31
Transformations

Transformations

  • Upload
    thuyet

  • View
    64

  • Download
    4

Embed Size (px)

DESCRIPTION

Transformations. Transformations to Linearity. Many non-linear curves can be put into a linear form by appropriate transformations of the either the dependent variable Y or some (or all) of the independent variables X 1 , X 2 , ... , X p. This leads to the wide utility of the Linear model. - PowerPoint PPT Presentation

Citation preview

Page 1: Transformations

Transformations

Page 2: Transformations

Transformations to Linearity • Many non-linear curves can be put into a linear

form by appropriate transformations of the either– the dependent variable Y or – some (or all) of the independent variables X1, X2, ... ,

Xp .

• This leads to the wide utility of the Linear model. • We have seen that through the use of dummy

variables, categorical independent variables can be incorporated into a Linear Model.

• We will now see that through the technique of variable transformation that many examples of non-linear behaviour can also be converted to linear behaviour.

Page 3: Transformations

Intrinsically Linear (Linearizable) Curves 1 Hyperbolas

y = x/(ax-b)

Linear form: 1/y = a -b (1/x) or Y = 0 + 1 X

Transformations: Y = 1/y, X=1/x, 0 = a, 1 = -b

b/a

1/a

positive curvature b>0

y=x/(ax-b)

y=x/(ax-b)

negative curvature b< 0

1/a

b/a

Page 4: Transformations

2. Exponential

y = ex = x

Linear form: ln y = ln + x = ln + ln x or Y = 0 + 1 X

Transformations: Y = ln y, X = x, 0 = ln, 1 = = ln

2100

5

Exponential (B > 1)

x

y aB

a

2100

1

2

Exponential (B < 1)

x

y

a

aB

Page 5: Transformations

3. Power Functions

y = a xb

Linear from: ln y = lna + blnx or Y = 0 + 1 X

Power functionsb>0

b > 1

b = 1

0 < b < 1

Power functionsb < 0

b < -1b = -1

-1 < b < 0

Page 6: Transformations

Logarithmic Functionsy = a + b lnx

Linear from: y = a + b lnx or Y = 0 + 1 X

Transformations: Y = y, X = ln x, 0 = a, 1 = b

b > 0b < 0

Page 7: Transformations

Other special functionsy = a e b/x

Linear from: ln y = lna + b 1/x or Y = 0 + 1 X

Transformations: Y = ln y, X = 1/x, 0 = lna, 1 = b

b > 0 b < 0

Page 8: Transformations

Polynomial Models

y = 0 + 1x + 2x2 + 3x

3

Linear form Y = 0 + 1 X1 + 2 X2 + 3 X3

Variables Y = y, X1 = x , X2 = x2, X3 = x3

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Page 9: Transformations

Exponential Models with a polynomial exponent

y e x x 0 1 44

Linear form lny = 0 + 1 X1 + 2 X2 + 3 X3+ 4 X4

Y = lny, X1 = x , X2 = x2, X3 = x3, X4 = x4

0 5 10 15 20 25 30

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Page 10: Transformations

0

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5 2

Trigonometric Polynomials

0 1 1 1 1sin 2 cos 2Y

sin 2 cos 2k k k k

Page 11: Transformations

• 0, 1, 1, … , k, k are parameters that have to be estimated,

• 1, 2, 3, … , k are known constants (the frequencies in the trig polynomial.

Note:

0 1 1 1 1 k k k kS C S C

sin 2 cos 2k k k k

0 1 1 1 1sin 2 cos 2Y

where sin 2 and cos 2k k k kS C

Page 12: Transformations

Trigonometric Polynomial Models

y = 0 + 1cos(21x) + 1sin(21x) + … +

kcos(2kx) + ksin(2kx)

Linear form Y = 0 + 1 C1 + 1 S1 + … + k Ck + k Sk

Variables Y = y, C1 = cos(21x) , S2 = sin(21x) , …

Ck = cos(2kx) , Sk = sin(2kx)

-20

-10

0

10

20

30

0 1

Page 13: Transformations

Response Surface modelsDependent variable Y and two independent variables x1 and x2. (These ideas are easily extended to more the two independent variables)The Model (A cubic response surface model)

or

Y = 0 + 1 X1 + 2 X2 + 3 X3 + 4 X4 + 5 X5 + 6 X6 + 7 X7 + 8 X8 + 9 X9+

where

21421322110 xxxxxY

319

22182

217

316

225 xxxxxxx

, , , , , 225214

2132211 xXxxXxXxXxX

319

22182

217

316 and , , xXxxXxxXxX

Page 14: Transformations

01

23

45

0

1

23

4

0

20

40

01

23

45

0

1

23

4

Page 15: Transformations

The Box-Cox Family of Transformations

0ln(x)

01

)(

x

xdtransformex

Page 16: Transformations

The Transformation Staircase

1 2 3 4

-4

-3

-2

-1

1

2

3

4

Page 17: Transformations

The Bulging Rule

x up

x up

y upy up

y downy down

x down

x down

Page 18: Transformations

Non-Linear Models

Nonlinearizable models

Page 19: Transformations

Mechanistic Growth Model

Non-Linear Growth models • many models cannot be transformed into a linear model

The Mechanistic Growth Model

Equation: kxeY 1

or (ignoring ) “rate of increase in Y” = Ykdx

dY

Page 20: Transformations

The Logistic Growth Model

or (ignoring ) “rate of increase in Y” = YkY

dx

dY

Equation:

kxeY

1

10864200.0

0.5

1.0

Logistic Growth Model

x

y

k=1/4

k=1/2k=1k=2

k=4

Page 21: Transformations

The Gompertz Growth Model:

or (ignoring ) “rate of increase in Y” =

YkY

dx

dY ln

Equation: kxeeY

10864200.0

0.2

0.4

0.6

0.8

1.0

Gompertz Growth Model

x

y

k = 1

Page 22: Transformations

Example: daily auto accidents in Saskatchewan to 1984 to 1992

Data collected:

1. Date

2. Number of Accidents

Factors we want to consider:

1. Trend

2. Yearly Cyclical Effect

3. Day of the week effect

4. Holiday effects

Page 23: Transformations

TrendThis will be modeled by a Linear function :

Y = 0 +1 X

(more generally a polynomial)

Y = 0 +1 X +2 X2 + 3 X3 + ….

Yearly Cyclical Trend

This will be modeled by a Trig Polynomial – Sin and Cos functions with differing frequencies(periods) :

Y = 1 sin(2f1X) + 1 cos(2f2X) 1 sin(2f2X)

+ 2 cos(2f2X) + …

Page 24: Transformations

Day of the week effect:This will be modeled using “dummy”variables :

1 D1 + 2 D2 + 3 D3 + 4 D4 + 5 D5 + 6 D6

Di = (1 if day of week = i, 0 otherwise)

Holiday Effects

Also will be modeled using “dummy”variables :

Page 25: Transformations

Independent variables

X = day,D1,D2,D3,D4,D5,D6,S1,S2,S3,S4,S5, S6,C1,C2,C3,C4,C5,C6,NYE,HW,V1,V2,cd,T1,T2.

Si=sin(0.017202423838959*i*day). Ci=cos(0.017202423838959*i*day).

Dependent variableY = daily accident frequency

Page 26: Transformations

Independent variables ANALYSIS OF VARIANCE SUM OF SQUARES DF MEAN SQUARE F RATIO REGRESSION 976292.38 18 54238.46 114.60 RESIDUAL 1547102.1 3269 473.2646   VARIABLES IN EQUATION FOR PACC . VARIABLES NOT IN EQUATION  STD. ERROR STD REG F . PARTIAL F VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL. VARIABLE CORR. TOLERANCE TO ENTER LEVEL (Y-INTERCEPT 60.48909 ) . day 1 0.11107E-02 0.4017E-03 0.038 0.99005 7.64 1 . IACC 7 0.49837 0.78647 1079.91 0 D1 9 4.99945 1.4272 0.063 0.57785 12.27 1 . Dths 8 0.04788 0.93491 7.51 0 D2 10 9.86107 1.4200 0.124 0.58367 48.22 1 . S3 17 -0.02761 0.99511 2.49 1 D3 11 9.43565 1.4195 0.119 0.58311 44.19 1 . S5 19 -0.01625 0.99348 0.86 1 D4 12 13.84377 1.4195 0.175 0.58304 95.11 1 . S6 20 -0.00489 0.99539 0.08 1 D5 13 28.69194 1.4185 0.363 0.58284 409.11 1 . C6 26 -0.02856 0.98788 2.67 1 D6 14 21.63193 1.4202 0.273 0.58352 232.00 1 . V1 29 -0.01331 0.96168 0.58 1 S1 15 -7.89293 0.5413 -0.201 0.98285 212.65 1 . V2 30 -0.02555 0.96088 2.13 1 S2 16 -3.41996 0.5385 -0.087 0.99306 40.34 1 . cd 31 0.00555 0.97172 0.10 1 S4 18 -3.56763 0.5386 -0.091 0.99276 43.88 1 . T1 32 0.00000 0.00000 0.00 1 C1 21 15.40978 0.5384 0.393 0.99279 819.12 1 . C2 22 7.53336 0.5397 0.192 0.98816 194.85 1 . C3 23 -3.67034 0.5399 -0.094 0.98722 46.21 1 . C4 24 -1.40299 0.5392 -0.036 0.98999 6.77 1 . C5 25 -1.36866 0.5393 -0.035 0.98955 6.44 1 . NYE 27 32.46759 7.3664 0.061 0.97171 19.43 1 . HW 28 35.95494 7.3516 0.068 0.97565 23.92 1 . T2 33 -18.38942 7.4039 -0.035 0.96191 6.17 1 .    ***** F LEVELS( 4.000, 3.900) OR TOLERANCE INSUFFICIENT FOR FURTHER STEPPING

Page 27: Transformations

D1 4.99945

D2 9.86107

D3 9.43565

D4 13.84377

D5 28.69194

D6 21.63193

Day of the week effects

Page 28: Transformations

Day of Week Effect

0.0

20.0

40.0

60.0

80.0

100.0

Mon Tue Wed Thu Fri Sat Sun

Page 29: Transformations

NYE 32.46759

HW 35.95494

T2 -18.38942

Holiday Effects

Page 30: Transformations

S1 -7.89293

S2 -3.41996

S4 -3.56763

C1 15.40978

C2 7.53336

C3 -3.67034

C4 -1.40299

C5 -1.36866

Cyclical Effects

Page 31: Transformations

-30

-20

-10

0

10

20

30

40

0 30 60 90 120 150 180 210 240 270 300 330 360