21
TIME SERIES MODELLING OF WATER RESOURCES AND ENVIRONMENTAL SYSTEMS KEITH W. HIPEL Departments of Systems Design Engineering and Statistics and Actuarial Science University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 A. IAN McLEOD Department of Statistical and Actuarial Sciences, The University of Western Ontario London^ Ontario, Canada, N6A 5B7 and Department of Systems Design Engineering, University of Waterloo Blbllothsb INSTITUT FOR WASSERBAU UNO WASSERWIPJSCHAFT TECHN1SSHE UNJVERSI7RT DARMSTADT PETERSENSTR. 13, 64287 DARMSTADT Tel. 0 61 51 /16 21 43 • Fax: 16 32 43 ELSEVIER Amsterdam — Lausanne — New York — Oxford — Shannon — Tokyo 1994

TIME SERIES MODELLING OF WATER RESOURCES AND …

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TIME SERIES MODELLING OF WATER RESOURCES AND …

TIME SERIES MODELLINGOF WATER RESOURCES ANDENVIRONMENTAL SYSTEMSKEITH W. HIPELDepartments of Systems Design Engineering and Statistics and Actuarial ScienceUniversity of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

A. IAN McLEODDepartment of Statistical and Actuarial Sciences, The University of Western OntarioLondon^ Ontario, Canada, N6A 5B7and Department of Systems Design Engineering, University of Waterloo

BlbllothsbINSTITUT FOR WASSERBAUUNO WASSERWIPJSCHAFT

TECHN1SSHE UNJVERSI7RT DARMSTADT

PETERSENSTR. 13, 64287 DARMSTADTTel. 0 61 51 /16 21 43 • Fax: 16 32 43

ELSEVIER

Amsterdam — Lausanne — New York — Oxford — Shannon — Tokyo 1994

Page 2: TIME SERIES MODELLING OF WATER RESOURCES AND …

- v u -

TABLE OF CONTENTS

PARTI: SCOPE AND BACKGROUND MATERIAL

CHAPTER 1: ENVIRONMETRICS, SCIENCE AND DECISION MAKING 31.1 THE NEW FIELD OF ENVIRONMETRICS 31.2 THE SCIENTIFIC METHOD 6

1.2.1 Spaceship Earth 61.2.2 Description of the Scientific Method 91.2.3 Statistics in a Scientific Investigation. 131.2.4 Data Analysis 14

1.3 PHILOSOPHY OF MODEL BUILDING 161.3.1 Occam's Razor 161.3.2 Model Construction 171.3.3 Automatic Selection Criteria 17

1.4 THE HYDROLOGICAL CYCLE 191.4.1 Environmental Systems 191.4.2 Description of the Hydrological Cycle 201.4.3 Classifying Mathematical Models 22

1.5 DECISION MAKING 241.5.1 Engineering Decision Making 241.5.2 Decision Making Techniques in Operational Research 271.5.3 Conflict Analysis of the Garrison Diversion Unit Dispute 30

1.6 ORGANIZATION OF THE BOOK 351.6.1 The Audience 351.6.2 A Traveller's Guide 361.6.3 Comparisons to Other Available Literature 49

1.7 DECISION SUPPORT SYSTEM FOR TIME SERIES MODELLING 511.8 CONCLUDING REMARKS 52PROBLEMS 54REFERENCES 55

CHAPTER 2: BASIC STATISTICAL CONCEPTS 632.1 INTRODUCTION _ ; 632.2 TIME SERIES 632.3 STOCHASTIC PROCESS 652.4 STATIONARITY 67

2.4.1 General Discussion. 672.4.2 Types of Stationarity 69

2.5 STATISTICAL DEFINITIONS 692.5.1 Mean and Variance 69

Page 3: TIME SERIES MODELLING OF WATER RESOURCES AND …

- V l l l -

2.5.2 Autocovariance and Autocorrelation 70Autocovariance and Autocorrelation Matrices 70

2.5.3 Short and Long Memory Processes 712.5.4 The Sample Autocovariance and Autocorrelation Functions 722.5.5 Ergodicity Conditions 76

2.6 SPECTRAL ANALYSIS 772.7 LINEAR STOCHASTIC MODELS 792.8 CONCLUSIONS 83PROBLEMS 83REFERENCES 84

PART II: LINEAR NONSEASONAL MODELS 87

CHAPTER 3: STATIONARY NONSEASONAL MODELS 913.1 INTRODUCTION 913.2 AUTOREGRESSIVE PROCESSES 92

3.2.1 Markov Process 923.2.2 Autoregressive Process of Order/? 93

Stationarity 94Autocorrelation Function 95Yule-Walker Equations 96Partial Autocorrelation Function 98

3.3 MOVING AVERAGE PROCESSES 1023.3.1 First OrderMoving Average Process 1023.3.2 Moving Average Process of order q 103

Stationarity 103Invertibility 104Autocorrelation Function 104Partial Autocorrelation Function 105The First Order Moving Average Process 107

3.4 AUTOREGRESSIVE • MOVING AVERAGE PROCESSES ; 1073.4.1 First Order Autoregressive - First Order Moving Average Process 1073.4.2 General Autoregressive - Moving Average Process 108

Stationarity and Invertibility 109Autocorrelation Function 109Partial Autocorrelation Function. 110ARMA(l.l) Process 111

3.4.3 Three Formulations of the Autoregressive -'Moving Average Process 114Random Shock Form 114Inverted Form 118Linear Filter Interpretation. 120Linear Difference Equations 121

Page 4: TIME SERIES MODELLING OF WATER RESOURCES AND …

- i x -

3.4.4 Constrained Models „ 1213.4.5 Box-Cox Transformation 122

3.5 THEORETICAL SPECTRUM „. 1233J.I Definitions...... . 1233.5.2 Plots of the Log Normalized Spectrum........................... 126

3.6 PHYSICAL JUSTIFICATION OF ARMA MODELS 1323.6.1 Environmental Systems Model of a Watershed 1323.6.2 Independent Precipitation...................................... 1343.6.3 AR(1) Precipitation 1353.6.4 ARMA(l.l) Precipitation „ 135

3.7 CONCLUSIONS 136APPENDK A3.1 - ALGORITHM FOR ESTIMATING THE PARTIALAUTOCORRELATION FUNCTION 137APPENDK A3.2 - THEORETICAL ACF FOR AN ARMA PROCESS 139PROBLEMS 140REFERENCES _ 142

CHAPTER 4: NONSTATIONARY NONSEASONAL MODELS 1454.1 INTRODUCTION 1454.2 EXPLOSIVE NONSTATIONARITY 1454.3 HOMOGENEOUS NONSTATIONARITY 146

4.3.1 Autoregressive Integrated Moving Average Model 1464.3.2 Autocorrelation Function 1504.3.3 Examples of Nonstationary Time Series 154

Annual Water Use for New York City 154Electricity Consumption 154Beveridge Wheat Price Index .; 156

4.3.4 Three Formulations of the ARIMA Process 1564.4 INTEGRATED MOVING AVERAGE PROCESSES 1634.5 DIFFERENCING ANALOGIES.... 1654.6 DETERMINISTIC AND STOCHASTIC TRENDS 1674.7 CONCLUSIONS 168PROBLEMS 168REFERENCES _ 169

PART HI: MODEL CONSTRUCTION 171

CHAPTERS: MODEL IDENTIFICATION 1735.1 INTRODUCTION 1735.2 MODELLING PHILOSOPHIES 173

5.2.1 Overview 1735.2.2 Hydrological Uncertainties :... 174

Page 5: TIME SERIES MODELLING OF WATER RESOURCES AND …

- X -

5.2.3 Model Discrimination 1745.2.4 Modelling Principles 1755.2.5 Model Building 175

5.3 IDENTIFICATION METHODS 1755.3.1 Introduction 1755.3.2 Background Information 1765.3.3 Plot of the Data „ 1785.3.4 Sample Autocorrelation Function. 1815.3.5 Sample Partial Autocorrelation Function .'. 1815.3.6 Sample Inverse Autocorrelation Function 1825.3.7 Sample Inverse Partial Autocorrelation Function 184

5.4 APPLICATIONS 1855.4.1 Introduction..... 1855.4.2 Yearly St. Lawrence Riverflows 1865.4.3 Annual Sunspot Numbers 191

5.5 OTHER IDENTIFICATION METHODS 1945.5.1 Introduction 1945.5.2 R and S Arrays 1955.5.3 The Comer Method 1955.5.4 Extended Sample Autocorrelation Function 195

5.6 CONCLUSIONS 195PROBLEMS 196REFERENCES 197

CHAPTER 6: PARAMETER ESTIMATION 2036.1 INTRODUCTION 2036.2 MAXIMUM LIKELIHOOD ESTIMATION 204

6.2.1 Introduction 2046.2.2 Properties of Maximum Likelihood Estimators 205

Likelihood Principle 205Consistency 206Efficiency 207

6.2.3 Maximum Likelihood Estimators 2086.3 MODEL DISCRIMINATION USING THE AKADCE INFORMATION CRITERION 210

6.3.1 Introduction 2106.3.2 Definition of the Akaike Information Criterion 2106.3.3 The Akaike Information Criterion in Model Construction 2116.3.4 Plausibility 2136.3.5 The Akaike Information Criterion for ARMA and ARIMA Models 2136.3.6 Other Automatic Selection Criteria 214

6.4 APPLICATIONS 2166.4.1 Introduction 2166.4.2 Yearly St Lawrence Riverflows 2166.4.3 Annual Sunspot Numbers 218

Page 6: TIME SERIES MODELLING OF WATER RESOURCES AND …

- x i -

6.5 CONCLUSIONS 221APPENDIX A6.1 - ESTIMATOR FOR ARMA MODELS 221APPENDIX A6.2 - INFORMATION MATRDC 225APPENDIX A6.3 - FINAL PREDICTION ERROR 227PROBLEMS „ 228REFERENCES . 229

CHAPTER 7: DIAGNOSTIC CHECKING 2357.1 INTRODUCTION „ 2357.2 OVERFITTING 2367.3 WHITENESS TESTS _ 238

7.3.1 Introduction 2387.3.2 Graph of the Residual Autocorrelation Function 2387.3.3 Portmanteau Tests 2407.3.4 Other Whiteness Tests 241

7.4 NORMALITY TESTS 2417.4.1 Introduction 2417.4.2 Skewness and Kurtosis Coefficients 2427.4.3 Normal Probability Plot 2437.4.4 Other Normality Tests 244

Shapiro-WilkTest 244Blom's Correlation Coefficient 244

7.5 CONSTANT VARIANCE TESTS 2457.5.1 Introduction 2457.5.2 Tests for Homoscedasticity 245

7.6 APPLICATIONS 2467.6.1 Introduction 2467.6.2 Yearly St Lawrence Riverflows 2477.6.3 Annual Sunspot Numbers 248

7.7 CONCLUSIONS 249PROBLEMS 250REFERENCES 252

PART IV: FORECASTING AND SIMULATION 255

CHAPTER 8: FORECASTING WITH NONSEASONAL MODELS 2578.1 INTRODUCTION „ 2578.2 MINIMUM MEAN SQUARE ERROR FORECASTS 259

8.2.1 Introduction 2598.2.2 Definition „ i 261

8.2.3 Properties 2638.2.4 Calculation of Forecasts 264

Page 7: TIME SERIES MODELLING OF WATER RESOURCES AND …

- x i i -

Forecasting with ARMA Models 264Forecasting with an ARIMA Model 265Rules for Forecasting - 266

8.2.5 Examples 267ARMA Forecasting Illustration 267ARMA Forecasting Application 268

8.2.6 Updating Forecasts 2708.2.7 Inverse Box-Cox Transformations 2708.2.8 Amlications ..... ....... 272

Probability Limits 272ARMA(l.l) Forecasts ..... „ 272ARIMA(0,2,l) Forecasts - 272

8.3 FORECASTING EXPERIMENTS 2738.3.1 Overview 2738.3.2 Tests for Comparing Forecast Errors 275

Introduction 275Wilcoxon Signed Rank Test 275The Likelihood Ratio and Correlation Tests 276

8.3.3 Forecasting Models 277Introduction 277Markov and Nonparametric Regression Models 278

8.3.4 Forecasting Study 280Introduction 280First Forecasting Experiment 280Second Forecasting Experiment 282Discussion ; 284

8.4 CONCLUSIONS 284PROBLEMS .„ 287REFERENCES 288

CHAPTER 9: SIMULATING WITH NONSEASONAL MODELS 2939.1 INTRODUCTION 2939.2 GENERATING WHITE NOISE 295

9.2.1 Introduction 2959.2.2 Random Number Generators 296

Overview 296Linear Congniential Random Number Generators 299

9.2.3 Generation of Independent Random Variables 301General Approach 301Simulating Independent Normal Sequences 302Generating Other Distributions 303

9.3 WATERLOO SIMULATION PROCEDURE 1 3049.4 WATERLOO SIMULATION PROCEDURE 2 306

9.4.1 WASIM2 Algorithm 306

Page 8: TIME SERIES MODELLING OF WATER RESOURCES AND …

- x i i i -

9.4.2 Theoretical Basis of WASIM2 3079.4.3 ARMA(l.l) Simulation Example 307

9.5 SIMULATION OF INTEGRATED MODELS 3109.5.1 Introduction 3109.5.2 Algorithms for Nonseasonal and Seasonal ARIMA Models 311

9.6 INVERSE BOX-COX TRANSFORMATION 3129.7 WATERLOO SIMULATION PROCEDURE 3 313

9.7.1 Introduction „...„ „ 3139.7.2 WASIM3 Algorithm 3139.7.3 Parameter Uncertainty in Reservoir Design..__ 3149.7.4 Model Uncertainty...» 316

9.8 APPLICATIONS 3169.8.1 Introduction 3169.8.2 Avoidance of Bias in Simulation Studies 3169.8.3 Simulation Studies Using the Historical Disturbances 3179.8.4 Parameter Uncertainty in Simulation Experiments 319

9.9 CONCLUSIONS 319PROBLEMS 320REFERENCES 321

PART V: LONG MEMORY MODELLING 325

CHAPTER 10: THE HURST PHENOMENON AND FRACTIONAL GAUSSIAN NOISE — 32710.1 INTRODUCTION 32710.2 DEFINITIONS 32810.3 HISTORICAL RESEARCH 331

10.3.1 The Hurst Phenomenon and Hurst Coefficients 33110.3.2 The Hurst Phenomenon and Independent Summands 33410.3.3 The Hurst Phenomenon and Correlated Summands 336

Introduction 336Short Memory Models 336Long Memory Models - 338

10.4 FRACTIONAL GAUSSIAN NOISE 33810.4.1 Introduction 33810.4.2 Definition of FGN „ 33910.4.3 Maximum Likelihood Estimation 34110.4.4 Testing Model Adequacy 34310.4.5 Forecasting with FGN 34410.4.6 Simulation of FGN 34510.4.7 Applications to Annual Riverflows 346

10.5 SIMULATION STUDIES 352103.1 Introduction 352

Page 9: TIME SERIES MODELLING OF WATER RESOURCES AND …

- x i v -

10^.2 Simulation of Independent Summands 353The Reseated Adjusted Range „ 353The Hurst Coefficient - 354

103.3 Simulation of Correlated Summands 357Long Memory Models 357Short Memory Models 357

10.6 PRESERVATION OF THE RESCALED ADJUSTED RANGE 36210.6.1 Introduction 36210.6.2 ARMA Modelling of Geophysical Phenomena 36210.6.3 Distribution of the RAR or K 36310.6.4 Preservation of the RAR and K by ARMA Models 367

10.7 ESTIMATES OF THE HURST COEFFICIENT 36910.8 CONCLUSIONS „ ~ 371APPENDIX A10.1 - REPRESENTATIVE EMPIRICAL CUMULATIVEDISTRIBUTION FUNCTIONS (ECDF'S) FOR HURST STATISTICS 374PROBLEMS 381REFERENCES 382

CHAPTER 11: FRACTIONAL AUTOREGRESSTVE-MOVING AVERAGE MODELS 38911.1 INTRODUCTION 38911.2 DEFINITIONS AND STATISTICAL PROPERTIES 390

11.2.1 Long Memory 39011.2.2 Definition of FARMA Models 39111.2.3 Statistical Properties of FARMA Models 394

11.3 CONSTRUCTING FARMA MODELS 39711.3.1 Overview 39711.3.2 Identification 39711.3.3 Estimation 397

Bootstrapping a Time Series Model 39911.3.4 Diagnostic Checks 400

11.4 SIMULATION AND FORECASTING 40011.4.1 Introduction 40011.4.2 Simulating with FARMA Models 40011.4.3 Forecasting with FARMA Models 401

113 FITTING FARMA MODELS TO ANNUAL HYDROLOGICAL TIME SERIES 40311.6 CONCLUSIONS 407APPENDIX Al 1.1 - ESTIMATION ALGORITHM FOR FARMA MODELS 409PROBLEMS 5. 411REFERENCES 412

Page 10: TIME SERIES MODELLING OF WATER RESOURCES AND …

- X V -

PARTVI: SEASONAL MODELS 415

CHAPTER 12: SEASONAL AUTOREGRESSIVE INTEGRATED MOVINGAVERAGE MODELS ; 419

12.1 INTRODUCTION .... 41912.2 MODEL DESIGN 420

12.2.1 Definition 420122.2 Notation 422122.3 Stationarity and Invertibility „ 423

122.4 Unfactored and Nonmultiplicative Models. 4231223 Autocorrelation Function » 425122.6 Three Formulations of the Seasonal Processes 425

Introduction 425Random Shock Form ;. . 425Inverted Form 427

12.3 MODEL CONSTRUCTION 42712.3.1 Introduction 42712.3.2 Identification 428

Introduction 428Tools 428Summary 431

12.3.3 Estimation 432Introduction ._ 432Algorithms 433Model Discrimination 434

12.3.4 Diagnostic Checks 434Introduction 434Tests for Whiteness 435Test for Periodic Correlation 436Normality Tests 437Homoscedasticity Checks 437

12.3.5 Summary 43712.4 APPLICATIONS 438

12.4.1 Introduction 43812.4.2 Average Monthly Water Useage 43912.4.3 Average Monthly Atmospheric Carbon Dioxide ; 44512.4.4 Average Monthly Saugeen Riverflows 447

123 FORECASTING AND SIMULATION WITH S ARJMA MODELS 45112.6 CONCLUSIONS 451APPENDIX A12.1 DESIGNING MULTIPLICATIVE SARIMA MODELSUSING THE ACF 453APPENDIX A122 MAXIMUM LIKELIHOOD ESTIMATION FOR SARMA MODELS 455PROBLEMS .„ 459

Page 11: TIME SERIES MODELLING OF WATER RESOURCES AND …

- x v i -

REFERENCES .......... 460

CHAPTER 13: DESEASONALIZED MODELS 46313.1 INTRODUCTION _ 463132 DEFINITIONS OF DESEASONALIZED MODELS 464

132.1 Introduction ..... ... . 46413.2.2 Deseasonalization....... 464132.3 ARMA Model Component 466

13.3 CONSTRUCTING DESEASONALIZED MODELS 46713.3.1 Introduction „ .... 46713.3.2 Fully Deseasonalized Models 467

13.3.3 Fourier Approach to Deseasonalized Models 469Overall Procedure 469AIC Formulae for Deseasonalized Models ; 469

13.4 APPLICATIONS OF DESEASONALIZED MODELS 47313.4.1 Introduction 47313.4.2 Average Monthly Saugeen Riverflows 47313.4.3 Ozone Data. 476

133 FORECASTING AND SIMULATING WITH DESEASONALIZED MODELS 47813.6 CONCLUSIONS 479PROBLEMS 480REFERENCES 481

CHAPTER 14: PERIODIC MODELS 48314.1 INTRODUCTION 48314.2 DEFINITIONS OF PERIODIC MODELS 484

14.2.1 Introduction 484142.2 PAR Models 484

Definition 484Stationarity 486Periodic Autocorrelation Function 486Periodic Yule-Walker Equations 487Periodic Partial Autocorrelation Function 488Markov Model 488

14.2.3 PARMA Models 489Definition 489Stationarity and Invertibility 489Periodic Autocorrelation Function 489Periodic Partial Autocorrelation Function 491Three Formulations of a PARMA Model 491Example of a PARMA Model 492

14.3 CONSTRUCTING PAR MODELS 49314.3.1 Introduction 493

Page 12: TIME SERIES MODELLING OF WATER RESOURCES AND …

- x v i i -

14.3.2 Identifying PAR Models, „ 493Introduction 493Sample Periodic AGF .. ._ 493Sample Periodic PACF .. . 494Periodic IACF and PACF . ..... .„ 495Test for Periodic Correlation 496

14.3.3 Calibrating PAR Models 496Introduction . .... . . .... . 496Periodic Yule-Walker Estimator . 496Multiple Linear Regression . . 496Other Estimation Results . . ~ 497Model Selection Using the AIC 497Exhaustive Enumeration for PAR Model Selection •. 498

14.3.4 Checking PAR Models 49914.4 PAR MODELLING APPLICATION 501143 PARSIMONIOUS PERIODIC AUTOREGRESSIVE (PPAR) MODELS 503

143.1 Introduction 503143.2 Definition of PPAR Models 503143.3 Constructing PPAR Models 505

14.6 APPLICATIONS OF SEASONAL MODELS 50714.7 CONSTRUCTING PARMA MODELS 51014.8 SIMULATING AND FORECASTING WITH PERIODIC MODELS 512

14.8.1 Introduction 51214.8.2 Preservation of Critical Period Statistics 513

Introduction 513Critical Periodic Statistics for Water Supply 513Design of Simulation Experiments 514The Results of the Simulation Experiments 515

14.9 CONCLUSIONS 517PROBLEMS.... 518REFERENCES 520

CHAPTER 15: FORECASTING WITH SEASONAL MODELS 52515.1 INTRODUCTION 525152 CALCULATING FORECASTS FOR SEASONAL MODELS 526

152.1 Introduction 526152.2 Forecasting with SARIMA Models 527

Inverse Box-Cox Transformation „ 52815.2.3 Forecasting with Deseasonalized Models 52915.2.4 Forecasting with Periodic Models 530

15.3 FORECASTING MONTHLY RIVERFLOW TIME SERIES 53215.3.1 Introduction „ 53215.3.2 Data Sets 53315.3.3 Seasonal Models 533

Page 13: TIME SERIES MODELLING OF WATER RESOURCES AND …

- xviii -

15.3.4 Forecasting Study -- 53515.4 FORECASTING QUARTER MONTHLY AND MONTHLY RIVERFLOWS 540

15.4.1 Introduction 54015.4.2 Time Series . . .- 54115.4.3 Seasonal Models _... ... . . 54115.4.4 Forecasting Experiments................ ...................................................... „.„ ... 541

153 COMBINING FORECASTS ACROSS MODELS 544153.1 Motivation . „ 5441532 Formulae for Combining Forecasts................................... 544153.3 Combining Average Monthly Riverflow Forecasts 545

15.6 AGGREGATION OF FORECASTS . ™ 54715.7 CONCLUSIONS 547PROBLEMS „ 547REFERENCES 549

PART VH: MULTIPLE INPUT-SINGLE OUTPUT MODELS . 553

CHAPTER 16: CAUSALITY 55516.1 INTRODUCTION 55516.2 CAUSALITY 556

16.2.1 Definition 55616.2.2 Residual Cross-Correlation Function 556

16.3 APPLICATIONS 56116.3.1 Data 56116.32 Prewhitening 56116.3.3 Causality Studies 563

16.4 CONCLUSIONS 566PROBLEMS 569REFERENCES 570

CHAPTER 17: CONSTRUCTING TRANSFER FUNCTION-NOISE MODELS 57317.1 INTRODUCTION - 573172 TRANSFER FUNCTION-NOISE MODELS WITH A SINGLE INPUT 574

172.1 Introduction 574172.2 Dynamic Component 57517.2.3 Noise Term 579172.4 Transfer Function-Noise Model..... 579

17.3 MODEL CONSTRUCTION FOR TRANSFER FUNCTION-NOISE MODELSWITH ONE INPUT 580

17.3.1 Model Identification 580Empirical Identification Approach 580Haugh and Box Identification Method 581

Page 14: TIME SERIES MODELLING OF WATER RESOURCES AND …

- x i x -

Box and Jenkins Identification Procedure 583Comparison of Identification Methods 584

17.3.2 Parameter Estimation 58517.3.3 Diagnostic Checking „ 586

17.4 HYDROLOGICAL APPLICATIONS OF TRANSFER FUNCTION-NOISEMODELS WITH A SINGLE INPUT 588

17.4.1 Introduction 58817.42 Dynamic Model for the Average Monthly Flows of theRed Deer and South Saskatchewan Rivers.. 588

Identification 588Parameter Estimation 592Diagnostic Checking 592Concluding Remarks 592

17.4.3 Dynamic Model for the August Temperatures and AnnualFlows of the Goto River 592

173 TRANSFER FUNCTION-NOISE MODELS WITH MULTIPLE INPUTS 593173.1 Introduction 593173.2 Model Description 595173.3 Model Construction 597173.4 Hydrometeorological Application 598

Introduction...... 598Missing Data 599Identifying the Dynamic Component 600Combining Multiple Times Series 601The Transfer Function-Noise Models 602

17.6 ARMAX MODELS 60517.7 CONCLUSIONS .>. 608APPENDIX A17.1 - ESTIMATOR FOR TFN MODELS 609PROBLEMS 612REFERENCES 614

CHAPTER 18: FORECASTING WITH TRANSFER FUNCTION-NOISE MODELS 61718.1 INTRODUCTION 617182 FORECASTING PROCEDURES FOR TFN MODELS 618

182.1 Overview 618182.2 Forecasting Formulae 619

Single Input TFN Model Having ARMA Noise 619Multiple Input TFN Model Having ARMA Noise 623Seasonal TFN Model 623TFN Model Having ARIMA Noise 624TFN Model Having a Deterministic Trend 626

18.2.3 Application 62618.3 FORECASTING QUARTER-MONTHLY RIVERFLOWS 629

18.3.1 Overview 629

Page 15: TIME SERIES MODELLING OF WATER RESOURCES AND …

- X X -

18.3.2 Constructing the Time Series Models 62918.3.3 Conceptual Hydrological Model 63718.3.4 Forecasting Experiments 63918.3.5 Conclusions.. •. » 641

18.4 COMBINING HYDROLOGICAL FORECASTS 64118.4.1 Overview ~ 64118.4.2 Combination Forecasting Experiments 64218.4.3 Conclusions.. »„ 644

183 RECORD EXTENSIONS, CONTROL AND SIMULATION 644183.1 Overview „...„ 644183.2 Record Extensions „.. 644183.3 Control 646183.4 Simulation 647

18.6 CONCLUSIONS 647PROBLEMS 648REFERENCES 650

PART VHI: INTERVENTION ANALYSIS 653

CHAPTER 19: BUILDING INTERVENTION MODELS 65519.1 INTRODUCTION 65519.2 INTERVENTION MODELS WITH MULTIPLE INTERVENTIONS '. 660

19.2.1 Introduction 66019.2.2 Model Description 661

Dynamic Component 662Noise Term 666Complete Intervention Model 667Effects of an Intervention Upon the Mean Level 667

192.3 Model Construction 670Detection 671Identification 674Estimation 678Diagnostic Checking 679

192.4 Effects of the Aswan Dam on the Average Annual Flowsof the Nile River 679

Case Study Description 679Model Construction 680Effects of the Intervention 684

192.5 Stochastic Influence of Reservoir Operation on theAverage Monthly Flows of the South Saskatchewan River 684

Case Study Description 684Model Development 686

Page 16: TIME SERIES MODELLING OF WATER RESOURCES AND …

- x x i -

Effects of the Intervention „ 688Interpretation of Results 691

19.3 DATA FILLING USING INTERVENTION ANALYSIS 69319.3.1 Introduction 693193.2 Techniques for Data Filling 694

Data Filling Methods Presented in this Text 694Additional Data Filling Methods „.. 695

19.3.3 Model Description. 69619.3.4 Model Construction 69819.33 Experiments to Check the Performance of the DataFilling Method _ 69919.3.6 Estimating Missing Observations in the AverageMonthly Lucknow Temperature Data and Middle ForkRiverflows 701

19.4 INTERVENTION MODELS WITH MULTIPLE INTERVENTIONS ANDMISSING OBSERVATIONS 702

19.4.1 Introduction 70219.4.2 Model Description 70319.4.3 Model Construction 703

Identification 703Estimation 705Diagnostic Checking 706

19.4.4 Experiment to Assess Data Filling when anIntervention is Present. 70619.43 Environmental Impact Assessment of Tertiary Treatmenton Average Monthly Phosphorous Levels in the Speed River 707

193 INTERVENTION MODELS WITH MULTIPLE INTERVENTIONS,MISSING OBSERVATIONS AND INPUT SERIES 709

193.1 Introduction 709193.2 Model Description 710193.3 Model Construction 713

Identification 714Estimation 717Diagnostic Checks 717

193.4 Effects of a Forest Fire upon the Spring Flows of thePipers Hole River 718

Case Study „ 718Model Development 719Effects of the Forest Fire 721

19.6 PERIODIC INTERVENTION MODELS 72319.6.1 Introduction 72319.6.2 Periodic Intervention Model for the Average MonthlyFlows of the South Saskatchewan River 72419.6.3 Other types of Periodic Intervention Models 725

Page 17: TIME SERIES MODELLING OF WATER RESOURCES AND …

- X X U -

19.7 DATA COLLECTION 72619.8 CONCLUSIONS 727PROBLEMS 730REFERENCES ^ 733

PART DC: MULTIPLE INPUT-MULTIPLE OUTPUT MODELS 739

CHAPTER 20: GENERAL MULITVARIATE AUTOREGRESSIVE MOVINGAVERAGE MODELS 741

20.1 INTRODUCTION _ 74120.2 DEFINITIONS OF MULTIVARIATE ARMA MODELS 743

202.1 Introduction 74320.2.2 Definitions 743

General Multivariate ARMA Model 743TFN Model 745CARMA Model 746

20.3 CONSTRUCTING GENERAL MULTIVARIATE ARMA MODELS 74720.3.1 Limitations 74720.3.2 Model Construction 748

Introduction 748Causality 748Identification 749Estimation 750Diagnostic Checking 750

20.3.3 Seasonality 751Deseasonalized Multivariate Model 751Periodic Multivariate Model 751

20.4 HISTORICAL DEVELOPMENT 752203 OTHER FAMILIES OF MULTIVARIATE MODELS 755

203.1 Introduction 7552032 Disaggregation Models 756203.3 Gaussian and NonGaussian Variables 757203.4 Linear and Nonlinear Models 758203.5 Multivariate Fractional Autoregressive-MovingAverage (FARMA) Models 758203.6 Time and Frequency Domains 758203.7 Pattern Recognition 759203.8 Nonparametric Tests 759

20.6 CONCLUSIONS 759APPENDIX A20.1 - IDENTIFICATION METHODS FOR GENERAL MULTIVARIATEARMA MODELS 761PROBLEMS 767

Page 18: TIME SERIES MODELLING OF WATER RESOURCES AND …

-XX111 -

REFERENCES 769

CHAPTER 21: CONTEMPORANEOUS AUTOREGRESSTVE-MOVINGAVERAGE MODELS 779

21.1 INTRODUCTION 779212 DERIVING CARMA MODELS 780

21.2.1 Introduction 780212.3 Subset Definition 780212.3 Concatenation Definition 783

21.3 CONSTRUCTING CARMA MODELS 78421.3.1 Introduction 78421.3.2 Identification 78421.3.3 Estimation 78621.3.4 Diagnostic Checks 78821.3.5 Seasonality 789

21.4 SIMULATING USING CARMA MODELS 79021.4.1 Introduction 79021.4.2 Simulation Algorithm 790

Overall Algorithm 790Calculation of the Initial Value 792

213 PRACTICAL APPLICATIONS 79221.5.1 Introduction 79221.5.2 Fox and Wolf Rivers 793213.3.Water Quality Series , 795213.4 Two Riverflow Series Having Unequal Sample Sizes... 796

21.6 CONCLUSIONS 798APPENDIX A21.1 - ESTIMATOR FOR CARMA MODELS HAVINGUNEQUAL SAMPLE SIZES 800PROBLEMS 802REFERENCES 804

PARTX: HANDLING MESSY ENVIRONMENTAL DATA 807

CHAPTER 22: EXPLORATORY DATA ANALYSIS AND INTERVENTIONMODELLING IN CONFIRMATORY DATA ANALYSIS 809

22.1 INTRODUCTION 809222 DATA FILLING USING SEASONAL ADJUSTMENT 81122.3 EXPLORATORY DATA ANALYSIS 813

22.3.1 Introduction 81322.3.2 Time Series Plots 81522.3.3 Box-and-Whisker Graphs 81622.3.4 Cross-Correlation Function 821

Page 19: TIME SERIES MODELLING OF WATER RESOURCES AND …

- X X I V -

22.3.5 Tukey Smoothing 825Introduction 825Blurred 3RSR Smooth 8284253H, Twice Smooth 829

22.3.6 Autocorrelation Function 83422.4 CONFIRMATORY DATA ANALYSIS USING INTERVENTION ANALYSIS 837

22.4.1 Introduction 83722.4.2 Intervention Analysis Applications 838

Case Study 838Middle Fork Flow Intervention Model 839Cabin Creek Flow intervention Model 842General Water Quality Intervention Model 845

223 CONCLUSIONS 847PROBLEMS 848REFERENCES 850

CHAPTER 23: NONPARAMETRIC TESTS FOR TREND DETECTION 85323.1 INTRODUCTION 85323.2 STATISTICAL TESTS 858

23.2.1 Introduction 85823.2.2 Hypothesis Tests 858232.3 Significance Tests 859

23.3 NONPARAMETRIC TESTS 86123.3.1 Introduction 86123.3.2 Nonparametric Tests for Trend Detection 864

Introduction 864Intrablock Methods 864Aligned Rank Methods 872Comparison of Intrablock and Aligned Rank Methods 874

23.3.3 Grouping Seasons for Trend Detection 87523.3.4 Combining Tests of Hypotheses 87723.3.5 Flow Adjustment of Water Quality Data 87823.3.6 Partial Rank Correlation Tests 880

Introduction 880Spearman's Rho Test 880Spearman Partial Rank Correlation Test 882Comparison to the Seasonal Mann-Kendall Test 883Kendall Partial Rank Correlation Coefficient 883

23.3.7 Nonparametric Test for Step Trends 88423.3.8 Multiple Censored Data : 887

Introduction 887Censoring Definitions in Survival Analysis 888Multiple Censoring in Environmental Engineering 889

23.4 POWER COMPARISONS OF PARAMETRIC AND NONPARAMETRIC

Page 20: TIME SERIES MODELLING OF WATER RESOURCES AND …

- X X V -

TREND TESTS 89123.4.1 Introduction 89123.4.2 Autocorrelation Function at Lag One 89123.4.3 Kendall's Tau 89323.4.4 Alternative Generating Models 894

Linear Model „ 896Logistics Model 896Step Function Model 896Barnard's Model 896Second Order Autoregressive Model 897Threshold Autoregressive Model 897

23.4.5 Simulation Experiments 897Linear Model 898Logistics Model 899Step Function Model 899Barnard's Model 900Second Order Autoregressive Model 900Threshold Autoregressive Model 901

23.4.6 Conclusions 901233 WATER QUALITY APPLICATIONS 902

23.5.1 Introduction 902233.2 Trend Analysis of the Lake Erie Water Quality Series 905

Selecting Appropriate Statistical Tests 905Data Listing 906Graphs of the Data 909Box-and-Whisker Graphs 911Seasonal Mann-Kendall Tests 915Wilcoxon Signed Rank Tests 918Kruskal-Wallis Tests 920

23.6 CONCLUSIONS 922APPENDIX A23.1 - KENDALL RANK CORRELATION TEST 924APPENDIX A23.2 - WILCOXON SIGNED RANK TEST 925APPENDIX A23.3 - KRUSKAL-WALLIS TEST 927PROBLEMS 928REFERENCES 930

CHAPTER 24: REGRESSION ANALYSIS AND TREND ASSESSMENT 93924.1 INTRODUCTION 939242 REGRESSION ANALYSIS 940

24.2.1 Introduction 94024.2.2 Robust Locally Weighted Regression Smooth 943

Overview 943General Procedure 944Specific Procedure 945

Page 21: TIME SERIES MODELLING OF WATER RESOURCES AND …

- X X V I -

Selecting Variables 946Applications 947

24.2.3 Building Regression Models 949Overview 949Lake Erie Water Quality Study 949

24.3 TREND ANALYSIS METHODOLOGY FOR WATER QUALITY TIME SERIESMEASURED IN RIVERS 956

24.3.1 Introduction 95624.3.2 Methodology Description 957

Overview 957Graphical Trend Studies 959Mean Monthly Data 961Trend Tests 963

24.3.3 Summary 96824.4 CONCLUSIONS 970PROBLEMS 972REFERENCES 974

DATA APPENDIX 979DATA ACQUISITION 979DATA LISTING 980

Stationary Nonseasonal Time Series 980Nonstationary Nonseasonal Time Series 982Time Series Containing an Intervention 985

REFERENCES 987

AUTHOR INDEX 989

SUBJECT INDEX 1001