40
George Sips 21 st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 1 The performance of improved H-modes at ASDEX Upgrade and projection to ITER George Sips MPI für Plasmaphysik, EURATOM-Association, D-85748, Germany G. Tardini 1 , C. Forest 2 , O. Gruber 1 , P. Mc Carthy 3 , A. Gude 1 , L.D. Horton 1 , V. Igochine 1 , O. Kardaun 1 , C.F. Maggi 1 , M. Maraschek 1 , V. Mertens 1 , R. Neu 1 , A. Peeters 1 , G. V. Pereverzev 1 , A. Stäbler 1 , J. Stober 1 , W. Suttrop 1 and the ASDEX Upgrade Team. 1 Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-85748, Germany. 2 The University of Wisconsin, Madison, USA. 3 Dep. of Physics, University College Cork, Association EURATOM-DCU, Cork, Ireland. EX/1-1

The performance of improved H-modes at ASDEX Upgrade and projection to ITER George Sips

  • Upload
    phuc

  • View
    37

  • Download
    1

Embed Size (px)

DESCRIPTION

EX/1-1. The performance of improved H-modes at ASDEX Upgrade and projection to ITER George Sips MPI für Plasmaphysik, EURATOM-Association, D-85748, Germany - PowerPoint PPT Presentation

Citation preview

Page 1: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 1

The performance of improved H-modes at ASDEX Upgrade and

projection to ITERGeorge Sips

MPI für Plasmaphysik, EURATOM-Association, D-85748, Germany

G. Tardini1, C. Forest2, O. Gruber1, P. Mc Carthy3, A. Gude1, L.D. Horton1, V. Igochine1, O. Kardaun1,C.F. Maggi1, M. Maraschek1, V. Mertens1, R. Neu1, A. Peeters1, G. V. Pereverzev1, A. Stäbler1, J. Stober1,

W. Suttrop1 and the ASDEX Upgrade Team.

1 Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-85748, Germany.2The University of Wisconsin, Madison, USA.

3Dep. of Physics, University College Cork, Association EURATOM-DCU, Cork, Ireland.

EX/1-1

Page 2: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 2

Motivation: ITER performance

Mukhovatov V. et al Nucl. Fusion 43 (2003) 942

Q

80

60

40

20

0

800

600

400

200

0

800

600

400

200

0

ITER:15 MA, <ne>/nGW = 0.85

1.41.21.00.8

H98(y,2)

Paux = 40MWPfus(MW) ITER primary goal:

Q=10, Pfus~400MW.

Energy confinement:IPB98(y,2) scaling expression.

ITER size, 15MA/5.3T, Paux ≤ 73 MW, <ne>=0.85,….

N=1.8

Page 3: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 3

Motivation: ITER performance

Mukhovatov V. et al Nucl. Fusion 43 (2003) 942

Q

80

60

40

20

0

800

600

400

200

0

800

600

400

200

0

ITER:15 MA, <ne>/nGW = 0.85

1.41.21.00.8

H98(y,2)±1 tech. st. dev.

----------log non-linear int.------------

Paux = 40MWPfus(MW)

Integrated simulation codes: ‘envelope’ of performance.• Strong dependence, of Q and Pfus with H98(y,2).

Significant increase in ITER performance for ‘small’ increase in energy confinement.

N=1.8

N>2

Page 4: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 4

Motivation: ITER performance

Mukhovatov V. et al Nucl. Fusion 43 (2003) 942

Q

80

60

40

20

0

800

600

400

200

0

800

600

400

200

0

ITER:15 MA, <ne>/nGW = 0.85

1.41.21.00.8

H98(y,2)±1 tech. st. dev.

----------log non-linear int.------------

Paux = 40MWPfus(MW)

Integrated simulation codes: ‘envelope’ of performance.• Strong dependence, of Q and Pfus with H98(y,2).

Significant increase in ITER performance for ‘small’ increase in energy confinement.

H98(y,2) > 1, and N > 2:• Higher performance at 15 MA.• Long pulse operation, Ip=11 to

14 MA, with Q=5-10 (Hybrid).• DEMO: H98(y,2) ≥ 1.2, N ≥ 3.5.

N=1.8

N>2

Page 5: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 5

Motivation Outline

• ASDEX Upgrade: Improved H-modes (H98(y,2) > 1, and N > 2).

• Operational range:- wide range in density, Ti0/Te0 and *.

- at q95 → 3.1.

- high beta: Limits and control of NTMs.

• Scaling to ITER using experimental data.

• Conclusions.

Page 6: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 6

0.6

0.8

1.0

1.2

1.4

1.6

H98

(y,2

)

1 2 3N

ASDEX Upgrade H-mode data

ITER

H-modes with Type I ELMs

ASDEX Upgrade: H-mode data

H-mode operation for a wide range of plasma conditions:• Ip=0.6-1.4MA, BT=1.6-3.0T.

All type I ELMy H-modes:• q95 < 5.5, stationary > 0.2 s.

(values shown are averaged)

Page 7: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 7

Current rise: 1. Early divertor configuration t~0.5s. 2. low <ne> ~ 3x1019 m-3, control of impurities.

3. Additional heating: Slow down the current penetration.

Low magnetic shear in the centre.

Current rise phase Low magnetic shearIp=540 kA

1.0

0

-1.0

1.0 1.5 2.0 R(m)

z(m)Ip=300 kA

1.0

0

-1.0

1.0 1.5 2.0 R(m)

z(m)Ip=0.8-1.2 MA

1.0

0

-1.0

1.0 1.5 2.0 R(m)

z(m)Ip=700 kA

1.0

0

-1.0

1.0 1.5 2.0 R(m)

z(m)

WC

WC

WC

WC

0.1 0.4 0.6 >1.0 time (s)

heating

Page 8: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 8

5

3

2

1

0

4

0 0.2 0.4 0.6 0.8

ASDEX Upgrade: Equilibrated q-profiles

tor

shear/q →

Low magnetic shear Improved H-mode

~ zero magnetic shear←q

1

0

q95= 4.8

• MSE data available in 2006.• Timing of preheating: ‘control’ of q-profile H98(y,2). • The q-profile remains flat in the core.

Stober J. et al, EX/P1-7

McCarthy P. et al, EX/P3-7

Page 9: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 9

5

3

2

1

0

4

0 0.2 0.4 0.6 0.8

ASDEX Upgrade: Equilibrated q-profiles

tor

shear/q →

Low magnetic shear Improved H-mode

~ zero magnetic shear←q

1

0

q95= 4.8

(3,2) NTM activity

Fishbone activity

• MSE data available in 2006.• Timing of preheating: ‘control’ of q-profile H98(y,2). • The q-profile remains flat in the core. MHD modes main candidate. Typically (3,2) NTMs and higher (m,n) activity or fishbone activity.

Page 10: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 10

0.6

0.8

1.0

1.2

1.4

1.6

H98

(y,2

)

1 2 3N

ITER

ASDEX Upgrade, all improved H-modes

Improved H-modes

ASDEX Upgrade: Improved H-mode data

A second dataset includes all “improved H-mode” discharges:

• Early heating (some selected cases with late heating).

• Stationary for > 0.5 s.

• NOT just a selection of the best discharges.

Minimum valuesrequired for DEMO

Page 11: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 11

0.6

0.8

1.0

1.2

1.4

1.6

H98

(y,2

)

1 2 3N

ITER

ASDEX Upgrade

Improved H-modesH-modes (Type I)

ASDEX Upgrade: Improved H-mode data

Improved H-modes do not exclusively occupy the domain H98(y,2) > 1 at βN = 2-3.

Any H-mode, when it manages to achieve high beta is likely to develop low central shear in the centre, due to bootstrap current(overlap of ‘grey’ and ‘red’ data).

Physics criteria for improved H-modes would depend on the details of the current density profile (not routinely available).

Page 12: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 12

ASDEX Upgrade: Improved H-mode data

Core: Stober J. et al, EX/P1-7

Pedestal: Suttrop W. et al, EX/8-5Maggi C. et al, IT/P1-6(various experiments)

Various physics studies on the reason for the high stability/ confinement in improved H-modes.

Similar results have been obtained in other experiments (DIII-D, JET, JT-60U, NSTX..), for a range of conditions (See this conference !!).

Average values

Type I ELMyH-modes

(944)

ImprovedH-modes

(259)

q95 4.1 4.0

H98(y,2) 1.08 1.21

N 1.89 2.43

li 0.95 0.89

Page 13: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 13

0.6

0.8

1.0

1.2

1.4

1.6

0.2 0.4 0.6 0.8 1.0<ne>/nGW

H98

(y,2

)

ITER

ASDEX Upgrade

Improved H-modesH-modes (Type I)

Operational range: Density

Improved H-modes:Typically operate at low density, <ne>/nGW = 0.35-0.6.

After formation of q(r), the density can be increased together with an increase in heating power and .

<ne>/nGW = 0.85, H98(y,2) ~ 1.2

are obtained at high =0.4.→ At 1MA: <ne>=1.1x 1020 m-3.

→ Tolerable ELMs.

Page 14: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 14

Operational range: Ti0/Te0

0.0

0.5

1.0

1.5

2.0

2.5

T i0/T

e0

0.2 0.4 0.6 0.8 1.0<ne>/nGW

NBI onlyNBI+ICRH

ASDEX Upgrade improved H-modes 1. Operation at high <ne>.

2. ICRH and NBI at low <ne>.

0.7 < Ti0/Te0 < 2.5

Ti0/Te0 ~ 1 for a substantial

subset of the data, while maintaining high confinement.

Moreover, some of these discharges have low plasma rotation (low momentum input).

Page 15: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 15

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20*/*ITER

H98

(y,2

)

ASDEX Upgrade

Improved H-modesH-modes (Type I)

ITER

Operational range: *

Strongest correlation of maximum H98(y,2) with plasma

collisionality (*/*ITER).

Also density peaking (ne0/<ne>) can be higher at lower */*ITER.

and v* dependence of the IPB98(y,2) scaling expression are under investigation.

McDonald D. et al, EX/P3-5

Weisen H. et al, EX/8-4

Page 16: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 16

Ip (MA)

PNBI (MW)

PICH (MW)

D

N

H98(y,2)

# 20449

odd n

even n

1.2

08

0 0 2 4 6 time (s)

0

3

1

Operational range: low q95=3.17

1.2MA/2.0T q95 = 3.17,• NBI used with beta feedback,

50% of NBI is off-axis! Central ICRF heating.• <ne>=6.4x1019m-3, Ti0/Te0=1.4

<ne>/nGW=0.42, */*ITER=2.

• H98(y,2) rises to 1.4 at N=2.9.

• CW,core = 2.5x10-5 (< 10-4).

Page 17: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 17

Ip (MA)

PNBI (MW)

PICH (MW)

D

N

H98(y,2)

# 20449

odd n

even n

1.2

08

0 0 2 4 6 time (s)

0

3

1

Operational range: low q95=3.17

1.2MA/2.0T q95 = 3.17,• NBI used with beta feedback,

50% of NBI is off-axis.Central ICRF heating.

• <ne>=6.4x1019m-3, Ti0/Te0=1.4

<ne>/nGW=0.42, */*ITER=2.

• H98(y,2) rises to 1.4 at N=2.9.

• CW,core = 2.5x10-5 (< 10-4).

Core MHD: (1,1) fishbones. (4,3) NTMs. NO sawteeth. Early (3,2) NTM when N ~2.

Page 18: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 18

Operational range: ECCD, stabilise (3,2) NTM

Zohm H. et al, EX/4-1Rb

# 21269 (1MW ECRH)

3

2

1

0

3,2 activity

N

# 21272

1.0

1.2

0.8

1.6 2.0 2.4 2.8Time (s)

1.6 2.0 2.4 2.8Time (s)

H98 (y,2)

Killer gasdisruption

1

0

PECRH(MW)

3. Stabilisation of (3,2) NTM is not required for improved H-modes with q95 > 4.

1. ECCD: Stabilise this (3,2) NTM at q95~3.1 After ECCD, discharge continues as improved H-mode (shown before).

2. Otherwise (2,1) NTM may develop, and disruption recognition algorithms will act: (mode-lock, radiation peaking, regime identification, neural net):• React by issuing a soft stop or triggering killer gas injection. Pautasso G. et al, EX/P8-7

at q=1.5 position

Stober J. et al, EX/P1-7

Page 19: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 19

Scaling to ITER using experimental data

Use experimental profile shapes. Same N, H-factor's. Use ITER geometry. Impurities: Be 2 %, Ar 0.12 %, He 4.3 % (nD+nT)/ne ~ 0.8.

Assemble set of discharges with good profile measurements.ITER predictions: Pfus, Paux, Q (+ other parameters using ASTRA).

Tardini G. et al 33rd EPS Conference, Rome 19-23 June 2006, P1.112

Luce T. et al 2004 Phys. Plasmas 11 2627

Motivation:• Integrated simulation codes rely on use of transport models and

models for actuators, require benchmarking on current experiments.• Scaling the measured kinetic profiles to ITER: 100% fit to

experimental data, gradient length preserved, pedestal.

Page 20: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 20

Scaling to ITER

Density: Use shape of ne profile from ASDEX Upgrade, set <ne> = 0.85nGW.

Temperatures: Use shape of Ti profile or use shape of Te profile from ASDEX

Upgrade (select highest), set Ti =Te and NITER=N

AUG.

Scaling to ITER using experimental data

Page 21: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 21

Density: Use shape of ne profile from ASDEX Upgrade, set <ne> = 0.85nGW.

Temperatures: Use shape of Ti profile or use shape of Te profile from ASDEX

Upgrade (select highest), set Ti =Te and NITER=N

AUG.

Scaling to ITER: q95=3.0, N=2.1, high <ne>

0

5

10

15

20

25

30

T i,e (k

eV) -

ITER

0.0 0.5 1.0 1.5 2.0rmin (m)

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0rmin (m)

n e (x

1019

m-3) -

ITER ne

N,thITER = N,th

AUG

Ti = Te

Page 22: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 22

0

5

10

15

20

25

30

T i,e (k

eV) -

ITER

0.0 0.5 1.0 1.5 2.0rmin (m)

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0rmin (m)

n e (x

1019

m-3) -

ITER ne

N,thITER = N,th

AUG

Ti = Te

ITERScenario 2

ITERScenario 2

Scaling to ITER: q95=3.0, N=2.1, high <ne>

Comparison with integrated ITER scenario modelling (Scenario 2):• Density: Assumed flat.• Temperatures: Set pedestal, models for core transport & heating systems.

Page 23: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 23

Scaling to ITER: q95=3.17, N=2.9

ITERScenario 2

ITERScenario 2

At higher N (Improved H-mode):• Temperature profiles rise over whole plasma region.• Consistent with observations of increased edge pedestal.

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0rmin (m)

n e (x

1019

m-3) -

ITER

0

5

10

15

20

25

30

T i,e (k

eV) -

ITER

0.0 0.5 1.0 1.5 2.0rmin (m)

N,thITER = N,th

AUG

Ti = Te

ne

nD+nT

Suttrop W. et al, EX/8-5Maggi C. et al, IT/P1-6

Page 24: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 24

Prediction of fusion performance in ITER

0

200

400

600

800

1000

1200

P fus

(MW

)

10 11 12 13 14 15Ip– ITER (MA)

ITER predictionsat <n>/nGW=0.85

Open symbols Paux > 73 MW*Closed symbols Paux ≤ 73 MW*

ITER15 MA

4 typical cases:

*Paux based on using IPB98(y,2) scaling.

Q=

Q=11.4

Q=6.5

Q=8

q95 N H98(y,2)

3.05 2.10 0.95

3.17 2.87 1.40

3.8 2.63 1.32

4.6 2.41 1.44

Page 25: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 25

Prediction of fusion performance in ITER

0

200

400

600

800

1000

1200

P fus

(MW

)

10 11 12 13 14 15Ip– ITER (MA)

ITER predictionsat <n>/nGW=0.85

Open symbols Paux > 73 MW*Closed symbols Paux ≤ 73 MW*

ITER15 MA

N,th ≤ 2.0

N,th = 2-3

*Paux based on using IPB98(y,2) scaling.

Operation at N,th =2-3:

• Significant fusion power for

Ip=9.5MA to Ip=12MA. With

bootstrap current fraction fBS~0.4 , and Q=6-15.

Long pulse lengths (> 400s).

• At low q95~3 (Ip=14-15 MA) would in principle be able to reach Pfus~1GW, Q=∞.

Page 26: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 26

Prediction of fusion performance in ITERPetty G. et al 2003Fusion Sci. Technol. 43 1

Cordey J. G. et al 2005Nucl. Fusion 45 1078

ITER Physics Basis 1999 Nucl. Fusion 39 2137

Q and input power (Paux) required (ASDEX Upgrade profile data):• Calculated for three different energy confinement scaling expressions. • Using IPB98(y,2): In some high cases Paux > 73MW.

Ip <11MA, despite H98(y,2)~1.4.

1.0 1.5 2.0 2.5N,th - ITER

Q = ∞

GyroBohmscaling

0

200

400

1.0 1.5 2.0 2.5

P aux

(MW

)

N,th - ITER

Q = ∞

Paux= 73 MW

IPB98scaling

N,th - ITER

Q = ∞

Cordey05scaling

1.0 1.5 2.0 2.51.0 1.5 2.0 2.5N,th - ITER

Q = ∞

GyroBohmscaling

0

200

400

1.0 1.5 2.0 2.5

P aux

(MW

)

N,th - ITER

Q = ∞

Paux= 73 MW

IPB98scaling

N,th - ITER

Q = ∞

Cordey05scaling

1.0 1.5 2.0 2.5

Page 27: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 27

Conclusions

ASDEX Upgrade: H-modes with low magnetic shear in the centre: H98(y,2) > 1 and N=2-3.5.

• Operation at high density and Ti0/Te0 ~ 1 is demonstrated.

• Highest H98(y,2) values are achieved at ITER relevant *.

• At q95=3.1: H98(y,2)=1.4, N=2.9, fishbone activity keeps q(r) stationary.

• ECCD can be used to stabilise (3,2) NTM activity (q95~3).

ITER predictions, scaling kinetic profile shapes : <ne>=0.85nGW , keep N,th.

At q95=3.1: Pfus=1070 MW, Q=∞.

At Ip=9.5-12MA: Pfus 300-600 MW, Q=6-15 (some cases Paux>73 MW).

Page 28: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 28

Back-up slides

Page 29: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 29

Operation: Tungsten coverage 85%

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

14000 16000 18000 20000 22000W

CO

NC

, in

the

core

Discharge #

Improved H-modesAll AUG discharges

ASDEX Upgrade

All H-modes require central ICRH or ECRH to avoid impurity accumulation. Operation at <ne> ~ 4-6x1019 m-3

requires a boronisation to minimise tungsten influxes. Gruber O. et al, OV/2-3

Dux R. et al, EX/3-3Ra

Page 30: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 30

1

108

65

4

3

2

20

*/

* ITER

1.0 1.5 2.0 2.5 3.0 3.5N

0.9-1.1

1.1-1.3

1.3-1.5

Contours for H98(y,2) values

ITER1

108

65

4

3

2

20

*/

* ITER

1.0 1.5 2.0 2.5 3.0 3.5N

0.9-1.1

1.1-1.3

1.3-1.5

Contours for H98(y,2) values

ITER

Operational range: Density, *

Strongest correlation of maximum H98(y,2) with plasma

collisionality (*/*ITER).

Also density peaking (ne0/<ne>) can be higher at lower */*ITER.

and v* dependence of the IPB98(y,2) scaling expression are under investigation.

McDonald D. et al, EX/P3-5

Page 31: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 31

5.00 5.02 5.04 5.06 time (s)

80

20

40

60

0fishbone activity

(4,3) NTMs

ELMsF (kHz) Soft X-ray data

Operational range: low q95=3.17

Core MHD activity

Page 32: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 32

Use of ECCD to stabilise (3,2) NTM

Zohm H. et al, EX/4-1Rb

0

1

2

3

4Te_Fit (keV)

0.0 0.2 0.4 0.6 0.8 1.0rho_pol

NTMWith ECRH

# 21269ECRHdeposition

t=1.9st=2.3s

0

1

2

3

4Ti_Fit (keV)

0.0 0.2 0.4 0.6 0.8 1.0rho_pol

# 21269ECRHdeposition

NTMWith ECRH

t=1.9st=2.3s

ne_Fit (x1019m-3)

0.0 0.2 0.4 0.6 0.8 1.0rho_pol

# 21269ECRHdeposition

0

2

4

6

8

NTMWith ECRH

t=1.9st=2.3s

# 21269 (1MW ECRH)

3

2

1

0

3,2 activity

N

# 21272

1.0

1.2

0.8

1.6 2.0 2.4 2.8Time (s)

1.6 2.0 2.4 2.8Time (s)

H98 (y,2)

Killer gasdisruption

1

0

PECRH(MW)

Page 33: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 33

0

5

10

15

20

25

30

T i,e (k

eV) -

ITER

0.0 0.5 1.0 1.5 2.0rmin (m)

Ti , Te

(Ti+Te)/2

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0rmin (m)

n e (x

1019

m-3) -

ITER

ne

nD+nT

ITER Scenario 2

 <ne>/nGW

=0.85q95

Ip (MA)

NPfus

(MW)H98(y,2) Q Paux

(MW)<ne>

(1019m-3)

ne0(1019m-3)

Te0/Ti0 (keV)

ITERSc. 2 3.0 15.0 1.8 400 1.0 10 40 10.1 10.2 24.8/

21.2

ITER Physics Basis 1999 Nucl. Fusion 39 2137

Page 34: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 34

0

5

10

15

20

25

30

T i,e (k

eV) -

ITER

0.0 0.5 1.0 1.5 2.0rmin (m)

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0rmin (m)

n e (x

1019

m-3) -

ITER ne

nD+nT

N,thITER = N,th

AUG

Ti = Te

ITERScenario 2

ITERScenario 2

 <ne>/nGW

=0.85q95

Ip (MA)

NPfus

(MW)H98(y,2) Q Paux

(MW)<ne>

(1019m-3)

ne0(1019m-3)

Te0/Ti0 (keV)

AUG#17847 3.05 14.7 2.10 619 0.95 8.0 (78) 9.9 11.2 20.3

Scaling to ITER: q95=3.0, N=2.1, high <ne>

Page 35: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 35

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0rmin (m)

n e (x

1019

m-3) -

ITER

0

5

10

15

20

25

30

T i,e (k

eV) -

ITER

0.0 0.5 1.0 1.5 2.0rmin (m)

N,thITER = N,th

AUG

Ti = Te

ne

nD+nT

Scaling to ITER: q95=3.17, N=2.9

ITERScenario 2

ITERScenario 2

 <ne>/nGW

=0.85q95

Ip (MA)

NPfus

(MW)H98(y,2) Q Paux

(MW)<ne>

(1019m-3)

ne0(1019m-3)

Te0/Ti0 (keV)

AUG#20449 3.17 14.2 2.87 1070 1.40 ∞ 0 9.6 12.2 29.5

Page 36: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 36

rmin (m)

0

5

10

15

20

25

30

T i,e (k

eV) -

ITER

0.0 0.5 1.0 1.5 2.0rmin (m)

Ti = Te

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0

n e (x

1019

m-3) -

ITER ne

nD+nT

N,thITER = N,th

AUG

Scaling to ITER: q95=3.8, N=2.6

ITERScenario 2

ITERScenario 2

 <ne>/nGW

=0.85q95

Ip (MA)

NPfus

(MW)H98(y,2) Q Paux

(MW)<ne>

(1019m-3)

ne0(1019m-3)

Te0/Ti0 (keV)

AUG#17870 3.8 11.8 2.63 597 1.32 11.4 52 8.0 12.6 28.2

Page 37: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 37

rmin (m)

0

5

10

15

20

25

30

T i,e (k

eV) -

ITER

0.0 0.5 1.0 1.5 2.0rmin (m)

Ti = Te

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0

n e (x

1019

m-3) -

ITER

ne

nD+nT

N,thITER = N,th

AUG

Scaling to ITER: q95=4.6, N=2.4

ITERScenario 2

ITERScenario 2

 <ne>/nGW

=0.85q95

Ip (MA)

NPfus

(MW)H98(y,2) Q Paux

(MW)<ne>

(1019m-3)

ne0(1019m-3)

Te0/Ti0 (keV)

AUG#20448 4.6 9.7 2.41 360 1.44 6.5 55 6.6 9.4 27.4

Page 38: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 38

 <ne>/nGW

=0.85 q95Ip

(MA)N

Pfus

(MW)H98(y,2) Q Paux

(MW)<ne>

(1019m-3)

ne0(1019m-3)

Te0/Ti0 (keV)

ITERSc. 2 3.0 15.0 1.8 400 1.0 10 40 10.1 10.2 24.8/

21.2

AUG#17847 3.05 14.7 2.10 619 0.95 8.0 (78) 9.9 11.2 20.3

AUG#20449 3.17 14.2 2.87 1070 1.40 ∞ 0 9.6 12.2 29.5

AUG#17870 3.8 11.8 2.63 597 1.32 11.4 52 8.0 12.6 28.2

AUG#20448 4.6 9.7 2.41 360 1.44 6.5 55 6.6 9.4 27.4

Prediction of fusion performance in ITER

profile shapes

Page 39: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 39

0

200

400

600

800

1000

1200

P fus

(MW

)

10 11 12 13 14 15Ip– ITER (MA)

ITER predictionsat <n>/nGW=0.85

ITER15 MA

IBS/Ip

= 0.25

= 0.30

= 0.35

= 0.40

Prediction of fusion performance in ITER

Calculated bootstrap fraction fBS increases at lower current.

ITER (15MA) ~ 0.18.

Maximum of cases presented here: fBS ~ 0.4.

A current ramp to lower plasma currents compared to reference design AND the ability to operate at same stored energy. longer pulse length.

Page 40: The performance of improved  H-modes at ASDEX Upgrade and projection to ITER George Sips

George Sips 21st IAEA Fusion Energy Conference, Chengdu, China, 16-21 October 2006 40

ASDEX Upgrade Improved H-modes

0

200

400

600

800

1000

1200

P fus

(MW

)

2 4 6 8Te,ped_ITER (keV)

Open symbols Paux > 73 MWClosed symbols Paux ≤ 73 MW

5.3 keV ± 23%

Prediction of fusion performance in ITER

Most of the scaled edge pedestal temperatures are within range of what is expected for typical H-modes in ITER.

5.3keV ± 23%

Sugihara M. et al 2003 Plasma Phys. Control. Fusion 45 L55