74
Time and Statistical Information Utilization in SAR ADCs Jon Guerber December 4, 2012 1 Advisor: Dr. Un-Ku Moon School of Electrical Engineering and Computer Science Oregon State University, Corvallis, OR O regon State Univeristy M ixed Signal Design 10110

Time and Statistical Information Utilization in SAR ADCs

  • Upload
    senta

  • View
    66

  • Download
    0

Embed Size (px)

DESCRIPTION

Time and Statistical Information Utilization in SAR ADCs. Jon Guerber December 4 , 2012. Advisor: Dr. Un-Ku Moon School of Electrical Engineering and Computer Science Oregon State University, Corvallis, OR. SAR ADC Outline. ADC Motivation MCS and EMCS Structures The Ternary SAR (TSAR) - PowerPoint PPT Presentation

Citation preview

Page 1: Time and Statistical  Information  Utilization in SAR ADCs

Time and Statistical Information Utilization in SAR ADCs

Jon Guerber December 4, 2012

1

Advisor: Dr. Un-Ku MoonSchool of Electrical Engineering and

Computer ScienceOregon State University, Corvallis, OR

Oregon State UniveristyMixed Signal Design

10110

Page 2: Time and Statistical  Information  Utilization in SAR ADCs

SAR ADC Outline• ADC Motivation• MCS and EMCS Structures• The Ternary SAR (TSAR)• Residue Shaping• The Feedback Initialized TSAR• Conclusions

2

Page 3: Time and Statistical  Information  Utilization in SAR ADCs

SAR ADC Outline• ADC Motivation

– Power Aware ADCs– SAR ADC Benefits

• MCS and EMCS Structures• The Ternary SAR (TSAR)• Residue Shaping• The Feedback Initialized TSAR• Conclusions

3

Page 4: Time and Statistical  Information  Utilization in SAR ADCs

The Need for ADCs

4

• Analog to Digital Conversion– Used when digital processing units require data from analog real-

world sources– Important parameters: accuracy, bandwidth, power, cost, size …

10110

Page 5: Time and Statistical  Information  Utilization in SAR ADCs

ADC Motivation• Power Aware ADCs

– Power is becoming vital in portable and medical electronics applications

– Digital computational computations / Joule doubles every 1.5 years [1| Intel 2009]

– ADC samples / Joule doubles every 3.3 years [2| Murmann 2010]

5

• Successive Approximation ADCs – Provide an efficient operation in the 6-14b resolution range with

bandwidths below 100MHz

Signal Bandwidth

468

101214161820

22

1kHz 10kHz 100kHz 1MHz 10MHz100MHz 1GHz

Res

olut

ion(

bit)

1 W

1mW1 W

1 kWsuperaudio

audio

Telephony

short rangewireless

homeinternet

Inter-connectivity

UWB

MobileBasestation

WirelessLAN

cellphones

video

Signal Bandwidth

468

101214161820

22

1kHz 10kHz 100kHz 1MHz 10MHz100MHz 1GHz

Res

olut

ion(

bit)

1 W

1mW1 W

1 kWsuperaudio

audio

Telephony

short rangewireless

homeinternet

Inter-connectivity

UWB

MobileBasestation

WirelessLAN

cellphones

video

Page 6: Time and Statistical  Information  Utilization in SAR ADCs

SAR Motivation• SAR ADC Design

– Based on feedback subtraction

– Single comparator as quantizer unit

– Feedback subtraction accomplished with passive elements (Caps or Resistors)

• SAR Design Benefits– Low Power: Dynamic, High efficiency– Scalable: Good Small Process node FOM, Small Area– Moderate Speed/Accuracy ( < 100MHz, 6-14 Bits)

Jon Guerber/6

Assume box = 13kg

Is box > 8 kg?

Initial Weight = 8kg

Yes – Add 4 kgIs box > 12 kg? Yes – Add 2 kgIs box > 14 kg? No – Sub 1 kg

Box = 13 kg

Page 7: Time and Statistical  Information  Utilization in SAR ADCs

SAR Motivation• SAR ADC Design

– Based on feedback subtraction

– Single comparator as quantizer unit

– Feedback subtraction accomplished with passive elements (Caps or Resistors)

• SAR Design Benefits– Low Power: Dynamic, High efficiency– Scalable: Good Small Process node FOM, Small Area– Moderate Speed/Accuracy ( < 100MHz, 6-14 Bits)

SAR

DAC Driver

DAC Driver

Cap DAC

Cap DAC

VINDOUT

Jon Guerber/7

Page 8: Time and Statistical  Information  Utilization in SAR ADCs

SAR ADC Outline• ADC Motivation• MCS and EMCS Structures

– SAR ADC Operation – Switching Efficiency Optimization

• The Ternary SAR (TSAR)• Residue Shaping• The Feedback Initialized TSAR• Conclusions

8

Page 9: Time and Statistical  Information  Utilization in SAR ADCs

Merged Capacitor Switching SAR

• Merged Capacitor Switching (MCS) – Sampling reference

is Vcm [1,2]– Differentially

switches DAC – Minimizes switching

power– Maintains virtual

node common mode

C2^(N-3)C2^(N-2)C

VINP

SAR

DACP

VT

DACN

VINN

C2^(N-3)C2^(N-2)C

VCM

VCMVDD

VDD

Jon Guerber/9

Page 10: Time and Statistical  Information  Utilization in SAR ADCs

MCS Switching Power• MCS Switching

Power– Saves switching

energy over previous structures

– Switching efficiency come from the direct switching behavior of the DAC in each phase

– Beats the efficient of the competing “monotonic” method

10

VIN+-

VCM VCM VCM

VCM VCM VCM

VDD VCM VCM

GND VCM VCM

GND VCM VCM

VDD VCM VCM

VDD VDD VCM

GND GND VCM

VDD GND VCM

GND VDD VCM

GND VDD VCM

VDD GND VCM

GND GND VCM

VDD VDD VCM

EVDD = (½)CVDD²

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C CEVDD = (1/8)CVDD²

EVDD = (5/8)CVDD²

EVDD = (½)CVDD²

EVDD = (5/8)CVDD²

EVDD = (1/8)CVDD²

Φ1 Φ2

Page 11: Time and Statistical  Information  Utilization in SAR ADCs

Early Reset MCS (EMCS) SAR• EMCS Switching

– Uses different switching pattern then MCS

– On “10” and “01” transitions, previous DAC cap is reset and current cap is charged oppositely

– In each stage, current cap is charged to original MSB

– Comp output dictates resetting

11

VIN+-

VCM VCM VCM

VCM VCM VCM

VDD VCM VCM

GND VCM VCM

GND VCM VCM

VDD VCM VCM

VDD VDD VCM

GND GND VCM

VCM VDD VCM

VCM GND VCM

VCM GND VCM

VCM VDD VCM

GND GND VCM

VDD VDD VCM

EVDD = (½)CVDD²

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C CEVDD = (1/8)CVDD²

EVDD = (3/8)CVDD²

EVDD = (½)CVDD²

EVDD = (3/8)CVDD²

EVDD = (1/8)CVDD²

Φ1 Φ2

Page 12: Time and Statistical  Information  Utilization in SAR ADCs

Energy and Linearity Comparison

• MCS vs. EMCS– EMCS has 12.5% lower average switching energy (uniform input)– 18.4% lower with a Gaussian input– Mathematically proven to be lower or equal energy for each code– Static linearity improvements 12

0 1000 2000 3000 4000300

400

500

600

700

800

900

MCSEMCS

Code

Ener

gy P

er C

ode

Con

v. (C

Vdd²

)

0 250 500 750 10000

0.05

0.1

0.15

0.2

0.25

MCS INLEMCS INL

CodeR

MS

INL

(LSB

s)

Page 13: Time and Statistical  Information  Utilization in SAR ADCs

SAR Performance Enhancements

• Meaningful SAR Performance Improvements– How can we better

use 3-level DAC?– Are we discarding

any valuable information to find the input magnitude?

13

C2^(N-3)C2^(N-2)C

VINP

SAR

DACP

VT

DACN

VINN

C2^(N-3)C2^(N-2)C

VCM

VCMVDD

VDD

Page 14: Time and Statistical  Information  Utilization in SAR ADCs

Comparator Delay Variation per Stage

Comparator Transfer Function

1 3 5 7 9 11 13250

300

350

400

450

500

550

SAR Stage (For Fullscale Stage Voltage)

Buf

fere

d C

ompa

rato

r Del

ay (p

s)

tOUT GV = V exp A - 1 t / τ

Comparator Delay vs. Stage Voltage

• Comparator decision time increases linearly with stage• Comparator delay is an indicator of input magnitude

Jon Guerber/14

Page 15: Time and Statistical  Information  Utilization in SAR ADCs

SAR ADC Outline• ADC Motivation• MCS and EMCS Structures• The Ternary SAR (TSAR)

– Redundancy, Speed and Power Improvements– Stage Grouping, Skipping, Shaping– Implementation Optimization

• Residue Shaping• The Feedback Initialized TSAR• Conclusions 15

Page 16: Time and Statistical  Information  Utilization in SAR ADCs

Ternary SAR (TSAR) Architecture

• Ternary SAR (TSAR) uses comparator delay information to create a coarse third level– Middle level is based on input magnitude– DAC operation is skipped for a middle code

16

Vfs/4

-Vfs/4

Vfs

-Vfs

10

01

00

Subtract Vfs/2 From

Input

Add Vfs/2 to Input

Defer Decision to Next Stage

Digital Output

DAC Action

Time Comp = 1

Voltage Comp = 1

Voltage Comp = 0

Time Comp = 0

SAR

DAC Driver

DAC Driver

Cap DAC

Cap DAC

VINDOUTTime

Comp

Delay

Page 17: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Redundancy

• TSAR Provides 1.5b/stage redundancy– Tolerates small settling errors, fixes over-range errors– No extra cycles or sub-radix arrays needed– Adds just like conventional 1.5b/stage pipelined ADCs17

Vfs/4

-Vfs/4

Vfs

-Vfs

10

01

00

Subtract Vfs/2 From

Input

Add Vfs/2 to Input

Defer Decision to Next Stage

Digital Output

DAC Action

Time Comp = 1

Voltage Comp = 1

Voltage Comp = 0

Time Comp = 0

X XX X

X XX X

d1

d2

d3

d4

b1 b2 b3 b4 b5

Page 18: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Speed Enhancements

• Comparison Time Reduced in Coarse Steps– Codes that take longer then Vfs/4 = middle code– Comparator delay per stage is now reduced– Worst case conversion delay shortened

18

Binary SAR

TSAR

Fixed Conversion Time

Page 19: Time and Statistical  Information  Utilization in SAR ADCs

TSAR DAC Activity Reduction

• TSAR Switching Activity Reduction– When the input is in the center code, no DAC cap is

switched– Like “Multi-Comparator” Circuit but with no extra

voltage comparators [Liu, VLSI 2010] 19

SwitchSwitch

Switch

Stage 1 Stage 2 Stage 3

No Switching

VREF

-VREF

0

Switch

Page 20: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Residue Shaping

• TSAR Residue Shaping due to 1.5b redundancy– Improves SQNR by 6dB (Reduces DAC spread by ½)– Further reduces latter stage DAC activity 20

1 -11/2 -1/2

1/2

0

Stage 1

1/4 -1/4

1 -11/2 -1/2

1/20

Stage 2

1/4 -1/4

3/2

1 -11/2 -1/2

1/2

0

Stage 31/4 -1/4

7/2-1/512 1/512-1/1024 1/10240

.05%.05%

99.9% of CodesStage 9 PDF

Page 21: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Stage Grouping and Skipping

• TSAR Stage Grouping– Allows for cycle skipping (10b in 8.02 ave. cycles)– Reduces number of distinct reference levels 21

VFS

-VFS

VFS

-VFS

VFS VFS VFS

-VFS -VFS -VFS

VIN

STAGE: 1 2 3 4 5

Skip Stage

Don’t Charge Caps

ACTION: Normal Operation

Normal Operation

Normal Operation

Page 22: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Stage Grouping and Skipping

• TSAR Stage Grouping– Grouping based on

power simulations– Comparator power

also reduces (20% less on average)

22

1 2 3 4 5 6 7 8 9Stages:

Delay Reference(As a fraction of Vfs) 1/8 1/10241/32

0 250 500 750 10003

4

5

6

7

8

9

10

MCSTSAR

Code

Num

ber o

f Com

paris

ons

Comparisons Per Code

Page 23: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Switching and Driver Energy

• TSAR Energy Reductions over the MCS SAR– Average DAC switching energy is reduced by 63.9%– Average driver energy is reduced by 61.3% 23

0 250 500 750 10000

50

100

150

200MCSTSAR

Code

Ener

gy p

er C

ode

(CVd

d²)

0 250 500 750 10000

100

200

300

400

500MCSTSAR

CodeD

river

Cap

acito

rs S

witc

hed

DAC Switching Energy per Code Driver Energy per Code

Page 24: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Implementation

• TSAR Implemented in 0.13µm CMOS – Delay elements consist of current starved inverters– Input switches are bootstrapped [Dessouky JSSC 2001]– Inverter based DAC Drivers 24

SAR

DAC Driver

DAC Driver

Cap DAC

Cap DAC

VINDOUTTime

Comp

Delay

Page 25: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Voltage Comparator

• Voltage Comparator– NMOS input devices, PMOS latch only– Uses high VTH devices to read output– Outputs directly feed time comparator 25

CPVINP VINN

CLK CLK

CLK

CLK

CNTime Comp

Time Comp

TCN TCP

Page 26: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Time Comparator

• Time Comparator– Gated Inverter

Based– Device strength

based on speed and accuracy

– Outputs fed to SAR Registers

26

CLK

CP

TNP

Internal Clock

Voltage Comparator Regerating

Time Comparator Transparent

Voltage Comparator

Resetting

Time Data Latched

Comparator Operations

Page 27: Time and Statistical  Information  Utilization in SAR ADCs

TSAR State Machine Enhancements

• TSPC DFF optimized for SAR ring counter– Reduces energy on “00” state with simple asy. reset– Saves 70% of state machine power – Increases setup time by 50% 27

bN-1 bN ETSPC EPROP

7.93fJ 0.10fJ3.67fJ6.69fJ0.02fJ

3.73fJ9.10fJ0.02fJ

0011

0101

CK

CK

CK

CK

RSTD

Q

Page 28: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Reference 3 Calibration

• Reference Calibration Sets Third Reference– No static power, reference stored as capacitor voltage– First 2 references are coarse and only used for

redundancy in groups 1 and 2– Works on the principle that latter stage distribution

become more white [Levy TCASI 2011]28

Mod-N ACC

Dynamic CP

01 (+1)10,00 (-1)

Roll Up

Roll DN

VTREF3

For ¼ Time Level, 50% of codes should equal “01”

Page 29: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Die Photo

• Layout Specs– JAZZ 0.13µm

CMOS– Active Area =

0.056mm² 29

311µm

180µm

Analog CoreSAR and

Logic

Cap Drivers

Capacitor

Array

Capacitor

Array

Calibration

Circuit

200µm x

80µm

Cap Drivers

[Guerber 2010]

Page 30: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Measured Results

30

4 407

7.5

8

8.5

9

9.5

10

ENOB @ 0.8V VDD

ENOB @ 1.2V VDD

Sampling Clock Frequency (MHz)

Effe

ctiv

e N

umbe

r of B

its (E

NO

B)

0 1 2 3 4-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (MHz)

Mag

nitu

de (d

B)

TSAR Frequency Response Nyquist ENOB vs. CLK Frequency

8 MHz CLKVDD = 0.8VFOM = 16.9fJ/C-S

Page 31: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Measured Results

31

4 407

7.5

8

8.5

9

9.5

10

ENOB @ 0.8V VDD

ENOB @ 1.2V VDD

Sampling Clock Frequency (MHz)

Effe

ctiv

e N

umbe

r of B

its (E

NO

B)

0 1 2 3 4-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (MHz)

Mag

nitu

de (d

B)

TSAR Frequency Response Nyquist ENOB vs. CLK Frequency

8 MHz CLKVDD = 0.8VFOM = 16.9fJ/C-S

Page 32: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Power Consumption

32

-50 -40 -30 -20 -10 0210

230

250

270

290

310

Input Signal (dBFS)

Tota

l TSA

R Po

wer

(uW

)

Measured TSAR Power vs. Input TSAR Power Breakdown

40%

38%

6%4%

8%4%

Comparator Cap Array/DriversTime Comparison Bootstrap SwitchSAR Logic Ref/CLK Gen

Page 33: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Performance Summary

33

CLK Freq. (MHz) 8 (12b) 8 (10b) 20 (10b) 20 (10b)

Supply (V) 0.8 1.2 0.8 1.2

Input Freq. (MHz) 4 4 10 10

Total Power (µW) 75.2 231 202 526

SNDR (dB) 61.1 59.6 53.3 55.7

SFDR (dB) 79 76.8 74.1 78.6

FOM (fJ/CS) 10.0 36.8 26.8 52.8

Page 34: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Summary

• Accuracy Improvements– Redundancy, Residue Shaping, and Calibration

• Speed Improvements– Reduced comp. delay and capacitor settling time

• Power Reduction– Stage Skipping, DAC activity reduction, residue

shaping, and logic modifications

• Implementation– Working chip demonstrated in 0.13um CMOS 34

Page 35: Time and Statistical  Information  Utilization in SAR ADCs

SAR ADC Outline• ADC Motivation• MCS and EMCS Structures• The Ternary SAR (TSAR)• Residue Shaping

– SQNR Impacts– Bounded Offset Tolerance

• The Feedback Initialized TSAR• Conclusions

35

Page 36: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Residue Shaping

• TSAR Residue Shaping due to 1.5b redundancy– Improves SQNR by 6dB (Reduces DAC spread by ½)– Further reduces latter stage DAC activity 36

1 -11/2 -1/2

1/2

0

Stage 1

1/4 -1/4

1 -11/2 -1/2

1/20

Stage 2

1/4 -1/4

3/2

1 -11/2 -1/2

1/2

0

Stage 31/4 -1/4

7/2-1/512 1/512-1/1024 1/10240

.05%.05%

99.9% of CodesStage 9 PDF

Page 37: Time and Statistical  Information  Utilization in SAR ADCs

Pipeline ADC Residue Shaping

• Residue Shaping Present in any Multi-Stage ADC– Pipeline is similar to SAR with constant full scale range – SQNR Improvement related to overall resolution 37

1 1/2 -1/20

Stage 1

1/4 -1/4

1 1/2 -1/2

1/4

0

Stage 2

1/4 -1/4

3/4

1/8Stage 3

7/8

R-Shaped

R-Shaped Traditional

-M*ST10

SQNR

SQNR -SQNR

20log 2 1- 2

Pipeline ADC PDF Residue Shaping Effect

Page 38: Time and Statistical  Information  Utilization in SAR ADCs

Residue Shaping ADC Design

• Last Stage Full-Scale Range Shrinks by ½– Quantization noise is shaped into smaller range– Final stage references should change 38

VFS

01/2

-1/2

-VFS

VFS

1/43/4

-1/4

-VFS

VFS

1/4

-1/4

-VFS

0

Traditonal Proposed0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9

9.5

10

10.5

11

11.5

12

1x Digital Gain1/2x Digital Gain

Symmetric Last Stage Flash Outer Level Magnitude as a Fraction of Vfs

ENO

B (N

o O

ffset

)

Last Stage Reference Levels for SQNR Improvement

Page 39: Time and Statistical  Information  Utilization in SAR ADCs

Residue Shaping with Other Red.

• Residue Shaping is not Present in Other Red.– Extra cycle redundancy just swaps PDF halves– Sub-Radix redundancy does change the PDF, but does

not minimize quantization noise full-scale range 39

1 -11/2 -1/2

1/2

0

Stage 1

1/4 -1/4

1 -11/2 -1/20

Stage 2a

1/4 -1/4 1 -11/2 -1/20

Stage 3

1/4 -1/4

21

1 -11/2 -1/20

Stage 2b

1/4 -1/4

1

Swap PDF Halves

Extra Cycle Redundancy Residue Shaping

Page 40: Time and Statistical  Information  Utilization in SAR ADCs

Residue Shaping Offset Tolerance

• Sub-ADC Offset Tolerance only Slightly Reduced– 1.5b/stage redundancy gives +/- Vfs/4 comparator offsets– With residue shaping, early stage sub-ADC offsets tolerated

similarly, later comps. should be more accurate 40

VFS

1/4

-1/4

-VFS

VFS

-VFS

VFS

-VFS

VFS

-VFS

3/8

-3/8

VFS

1/4

-1/4

-VFS

01/8

-1/8

7/16

-7/16

1/16-1/16

15/32

-15/32

1/32-1/32

SAR Residue Shaping Comparator Offset Bounds Example

VFS

-VFS

VFS

-VFS

VFS

-VFS

VFS

3/32

-3/32

VFS

1/64

-1/640

7/32

-7/32

15/32

-15/32

1/32-1/32

1/32-1/32

1/32-1/32

1/32-1/32

Pipeline Residue Shaping Comparator Offset Bounds Example

Page 41: Time and Statistical  Information  Utilization in SAR ADCs

Residue Shaping Offset Tolerance

• SQNR Improves even with Offsets– Half-bit SQNR increase with no architectural changes– Resolution improves with bounding requirements

followed 41

0 0.05 0.1 0.15 0.2 0.2510.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

ADC w/ 2b Tradtional Back-end FlashADC w/ 2b Scaled Back-end FlashADC w/ 2b Scaled Back-end Flash and Ideal St. 9ADC w/ Bounded Comparison Levels

3-Sigma Offset Level

ENO

B

Page 42: Time and Statistical  Information  Utilization in SAR ADCs

SAR ADC Outline• ADC Motivation• MCS and EMCS Structures• The Ternary SAR (TSAR)• Residue Shaping• The Feedback Initialized TSAR

– TSAR Comparison and DAC Inefficiencies– Coarse/Fine Nestings and Recoding

• Conclusions42

Page 43: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Inefficiencies

Driver Activity DAC Switching Comparator Energy

SwitchSwitch

Switch

Stage 1 Stage 2

No Switching

VFS

-VFS

0

Switch

Switch

Switch

Switch

No Switching

VFS

-VFS

0

Switch

-VFS/2-VFS/4

VFS/4-VFS/2

-VFS/2-VFS/4

VFS/4-VFS/2

TSAR

Optimal

Φ1 Φ2 Φ3

Φ1 Φ1 Φ1

2C

2C

C

C

C

C

TSAR Switching

Phases

Optimal Switching

Phases

VG

VG

1

StageSized

Comparator Accuracy

13b2 13b3 13b

TSAR Comparator Sizes

1

StageSized

Comparator Accuracy

3b2 4b3 5b

Optimal Comparator Sizes

43

Page 44: Time and Statistical  Information  Utilization in SAR ADCs

FITSAR Block Diagram

• FITSAR Architectural Benefits:– Nested coarse ADC structure (Comparator Energy)– Fine DAC bit recoding (DAC Activity and Switching)– Fine DAC feedback initialization (DAC Activity and Switching)

Coarse DAC

Data Timed 6b Binary SAR

7b TSARFine DAC LSBs

(R2R Based)

Fine DAC MSBs (Cap Based)

Rec

oded

VIN

Jon Guerber/44

Page 45: Time and Statistical  Information  Utilization in SAR ADCs

FITSAR Nesting

• Multi-Stage SAR ADCs– Pipelined: Requires Inter-stage Amplification, Decouples

Fine/Corse Bits– Split Comparator: No Inter-stage Amplification, Coupled

Fine/Corse Bits– Nested: No Amplification, Decouples Fine/Corse Bits

SAR

DAC Driver

DAC Driver

Cap DAC

Cap DAC

VINDOUTTime

Comp

Delay

Coarse SAR

45

Page 46: Time and Statistical  Information  Utilization in SAR ADCs

Feedback TSAR Recoding

• FITSAR Recoding optimizes DAC “Windowing”– Converts binary coarse output to optimal ternary codes– Maintains redundancy and residue shaping– Implemented with simple logic blocks

000001010011100101110111

COUT F1 F2

VDDVCM

GND

VDDVDD

VDDVCMVCM VCMVCM VCMVCM

VCMGNDGND GND

F1(VDD)C1C2

F1(GND)C1bC2b

F2(VDD)C1C3

F2(GND)C1bC3b

VCM

1/4 1/8 1/32

FITSAR DAC Movement

EC = 7.71*(CVDD²)

Φ1 Φ1 Φ1 Φ1 Φ1 Φ1

0 0 0

VFS

-VFS

DAC Recoding DAC Logic

Jon Guerber/46

Page 47: Time and Statistical  Information  Utilization in SAR ADCs

Feedback Initialization

• Fine DAC switching is grouped– All codes from the coarse SAR are switched to the fine

in a single phase– Large energy savings due to large fine DAC and small

coarse DAC

Φ1 Φ2 Φ3

GND to VDD Switching Phase

Φ1 Φ1 Φ2

Φ1 Φ1 Φ1

2DD DDVDD DD DD

V V 5E = V 2C +C = CV2 4 4

2VDD DD DD DD DD

3 3E = V 3C V - V = CV4 4

VDDE = 0 Floating

Switching Energy

2C

2C

2C

C

C

C

C

C

C

Jon Guerber/47

Page 48: Time and Statistical  Information  Utilization in SAR ADCs

DAC Switching Comparison

• Time-Based DAC Movement Comparison– MCS requires the DAC to switch in each phase, high activity– TSAR eliminates DAC switching for small virtual ground inputs– FITSAR optimizes switching operation to only be in one direction– FITSAR also switching in one phase, reducing crossover losses

VCM 1/4 1/8 1/32

FITSAR DAC Movement

EC = 7.71*(CVDD²)

Φ1 Φ1 Φ1 Φ1 Φ1 Φ1

0 0 0

VFS

-VFS

VCM 1/20

1/8

1/32

TSAR DAC Movement

EC = 14.09*(CVDD²)

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6

0 0

VFS

-VFS

VFS

-VFS

VCM 1/2

1/4

1/8 1/16

1/32

1/64

MCS DAC Movement

EC = 23.32*(CVDD²)

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6

Jon Guerber/48

Page 49: Time and Statistical  Information  Utilization in SAR ADCs

FITSAR Switching and Driver Energy

• FITSAR Optimally Reduces Fine DAC Switching for 3 Levels– DAC Power Reduced 86% over MCS (61% over TSAR)– Driver activity Reduced 74% over MCS (34% over TSAR)

0 500 1000 1500 2000 2500 3000 3500 40000

100

200

300

400

500

600

700

800

900MCSFITTSAR

Code

Ener

gy P

er C

ode

Con

vers

ion

(CVd

d²)

0 1000 2000 3000 40000

200

400

600

800

1000

FITTSAR

CodeC

apac

itors

Sw

itche

d pe

r Cod

e C

onve

rsio

n

49

Page 50: Time and Statistical  Information  Utilization in SAR ADCs

FITSAR Comparator Activity Red.

• Fine Comparator Activity Reduced over TSAR– MCS: 12 Comps/Code– TSAR: 10.2 Comps/Code (15% energy reduction over MCS)– FITSAR: 5.6 Comps/Code (53% energy reduction over MCS)

0 500 1000 1500 2000 2500 3000 3500 40002

3

4

5

6

7

8

9

10

11

12

MCSTSAR

Code

No.

Eqv

. Fin

e C

ompa

rison

s Pe

r Cod

e

0 500 1000 1500 2000 2500 3000 3500 40002

3

4

5

6

7

8

9

10

11

12MCSFIT

CodeN

o. E

qv. F

ine

Com

paris

ons

Per C

ode

50

Page 51: Time and Statistical  Information  Utilization in SAR ADCs

CP

VINP VINN

CLK CLK

CLK

CLK

CN

P-LatchStrongarm

CP

VINP

CLK CLK

CLK

CN

CLK

• Coarse ADC Comp– Lower Accuracy (8-bit

noise)– High Speed– No Static Power

• Fine ADC Comp– Higher Accuracy (14-bit

noise)– Med Speed– Static Power when not

Reset

Comparator Implementation

Jon Guerber/51

Page 52: Time and Statistical  Information  Utilization in SAR ADCs

VIN+-

VCM VCM VCM

VCM VCM VCM

VDD VCM VCM

GND VCM VCM

GND VCM VCM

VDD VCM VCM

VDD VDD VCM

GND GND VCM

VCM VDD VCM

VCM GND VCM

VCM GND VCM

VCM VDD VCM

GND GND VCM

VDD VDD VCM

EVDD = (½)CVDD²

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C C

2C

2C C C

C CEVDD = (1/8)CVDD²

EVDD = (3/8)CVDD²

EVDD = (½)CVDD²

EVDD = (3/8)CVDD²

EVDD = (1/8)CVDD²

ER Merged CapacitorSwitching

• EMCS Coarse ADC– Output is

automatically recoded– Higher coarse

linearity– Lower switching

power, fewer latches

DFFD Q

R

DFFD Q

R

DFFD Q

R

DFFD Q

R

DFFD Q

DFFD Q

CK

ST

UP1

DN1

DFFD Q

DN2

UP2

VGP

VGN

Φ1 Φ2

R

Φ3

A

B

MU

X

DFFD Q

R

EMCS Implementation

Coarse ADC: EMCS

52

Page 53: Time and Statistical  Information  Utilization in SAR ADCs

FITSAR Comparator Gating

• Comparator Clock Gated by Stage Outputs– Replaces Skipping for faster critical delay logic path– Gates clock to comparator based on state outputs

53

UP(n+1) DN(n+1)

PH(n+1)

UP(n+2) DN(n+2)

PH(n+2)

PH(n)

CLK COMPCLK

Comparator Clock Gating Circuit

Page 54: Time and Statistical  Information  Utilization in SAR ADCs

FITSAR R2R DAC Nesting

• SAR DAC arrays are often Mismatch Limited– Can reduce overall DAC by calibration or Nesting– Now Thermal noise limited, 4x-ish reduction– No “Coupling capacitor” problems 54

FN F(N-1) F4

2(N-5)C 2(N-6)C 2C C

2R

R

2R

R

2R

2R

F3F2F1

VCM

VINP

FITSAR Nested DAC

Page 55: Time and Statistical  Information  Utilization in SAR ADCs

Ternary R2R DAC

Jon Guerber/55

• 3-level R2R DAC– 3-level DAC has a 79% power improvement over the traditional 2-level– Provides linearity improvements by eliminating major transition

RR2R

B2B3B4

GND

2R 2R 2RVOUT

R

B1

2R

RR2R

T1T2T3

2R 2R 2R

2R 2R 2R

B1/2

T1bT2bT3b

VOUT

+

-B1b/2

0 10 20 30 40 50 600

0.2

0.4

0.6

0.8

1

1.2

1.4

1.62-Level 3-Level

Code

Nor

mal

ized

Pow

er (W

/R)

Traditional R2R DAC

3-level R2R DAC

Page 56: Time and Statistical  Information  Utilization in SAR ADCs

FITSAR Prototype Layout

Jon Guerber/56

• FITSAR Prototype Layout– Area is 0.06mm²– Fabricated in National 0.13u CMOS– Psudo-differential layout

FITSAR Die Photo

FITSAR Floorplan

FN CMP

Inpu

t Sw

itche

s Bootstrapping Circuit

Bootstrapping Circuit

Internal CLK GEN

Ref Buf

Coarse Logic and Comparator

Coarse DAC

Coarse DAC

Fine Cap DACR2R DAC and

Buffers

Fine Cap DAC

Fine DAC

Buffers

R2R DAC and

Buffers

Clock Gen and Buffer

Digital Buffers

Digital Buffers

Fine DAC

Buffers

Fine Logic

and State Machine

Scan and Trim Logic

Scan and Trim Logic

VINN

VINP

Page 57: Time and Statistical  Information  Utilization in SAR ADCs

57

Spec/Date FITSAR 1.2V FITSAR 0.8V TSAR 0.8V

ENOB 11.76 11.18 9.85

Frequency 50 MHz 10 MHz 8 MHz

Power 362 uW 32.8 uW 75.2 uW

Process (VDD)

Optimos2 (1.2)

Optimos2 (0.8)

Jazz 0.13u (0.8)

FOM 2.08 fJ/CS 1.41 fJ/CS 10.0 fJ/CS

FITSAR Transistor Level Simulations

Page 58: Time and Statistical  Information  Utilization in SAR ADCs

SAR ADC Outline

• SAR Motivation• MCS and EMCS Structures• The Ternary SAR (TSAR)• Residue Shaping• The Feedback Initialized TSAR• Conclusions

58

Page 59: Time and Statistical  Information  Utilization in SAR ADCs

Published Work• J. Guerber, H. Venkatram, M. Gande, and U. Moon, “A Ternary R2R DAC Design

for Improved Energy Efficiency,” Elec. Letters, Submitted Dec. 2012.

• J. Guerber, M. Gande, H. Venkatram, A. Waters, U. Moon, “A 10b Ternary SAR ADC with Quantization Time Information Utilization,” IEEE J. Solid State Circuits. Nov. 2012.

• J. Guerber, M. Gande, U. Moon, “The Analysis and Application of Redundant Multi-Stage ADC Resolution Improvements Through PDF Residue Shaping,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Aug. 2012.

• J. Guerber, H. Venkatram, T. Oh, U. Moon, “Enhanced SAR ADC Energy Efficiency from the Early Reset Merged Capacitor Switching Algorithm,” IEEE Int. Symp. Circuits Syst., May 2012.

• J. Guerber, M. Gande, H. Venkatram, A. Waters, U. Moon, “A 10b Ternary SAR ADC with Decision Time Quantization Based Redundancy,” IEEE Asian Solid-State Circuits Conf. Nov. 2011, pp. 63-65.

59

Page 60: Time and Statistical  Information  Utilization in SAR ADCs

Conclusions• Energy Efficient SAR Architectural Changes

– Switching efficiency though EMCS, TSAR, and FITSAR– Comparison Reduction through TSAR and FITSAR– Stage Skipping and grouping though TSAR– Recoding and Nesting with FITSAR

• ADC Sample Rate Enhancements– Comparator speed enhancements though TSAR – Coarse SAR speed increase in FITSAR

• Accuracy Improvements– Residue shaping SQNR increases in TSAR, FITSAR, and pipelined

structures– 1.5b/stage redundancy shown in TSAR and FITSAR 60

Page 61: Time and Statistical  Information  Utilization in SAR ADCs

Questions

61

Page 62: Time and Statistical  Information  Utilization in SAR ADCs

Backup Slides

62

Residue Shaping with Sub-RadixTSAR Core Timing Diagram

TSAR Capacitor LayoutTSAR Quantizer SchematicTSAR State Machine Logic

FITSAR Core BlocksFITSAR Coarse Logic (EMCS)

Page 63: Time and Statistical  Information  Utilization in SAR ADCs

Residue Shaping with Sub-Radix

• Residue Shaping is not Present in Sub-Radix– PDF does shape, but does not minimize full-scale range

due to effective 1 bit quantization per stage 63

Sub-Radix Redundancy Residue Shaping

1.4 -14.70 -.70

½

0

.70 -.70.41 -.41

1

0

.41 -.41.29 -.29

1

0.24 -.24

2

.24 -.24.17 -.17

2

0.14 -.14

3

.06 .06

4

.14 -.14.08 -.08

5

0.06 -.06

3

.01 -.01

45

43

Stage 1

Stage 2

Stage 3

Stage 4

Stage 54

Page 64: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Core Timing Diagram

64

Internal Clock

Regenerating Transparent

ResettingData Latched

Voltage Comp. Op:Time Latch Op:

Virtual Ground Nodes

Internal SAR Phase

Time Reference

Phase N Phase N+1

Ref. N Ref. N+1

Falling Edge Set By Time Reference

Page 65: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Capacitor Layout• Layout in Unit

Elements– Common

centroid to fix first order gradients

– Maintain average distance to center

– Digital inputs all enter from right

– Virtual ground exits on left

65

9 8 9 9 9 7 9 8 8 9 7 9 9 9 8 9

8 9 7 9 8 9 8 9 9 8 9 8 9 7 9 8

9 7 9 8 9 8 9 7 7 9 8 9 8 9 7 9

9 9 8 9 6 9 8 9 9 8 9 6 9 8 9 9

9 8 9 6 9 5 9 8 8 9 5 9 6 9 8 9

7 9 8 9 5 9 7 9 9 7 9 5 9 8 9 7

9 8 9 8 9 7 4 6 6 4 7 9 8 9 8 9

8 9 7 9 8 9 6 3 1 6 9 8 9 7 9 8

8 9 7 9 8 9 6 2 3 6 9 8 9 7 9 8

9 8 9 8 9 7 4 6 6 4 7 9 8 9 8 9

7 9 8 9 5 9 7 9 9 7 9 5 9 8 9 7

9 8 9 6 9 5 9 8 8 9 5 9 6 9 8 9

9 9 8 9 6 9 8 9 9 8 9 6 9 8 9 9

9 7 9 8 9 8 9 7 7 9 8 9 8 9 7 9

8 9 7 9 8 9 8 9 9 8 9 8 9 7 9 8

9 8 9 9 9 7 9 8 8 9 7 9 9 9 8 9

Page 66: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Quantizer Schematic

66

SAR Registers,

Phase selector

and Reference selector

RSTVGP

VGN

CKSET

CKRST

CKSET

CKRST

CKRST

CKSET

Current Starved

2x

2x

12x

6x

3x

3x

Page 67: Time and Statistical  Information  Utilization in SAR ADCs

TSAR State Machine Logic

67

DFFD Q

QDFFD Q

QDFFD Q

QDFFD Q

Q

DFFD Q

QDFFD Q

QDFFD Q

QDFFD Q

QDFFD Q

QDFFD Q

Q

CK CK

CK CK CK CKCKCK

CK CKCK

R

1x

1x

S0 S1S2

UP2DN2

UP3DN3 S3 S4

UP5DN5 S5

UP6DN6 S6

UP7DN7 S7

UP8DN8 S8 S9

EOC

SN2

SN3

Page 68: Time and Statistical  Information  Utilization in SAR ADCs

FITSAR Core Blocks

68

P9CKB

PIN

10x/10x 10x/10x9x 6x

REF2REF1

9x 6x

PIN

RB

P10CKB

P9

10x/10x9x 6x

REF3

CKB

EOCCKB

P10

10x/10x9x 6x

REF4

CKB

REFOUT (To Internal CLK Gen)

RST CLK GATE CMP

EOC REF TD

Reference Mux

Internal Clock Generator

Page 69: Time and Statistical  Information  Utilization in SAR ADCs

FITSAR Coarse Logic (EMCS)

69

VGP

VGN

CLK

A

B

MU

X

DLTD Q

R

DLTD Q

R

AOI

DLT

D1 Q

R

AOI

R

D2

DLT

D1 Q

R

D2

DLT

D1 Q

R

AOI

R

D2

DLT

D1 Q

R

D2

DLT

D1 Q

R

AOI

R

D2

DLT

D1 Q

R

D2

DLT

D1 Q

R

AOI

R

D2

DLT

D1 Q

R

D2

DLTQ D

RS

DFFD Q

RDFFD Q

RDFFD Q

RDFFD Q

RDFFD Q

R

U1

UF1

U2

UF2 UF3 UF4 UF5

U3 U4 U5

DF1 DF2 DF3 DF4 DF5

D1 D2 D3 D4 D5

P7

P5

P5

P7B

R

RB

POUT

Page 70: Time and Statistical  Information  Utilization in SAR ADCs

FITSAR Fine Logic (Gating)

70

DLTD Q

R

DLT

D Q

R

Qb

Qb

U6

D6

DFFD Q

R

DLTD Q

R

DLT

D Q

R

Qb

Qb

U7

D7

DFFD Q

R

DLTD Q

R

DLT

D Q

R

Qb

Qb

U8

D8

DFFD Q

R

DLTD Q

R

DLT

D Q

R

Qb

Qb

U9

D9

DFFD Q

R

DLTD Q

R

DLT

D Q

R

Qb

Qb

U10

D10

EOCDFFD Q

R

CKM

R

FCP

FCN

PIN

P7

Gate3x5x 3x 3x 5x 3x

Page 71: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Layout Floorplan

71

CMP/ TC

Inpu

t Sw

itche

s Bootstrapping Logic

Bootstrapping Logic

Internal CLK GEN

Ref Buf

Fine Cap DAC

Fine Cap DAC DAC Buffers

Clock Gen and Buffer

Digital Buffers

Calibration

Digital Buffers

DAC Buffers

Fine Logic and

State Machine

Calibration

VINN

VINP

Boot Cap

Boot Cap

Page 72: Time and Statistical  Information  Utilization in SAR ADCs

TSAR Prototype Test Setup

72

BP FilterRF Signal GeneratorHP 8665A 50

SMA

VCM 10n

BP FilterRF Signal GeneratorAG 8643A 50

100n

RPOT

BandgapMAX6126

Power Supply

AGe3631

RP50k

RP1k

100n10u 100n/10u

ADA4004

Output Buffers

SN74AVC

Logic Analyzer TLA720

7 REF2-8

REF1

8

MATLAB Analysis

Power Supply

AGe3631

LDOADP1708 I-Meter

Fluke45100n/10u 100n 10u

RP50kADJ

SUP1

SUP2-6 5 6

AVR uCTiny84

AVR ProgISPMKII

TSARVIN

VIP

CLK REFS

SCANSUP

DO10 10

AVR Studio

63

ADT1-1WT

Page 73: Time and Statistical  Information  Utilization in SAR ADCs

References I

1. V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” Electron. Lett., vol. 46, pp. 620-621, Apr. 29, 2010.

2. Y. Zhu, C.-H. Chan, et al., “A 10b 100MS/s reference-free SAR ADC in 90nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, pp. 1111-1121, Jun. 2010.

3. J. Yang, T. Naing, and R. Brodersen, “A 1 GS/s 6b 6.7mW successive approximation ADC using asynchronous processing,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1469-1478, Aug. 2010.

4. C.-C. Liu, S.-J. Chang, et al., “A 1V 11fJ/conversion-step 10b 10MS/s asynchronous SAR ADC in 0.18um CMOS,” IEEE Symp. On VLSI Circuits, June 2010, pp. 241-242.

73

Page 74: Time and Statistical  Information  Utilization in SAR ADCs

References II

5. B. Levy, “A propagation analysis of residual distribution in pipeline ADCs,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 58, no. 10, pp. 2366-2376, Oct. 2011.

6. M. Dessouky, A. Kaiser, “Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping,” IEEE J. Solid-State Circuits, vol. 36, no. 3, Mar. 2001.

74