:740-3

63. SandhageKH,DickersonMB,HusemanPM,CarannaMA,CliftonJD,BullTA,HeibelTJ,OvertonWR,SchoenwaelderMEA(2002)Novel,BioclasticRoutetoSelf-Assembled,3D,ChemicallyTailoredMeso/Nanostructures:Shape-PreservingReactiveConversionofBiosilica(Diatom)Microshells.AdvMat14:429–433

64. ScholzB,RuaA,LiebezeitG(2014)EffectsofUVradiationonfivemarinemicrophytobenthicWaddenseadiatomsisolatedfromtheSolthorntidalflat(LowerSaxony,southernNorthSea)-PartI:growthandantioxidativedefencestrategies.EurJPhycol49:68-82

65. DeStefanoL,ReaI,RendinaI,DeStefanoM,MorettiL(2007a)LenslesslightfocusingwiththecentricmarinediatomCoscinodiscuswailesii.OptExpr15:18082-18088

66. DeStefanoL,DeStefanoM,MaddalenaP,MorettiL,ReaI,MocellaV,RendinaI(2007b)Playingwithlightindiatoms:smallwaterorganismswithanaturalphotoniccrystalstructure.Proc.SPIE6593PhotonicMaterials,Devices,andApplicationsII:6593-59313

67. DeStefanoL,MaddalenaP,MorettiL,ReaI,RendinaE,DeTommasiM,DeStefanoM(2009)Nano-biosilicafrommarinediatoms:Abrandnewmaterialforphotonicapplications.SuperlatticeMicrost46:84-89

68. DeTommasiE,ReaI,MocellaV,MorettiL,DeStefanoM,RendinaI,DeStefanoL(2010)Multi-wavelengthstudyoflighttransmittedthroughasinglemarinecentricdiatom.OptExpress18:12203

69. TownleyHE,WoonKL,PayneFP,White-CooperH,ParkerAP(2007)ModificationofthephysicalandopticalpropertiesofthefrustuleofthediatomCoscinodiscuswailesiibynickelsulfate.JNanotechnol18:295101

70. VernetM(2000)EffectsofUVradiationonthephysiologyandecologyofmarinephytoplankton.In:DeMoraSJ,DemersS,VernetM(eds)TheEffectsofUVRadiationintheMarineEnvironment,CambridgeUniversityPress,Cambridge,pp.237–278

71. VijiS,AnbazhagiM,PonpandianN,MangalarajD,JeyanthiS,SanthanamP,Devi,AS,ViswanathanC(2014)Diatom-BasedLabel-FreeopticalBiosensorforBiomolecules.ApplBiochemBiotechnol174:1166-1173

72. VillafañeVE,HelblingEW,Holm-HansenO,ChalkerBE(1995)AcclimatizationofAntarcticnaturalphytoplanktonassemblageswhenexposedtosolarultravioletradiation.JPlanktonRes17:2295-2306

73. WangY,PanJ,CaiJ,ZhangD(2012)FloatingassemblyofdiatomsCoscinodiscussp.microshells.BiochemBiophysResCommun420:1-5

74. WaringJ,UnderwoodGJC,BakerNR(2006)ImpactofelevatedUV-Bradiationonphotosyntheticelectrontransport,primaryproductivityandcarbonallocationinestuarineepipelicdiatoms.PlantCellEnviron29:521-534

75. WuXJ,GaoG,GiordanoM,GaoKS(2012)GrowthandphotosynthesisofadiatomgrownunderelevatedCO2inthepresenceofsolarUVradiation.FundamApplLimnol180:279-290

76. WuY,CampbellDA,GaoK(2014)FasterrecoveryofadiatomfromUVdamageunderoceanacidification.JPhotochemPhotobiolB140:249-254.

Page 18: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

17

77. XuJ,GaoK(2010)UseofUV-AEnergyforPhotosynthesisintheRedMacroalgaGracilarialemaneiformis.PhotochemPhotobiol86:580–585

78. YamanakaS,YanoR,UsamiH,HayashidaN,OhguchiM,TakedaH,YoshinoK(2008)Opticalpropertiesofdiatomsilicafrustulewithspecialreferencetobluelight.JApplPhys103:074701

Page 19: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

18

Figure1:ScanningelectronimagesofCoscinodiscusgranii,showingavalveseenfromtheoutsideofthecellandgirdlebandspartlydetached.Insert:Scalebar500nm;smallsectionofadiatomvalveshowingthe3Dstructure.

Figure2:Overviewoverrelevantfeaturesthatdifferbetweenthediatominitsnaturalhabitatandarinseddiatomvalveinatypicalexperimentalphotonicset-up(a).b:Adiatomvalverinsedoforganicmaterialandseenunderlightmicroscope.c:Alivediatominwater(lightmicrograph).d:Aschematicofspectralchangesinlightthroughawatercolumn

Page 20: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

19

Figure3:LightmicroscopepicturesofdrieddiatomsonaUV-transparentquartzsilicamicroscopeglassplate.Scalebar0.2mm.Coverage(seetable1)isestimatedwithinthewhitesquare.a:Coscinodiscusconcinnus,cleanedfrustulesb:C.granii,cleanedfrustules.c:C.concinnus,driedcellswithcellcontent.d:C.granii,driedcellswithcellcontent.

Page 21: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

20

Figure4:Transmittancespectrafora:Coscinodiscusconcinnus,cleanedfrustulesb:C.granii,cleanedfrustules.c:C.concinnus,driedcellswithcellcontent.d:C.granii,driedcellswithcellcontent.ThereferencespectrumistheUV-transparentquartzsilicamicroscopeglassplatewithnothingontopofit.

Figure5:TransmittancespectrafromFigure4normalizedtodegreeofcoverageonthequartzmicroscopeglass.a:Coscinodiscusconcinnus,cleanedfrustulesb:C.granii,cleanedfrustules.c:C.concinnus,driedcellswithcellcontent.d:C.granii,driedcellswithcellcontent.

Page 22: The fascinating diatom frustule—can it play a role for ......frustules and the diatom in its natural habitat are summarized in Fig. 2. Another aspect to be considered is the orientation

21

Figure6:TransmissionthroughasinglevalveofC.Graniinormalizedtothebackground.

Table1:AveragediatomdiameterandcoveragepercentagefordiatomsonquartzglassshowninFig.3.

Approximatediameterofdiatom

valve(µm)

Standarddeviationdiameterofdiatom

%coverage

1.Cconcinnuscleaned

49 6.09 Ca85

2.Cgraniicleaned

62 2.61 Ca45

3.Cconcinusdriedwithcellcontent

43 12.18 Ca85

4.Cgraniidriedwithcellcontent

146 1.71 Ca95