23
Transport Calculations with Transport Calculations with T SIESTA T SIESTA TranSIESTA TranSIESTA Pablo Ordejón Pablo Ordejón Instituto de Ciencia de Materiales de Barcelona Instituto de Ciencia de Materiales de Barcelona - CSIC, Spain CSIC, Spain

Tran Siesta

  • Upload
    ech-kon

  • View
    135

  • Download
    2

Embed Size (px)

DESCRIPTION

A useful guider for Transiesta

Citation preview

Page 1: Tran Siesta

Transport Calculations with Transport Calculations with T SIESTAT SIESTATranSIESTATranSIESTA

Pablo OrdejónPablo OrdejónInstituto de Ciencia de Materiales de Barcelona Instituto de Ciencia de Materiales de Barcelona -- CSIC, SpainCSIC, Spain, p, p

Page 2: Tran Siesta

M B db K St kb d J T lM. Brandbyge, K. Stokbro and J. TaylorMikroelectronik Centret - Technical Univ. Denmark

Jose L. Mozos and Frederico D. NovaesInstituto de Ciencia de Materiales de Barcelona - CSIC, Spain

The SIESTA teamE. Anglada, E. Artacho, A. García, J. Gale. J. Junquera, D. Sánchez-Portal, J. M. Soler, ....

Page 3: Tran Siesta

OutlineOutlineOutlineOutline

1 Electronic transport in the nanoscale: Basic theory1. Electronic transport in the nanoscale: Basic theory

2. Modeling: the challenges and our approach:

• The problem at equilibrium (zero voltage)

• Non-equilibrium (finite voltage)

3. Practicalities

Page 4: Tran Siesta

11. Electronic Transport in the Nanoscale: . Electronic Transport in the Nanoscale: ppBasic TheoryBasic Theory

dRL

d

• Scattering in nano-scale systems:– electron-electron interactions

phonons λdL d m<<

– phonons– impurities, defects– elastic scattering by the potential of the contact

λd≈

• Semiclassical theory breaks down – QM solution needed• Landauer formulation: Conductance as transmission probability

S. Datta, Electronic transport in mesoscopic systems (Cambridge)

Page 5: Tran Siesta

Narrow constriction (mesoNarrow constriction (meso--nanoscopic)nanoscopic)Narrow constriction (mesoNarrow constriction (meso--nanoscopic)nanoscopic)

E

µ

kx

Transversal confinement QUANTIZATION

2k)(kE

2x

2

mxm += εxikxe)(yy)(x, ψψ = 2m)( mxmm e)(yy)(x, ψψ

Page 6: Tran Siesta

Landauer formulationLandauer formulation -- no scatteringno scatteringLandauer formulation Landauer formulation -- no scatteringno scatteringE

µµ+δµ

eVδµ −= k

∑∫−=bands

ig i),(v)(2eI kkk fd

2

BZ)ENV Fbands

(h

2e2

kΩ12 92eG2

0GG N NVI

bandsbands===

h2e2

kΩ12.9h

2eGO ⇒=QUANTUM OF CONDUCTANCE

Page 7: Tran Siesta

Landauer formulationLandauer formulation -- scatteringscatteringLandauer formulation Landauer formulation -- scatteringscattering• Transmission probability of an incoming electron at energy ε:

( ) [ ]( )εttTrεT †=

• Current:transmission matrix:

2

inout ψtψ =

( ) ( )( ) ( )εTεfεfdεh

2eI RL

2

∫ −=IeV

P f t d t ( h l) T 12eG

2=• Perfect conductance (one channel): T=1

hGO =

Page 8: Tran Siesta

22. Modeling: . Modeling: ggThe Challenges and Our ApproachThe Challenges and Our Approach

• Model the molecule-electrode system from first principles:No parameters fitted to the particular system DFT

• Model a molecule coupled to bulk (infinite) electrodes• Electrons out of equilibrium (do not follow the thermal Fermi occupation)• Electrons out of equilibrium (do not follow the thermal Fermi occupation)• Include finite bias voltage/current and determine the potential profile• Calculate the conductance (quantum transmission through the molecule)• Determine geometry: Relax the atomic positions to an energy minimum

Page 9: Tran Siesta

Restriction: Ballistic conductionRestriction: Ballistic conductionRestriction: Ballistic conductionRestriction: Ballistic conduction

• Ballistic conduction: consider only the scattering of the

d

Ballistic conduction: consider only the scattering of the incoming electrons by the potential created by the contact

RL

• Two terminal devices (three terminals in progress)

• Effects not described: inelastic scattering – electron-electron interactions (Coulomb blockade)

h ( t i d d h it ti )– phonons (current-induced phonon excitations)

Page 10: Tran Siesta

First Principles: DFTFirst Principles: DFTFirst Principles: DFTFirst Principles: DFT

• Many interacting-electrons problem mapped to a one y g p ppparticle problem in an external effective potential(Hohemberg-Kohn, Kohn-Sham)

• Charge density as basic variable:

XCHpsexteff VVVVV +++=

• Charge density as basic variable:

)]([ρV V effeff r=

• Self-consistency:

G d t t th VρVeff ↔

• Ground state theory: VXC

Page 11: Tran Siesta

SSIESTAIESTA http://www uam es/siestaSSIESTAIESTA http://www.uam.es/siesta

Soler, Artacho, Gale, García, Junquera, Ordejón and Sánchez-Portal

• Self-consistent DFT code (LDA, GGA, LSD)

J. Phys.: Cond. Matt. 14, 2745 (2002)

Self consistent DFT code (LDA, GGA, LSD)• Pseudopotentials (Kleinman-Bylander)• LCAO approximation:

B i tBasis set: Confined Numerical Atomic Orbitals

Sankey’s “fireballs”( )rφ• Order-N methodology (in the calculation and the solution of the

( )rµφOrder N methodology (in the calculation and the solution of the DFT Hamiltonian)

Page 12: Tran Siesta

TTRANRANSSIESTAIESTATTRANRANSSIESTAIESTAImplementation of non-equilibrium electronic transport in SIESTA

• Atomistic description (both contact and electrodes)• Infinite electrodes• Electrons out of equilibrium• Include finite bias and determine the potential profile• Calculates the conductance (both linear and non linear)• Calculates the conductance (both linear and non-linear) • Forces and geometry

Brandbyge, Mozos, Ordejón, Taylor and StokbroPhys. Rev. B. 65, 165401 (2002)

Mozos Ordejón Brandbyge Taylor and StokbroMozos, Ordejón, Brandbyge, Taylor and StokbroNanotechnology 13, 346 (2002)

Page 13: Tran Siesta

The problem at EquilibriumThe problem at EquilibriumThe problem at EquilibriumThe problem at Equilibrium(Zero Bias)(Zero Bias)

Challenge:Coupling the finite contact to infinite electrodes

Solution:Green’s Functions

( ) ( )

( ) ( )1H-zzG 1= −

( ) ( )iδεG Imπ1ερ +−=

( ) ( ) ( ) ( ) ( )∫⎤⎡ ∞

( ) ( ) ( ) ( ) ( )rrr νµµν

FFµν φφµεnερdερ ∑ ∫ ⎥⎦

⎤⎢⎣

⎡−=

∞−

µνD

Page 14: Tran Siesta

Setup (zero bias)Setup (zero bias) ( ) ( ) =−= −1HεεG( )( )C

RL

1

CRCCL

LCLL

L

-VH-ε-V-VH-ε-V

-V... −

+

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

Contact: R

RRRC

CRCCL

...-V-VH-ε-V

VHεV

+

⎥⎥⎥

⎦⎢⎢⎢

• Contains the molecule, and part of the Right and Left electrodes• Sufficiently large to include the screening

Solution in finite system:

( )

1LCLL

VHVVH

G

⎥⎤

⎢⎡ −−− ΣεBB R

CL

Σ (ε ) = Selfenergies Can be obtained from the bulk Greens functions

( )RRRC

CRCCL

HVVHVG

⎥⎥⎥

⎦⎢⎢⎢

⎣ −−−−−−=

Σεεε

Σ (ε ) = Selfenergies. Can be obtained from the bulk Greens functionsLopez-Sancho et al. J. Phys. F 14, 1205 (1984)

Page 15: Tran Siesta

Calculations (zero bias):Calculations (zero bias):( )( )• Bulk Greens functions and self-energies (unit cell calculation)

• Hamiltonian of the Contact region:

SCF

• Solution of GF’s equations ⇒ ρ(r)

PBC

[ ]• Landauer-Büttiker: transmission probability:

( ) ( )[ ]( ) ( ) ( )[ ]( )1/2L

1/2R εΣImεGεΣImεt =

( ) [ ]( )εttTrεT †=

( ) ( )[ ]( ) ( ) ( )[ ]( )LR εΣImεGεΣImεt

Page 16: Tran Siesta

The problem at NonThe problem at Non--EquilibriumEquilibriumThe problem at NonThe problem at Non EquilibriumEquilibrium(Finite Bias)(Finite Bias)

C

µL

CRL

2 additional problems:

e-µL

µR

add t o a p ob e s

• Non-equilibrium situation: current flow– current flow

– two different chemical potentials

• Electrostatic potential with boundary conditions

Page 17: Tran Siesta

NonNon--equilibrium formulation:equilibrium formulation:

• Scattering states (from the left)Lippmann-Schwinger Eqs.: ( ) o

Loo ψVεGψψ lll +=Lippmann Schwinger Eqs.:

• Non-equilibrium Density Matrix:

( ) Lo ψVεGψψ lll

( ) ( ) ( ) ( )[ ]∫∞

∞−

−+−= RFRµνLF

Lµνµν µεnερµεnερdεD

( ) ( ) ( )[ ] ( )( )L 1( ) ( ) ( )[ ] ( )( )µνtL

Lµν δiεGδiεΣImδiεG

π1ερ +++=

Page 18: Tran Siesta

Electrostatic PotentialElectrostatic PotentialGiven ρ(r), VH(r) is determined except up to a linear term: ( ) ( ) brarr +⋅+= φHV

12 auφ( r): particular solution of P i ’ ti

+V/2 -V/2AuAuPoisson’s equation

a and b: determined imposing BC: the shift V between electrodesthe shift V between electrodes

• φ (r) computed using FFT’sφ ( ) p g

• Linear term: ⎟⎠⎞

⎜⎝⎛ −−

2Lz

LV

⎠⎝ 2L

Page 19: Tran Siesta

33. . TranSIESTA PracticalitiesTranSIESTA Practicalities

3 Step process:

1. SIESTA calculation of the bulk electrodes, to get H, ρ, and Self-energies1. SIESTA calculation of the bulk electrodes, to get H, ρ, and Self energies2. SIESTA calculation for the open system

• reads the electrode data• builds H from ρ• solves the open problem using Green’s Functions (TranSIESTA)

b ild• builds new ρ3. Postprocessing: compute T(E), I, ...

Page 20: Tran Siesta

1VH −⎤⎡ −−− Σε

( )RRRC

CRCCL

LCLL

HVVHV

VHG

⎥⎥⎥

⎢⎢⎢

−−−−−−

−−−=

Σεε

Σεε

Supercell - PBC

• H, DM fixed to bulk in L and R

• DM computed in C from Green’s functions

• HC, VLC and VCR computed in a supercell approach (with potential ramp)

• B (buffer) does not enter directly in the• B (buffer) does not enter directly in the calculation (only in the SC calc. for VHartree)

Page 21: Tran Siesta

Contour integrationContour integrationgg

Page 22: Tran Siesta

Contour Contour IntegrationIntegrationIntegrationIntegration

Page 23: Tran Siesta

SolutionMethod Transiesta

# GENGF OPTIONS

TS.ComplexContour.Emin -3.0 Ry

TS.ComplexContour.NPoles 6

TS.ComplexContour.NCircle 20

TS.ComplexContour.NLine 3

TS.RealContour.Emin -3.0 Ry

TS.RealContour.Emax 2.d0 Ry

TS.TBT.Npoints 100

# TS OPTIONS

S l 1 000000TS.Voltage 1.000000 eV

TS.UseBulkInElectrodes .True.

TS.BufferAtomsLeft 0

TS.BufferAtomsRight 0

# TBT OPTIONS

TS.TBT.Emin -5.5 eV

TS TBT Emax +0 5 eVTS.TBT.Emax +0.5 eV

TS.TBT.NPoints 100

TS.TBT.NEigen 3