45

The sun, with all those planets revolving - INAF-OABOThe sun, with all those planets revolving around it and dependent on it, can still ripen a bunch of grapes as if it had ... Karakas

Embed Size (px)

Citation preview

The sun, with all those planets revolving around it and dependent on it, can still ripen a bunch of grapes as if it had nothing else in the universe to do.�

The sun, with all those planets revolving around it and dependent on it, can still ripen a bunch of grapes as if it had nothing else in the universe to do.�

Francesca, with all the projects revolving around her and dependent on her, can still cultivate the joy of life as if she had nothing else in the universe to do.�

Physics of spinstars and some consequences for the (early) chemical evolution of galaxies !

Pain%ng  by  Adolf  Schaller,  STScI-­‐PRC02-­‐02  

Georges Meynet Geneva Observatory, Geneva University

Cris%na  Chiappini  (Potsdam,  D)  Gabriele  CescuE  (Potsdam,  D)  Sylvia  Ekstroem  (Uni.  Geneva)  Cyril  Georgy  (Keele,  UK)  José  Groh  (Uni.  Geneva)  Raphael  Hirschi  (Keele,  UK)  Andre  Maeder  (Uni.  Geneva)  

SPINSTARS STARS WHOSE EVOLUTION IS STRONGLY AFFECTED BY ROTATION

MIXING MASS LOSS

SHEAR

MERIDIONAL CIRCULATION

STELLAR WINDS

MECHANICAL MASS LOSS

=

Δ Ω t ~R2/ Dshear

U~1/ρ t ~R/ U

à Anisotropie à Enhancement à Eddington limit changed à  Indirect effects

à Equatorial mass loss

Dshear~

Zahn 1992; Maeder & Zahn 1998; Maeder 1999; Maeder & Meynet 2000 ; Krticka et al. 2011

IMPORTANT IMPACT OF ROTATION IN METAL POOR REGIONS WHY? STARS ARE MORE COMPACT

à Opacities smaller à CNO content smaller

CONSEQUENCES: SHEAR MIXING STRONGER

Ekstroem et al 2008

Gradients of Ω steeper at lower metallicity 20 Msol, Xc mass fraction of H at the centre, Vini= 300 km/s

Why ? Stars more compact, mixing timescale scales with R2 transport of angular momentum less efficient

Consequences ? More efficient mixing of the chemical elements

Georgy et al. 2013 Ekström et al. 2012

AN ILLUSTRATION OF STRONGER MIXING IN METAL POOR STARS

FROM THEORETICAL MODELS

Georgy et al. 2013

3 Msun

4 Msun 5 Msun

7 Msun 9 Msun

3 Msun

4 Msun 5 Msun

7 Msun 9 Msun

A FEW RECENT DEVELOPMENTS

http://obswww.unige.ch/Recherche/evoldb/index/

GePSy, Geneva Population Synthesis tool

Z=0.014, Age=100 My

Initial distribution of Velocities

Limb and gravity darkening accounted for

Where are the initially fast rotators?

Where are the actual fast rotators?

Where are stars seen equator.on/pole-on?

Where are the N-rich stars

Where are the unresolved binaries?

EO

PO

N-rich

Unresolved binary

Submitted

Submitted

Submitted

SPECTROSCOPIC AND PHOTOMETRIC PROPERTIES OF CORE-COLLAPSE PROGENITORS

Why so few detections of type Ibc progenitors? ~13 archives images, only one detection

Pre SN are WO stars not WN or WC stars Too low L for being detected

Groh et al, A&A in press; Yoon et al. 2012

Models

Observed upper limit

THE ONLY PROGENITOR DETECTED SO FAR FOR A TYPE Ibc: iPTF13bvn Cao et al. 2013

Models

Obs of iPTF13bvn

Groh et al. 2013 …QUITE WELL EXPLAINED BY THEORY OF SINGLE STARS

THE ONLY PROGENITOR DETECTED SO FAR FOR A TYPE Ibc: iPTF13bvn Cao et al. 2013

Models

Obs of iPTF13bvn

Groh et al. 2013 …QUITE WELL EXPLAINED BY THEORY OF SINGLE STARS

43-62

12-22

6-12

13-22

Observed rates Eldridge et al 2013 Smith et al 2012

EXPECTED FREQUENCIES OF CC-SNe

THEORY

OBSERVATIONS

NATURE OF PROGENITORS

60 Msun, Z=10-5 V/Vcrit=0.70 V/Vcrit =0

Rotating star has lost Material through winds

NITROGEN

à SIMILAR MIXING IN INTERMEDIATE MASS STARS à LOW METALLICITY REQUIRED

Meynet et al. 2010

NITROGEN

WHAT IS NEEDED FOR PRIMARY NITROGEN IN ROTATING STARS?

STRONG OMEGA GRADIENT AT THE BORDER OF THE CORE He-BURNING CORE AT A TIME WHEN mu-GRADIENTS ARE STILL NOT TOO STRONG

à EARLY PHASES OF CORE He-BURNING

AT LOW- Zà more angular momentum is retained in the core

AT LOW- Zà stars more compactà shorter timescales

AT Z=0à less efficient N prodution because less contraction at the end MS phase

AT high Zàless efficient N production because… à shallower gradients and longer timescales

Groh et al. 2013

4000 4500 5000 5500 6000 65000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4000 4500 5000 5500 6000 6500Wavelength (Angstrom)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nor

mal

ized

Flu

x

− H

e II

− H

e II

− H

I

− H

I

− H

I

− H

I

− H

I

− H

e II

− He

II

− H

e II

− H

e II

− H

I

− C

IV

− C

IV

Z=0.0004, typical Z of I Zw18

60 Msun, Main-Sequence

40 Msun, pre-SN, <v>~350 km s-1

Groh et al. 2013

4000 4500 5000 5500 6000 65000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4000 4500 5000 5500 6000 6500Wavelength (Angstrom)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nor

mal

ized

Flu

x

− H

e II

− H

e II

− H

I

− H

I

− H

I

− H

I

− H

I

− H

e II

− He

II

− H

e II

− H

e II

− H

I

− C

IV

− C

IV

Z=0.0004, typical Z of I Zw18

60 Msun, Main-Sequence

40 Msun, pre-SN, <v>~350 km s-1

SOME PRIMARY NITROGEN MAY

BE PRODUCED AT THE METALLICITY

OF IZw18

IMPACT OF VARIOUS PRESCRIPTIONS

In most of cases (4/6), the quantities of primary nitrogen produced is about 10 times the initial content of CNO in the ejected mass.

All models produce primary nitrogen

40 Msun, Z=0.00001, V(ini)= 700 km s-1 Meynet et al. 2013

IF MIXING IS TOO EFFICIENT à FLATTENING ALSO OF OMEGAà LESS PRIMARY N

Some Possible Consequences

Origin of primary nitrogen, 13C, 22Ne in the early phases of the chemical evolution of galaxies

Origin of the CEMP stars (at least the CEMP-no :no s-elements)

Origin of the O-Na anticorrelation in globular clusters

Origin of the high He-abundance in some stars in globular clusters

New s-process in massive metal poor rotating stars

Meynet et al. 2006; Chiappini et al. 2005, 2006, 2008 Cescutti and Chiappini 2010

Meynet et al. 2006, 2010

Decressin et al. 2007ab

Maeder and Meynet 2006; Charbonnel et al. 2013

Pignatari et al. 2008; Chiappini et al. 2011; Frischknecht et al. 2012; Cescutti et al. 2013

Mass loss triggered by rotation even in Pop III stars Ekström et al. 2008

Primary-like evolution of Be and B Prantzos 2012

60 Msun, Z=10-5 V/Vcrit=0.70 V/Vcrit =0

Rotating star has lost Material through winds

NITROGEN

NITROGEN

NON-STANDARD S-PROCESS IN ROTATING MASSIVE STARS

- Integration in the Geneva stellar models of nuclear networks with 613 isotopes up to end He-burning with 737 isotopes from He-burning on.

Reaction library (REACLIB) from Rauscher & Thielemann (2000)

Frischknecht 2011, PhD Thesis, Basel

NON-STANDARD S-PROCESS IN ROTATING MASSIVE STARS

- Integration in the Geneva stellar models of nuclear networks with 613 isotopes up to end He-burning with 737 isotopes from He-burning on.

Reaction library (REACLIB) from Rauscher & Thielemann (2000)

Frischknecht 2011, PhD Thesis, Basel

Karakas et al. 2006 lower

Descouvemont 1993 lower

NON-STANDARD S-PROCESS IN ROTATING MASSIVE STARS

- Integration in the Geneva stellar models of nuclear networks with 613 isotopes up to end He-burning with 737 isotopes from He-burning on.

Reaction library (REACLIB) from Rauscher & Thielemann (2000)

Frischknecht 2011, PhD Thesis, Basel

Karakas et al. 2006 lower

Descouvemont 1993 lower

RESULTS LIKELY ARE UNDERESTIMATED

NON-STANDARD S-PROCESS IN ROTATING MASSIVE STARS

Horizontal shear diffusion coefficient Zahn (1992) Vertical shear diffusion coefficient Talon & Zahn (1997)

Vini/Vcrit=0 Vini/Vcrit=0.4

Vini/Vcrit=0.5

Vini/Vcrit=0.5, CF88/10 17O+alpha

25 Msol, Z=10-5

Frischknecht, Hirshi and Thielemann (2012, A&A Letter)

30 40 50 60 70 80Atomic number

100

101

102

103

104

Pro

duct

ion

fact

ors

Fe

Co

Ni

Cu

Zn

Ga

GeAsSe

Br KrRb

SrY

Zr NbMo

RuRhPdAgCdIn

SnSbTe

I XeCs

BaLaCePr Nd SmEuGdTbDyHoEr TmYbLuHf Ta W ReOsIr Pt Au

HgTl PbBi

15 M�, �ini/�crit = 0.4

20 M�, �ini/�crit = 0.4

25 M�, �ini/�crit = 0.4

40 M�, �ini/�crit = 0.4

Z=10-5, Vini/Vcrit =0.4

15Msol

20-25Msol

40Msol

Frischknecht et al. 2012

The details are making the perfection and the perfection is not a detail. Léonard de Vinci Extrait des carnets

Some Possible Consequences

Origin of primary nitrogen, 13C, 22Ne in the early phases of the chemical evolution of galaxies

Origin of the CEMP stars (at least the CEMP-no :no s-elements)

Origin of the O-Na anticorrelation in globular clusters

Origin of the high He-abundance in some stars in globular clusters

New s-process in massive metal poor rotating stars

Meynet et al. 2006; Chiappini et al. 2005, 2006, 2008 Cescutti and Chiappini 2010;

Meynet et al. 2006, 2010

Decressin et al. 2007ab

Maeder and Meynet 2006

Pignatari et al. 2008; Chiappini et al. 2011; Frischknecht et al. 2012; Cescutti et al. 2013

Mass loss triggered by rotation even in Pop III stars Ekström et al. 2008

Primary-like evolution of Be and B Prantzos 2012

Chiappini, Hirschi, Meynet, Ekström, Maeder, Matteucci, (2006)

Observations by Spite et al. 2005 Israelian et al. 2004

Chiappini, Hirschi, Meynet, Ekström, Maeder, Matteucci, (2006)

Observations by Spite et al. 2005 Israelian et al. 2004

Smaller angular momentum content

Similar angular momentum content

Chiappini, Hirschi, Meynet, Ekström, Maeder, Matteucci, 2006

C/O

Spite et al. 2005 Akerman et al. 2004 Nissen 2004; see also Fabbian et al. 2009

Observations from

800 km s-1

300 km s-1

Spite et al 07

Chiappini et al. 2008

60 Msun 800 km/s Mcut=30 D=100

Dotted blue 60 Msun 0 km/s Mcut=18.2 D=100

7 Msun 800 km/s Envelope D=100 Dotted red

7 Msun 0 km/s Envelope D=100

Massive stars Dilutionà small He-rich Mcut à small N/C, N/O large 12C/13C

Meynet et al. 2010

BULGE

HALO

Chiappini, private communication

10�3 10�2 10�1 100 101

time [Gyr]

�4.0

�3.5

�3.0

�2.5

�2.0

�1.5

�1.0

�0.5

0.0

0.5

[Fe/

H]

Halo

Bulge

Models from Cescutti & Chiappini 2010; Cescutti et al. 2009

Chiappini  et  al.,  Nature  2011  

Barbuy et al. 2009

x x

x x x x x

x

x