36
Translating research into practice Immunisation for genital viral infections Ian Frazer, Research Director, The Translational Research Institute Brisbane, Australia

Translating research into practice Immunisation for genital viral infections Ian Frazer, Research Director, The Translational Research Institute Brisbane,

Embed Size (px)

Citation preview

Translating research into practiceImmunisation for genital viral infections

Ian Frazer, Research Director, The Translational Research Institute Brisbane, Australia

Infection causes >20 % of cancerAnd we’re still finding new ones.% Infectious agent Associated Cancer

Viruses

5.2 Papillomavirus Anogenital, oropharyngeal

3.9 Hepatitis B virus Hepatocellular

1.0 Epstein Barr Virus Nasopharyngeal Ca, Lymphoma

2.9 Hepatitis C virus Hepatocellular Ca

0.9 HIV Potentiates viral cancers

<0.2

HTLV -1 T cell leukemia

<0.2

Merkel polyomavirus

Merkel’s disease

<0.2

HHV -8 Kaposis sarcoma

Other

5.5 H. Pylorii Gastric

<0.2

Parasites Bladder, ?HCC

Parkin DM et al Int J Cancer 118, 3030 (2006)

NB Infections common, cancer rare consequence

Treating infections like HPV is a challenge

Preventing them seems more sensible

HPV vaccine development:A 15 year process

Cancer associated Human

Papillomaviruses(~1980)

100% of cervical cancer and 30% of

head and neck cancer caused by “high risk” HPVs

(16,18)

Virus Like particles1

(~1990)

Major L1 capsid protein

expressed in vitro self

assembles to VLPs

HPV vaccines(~2005)

- VLPs+ adjuvant - Neutralising Ab- Protection >8yrs-Cervarix - HPV 16, 18-Gardasil – HPV 6,11,16,18

1:J. Zhou, X. Y. Sun, D. J. Stenzel, and I. H. Frazer. Virology 185 (1):251-257, 1991.

Jian Zhou

Zur Hausen

Nine steps to translate HPV research into practical outcomes

• Define the problem – HPV and cancer Zur Hausen

• Develop the science –recombinant VLPS Jian Zhou• Find commercial partners

Merck/GSK• Scale up the manufacture

Merck/GSK• Complete safety and efficacy trials Many

groups• Educate the profession, govt, the public Ongoing• Confirm field efficacy • Improve the product

– 9 valent vaccines, 2 dose regimens• Encourage deployment globally• Develop effective immunotherapy

Disclosure of conflict of interest

Dr Ian Frazer and the University of Queensland benefit financially from commercial sale of the prophylactic HPV vaccines discussed in this talk

CONFIRMING FIELD EFFICACY

Genital warts in young vaccinated women in Australia

Ali, H. Et al BMJ 2013;346:f2032 doi: 10.1136/bmj.f2032

Geniital Warts have gone away in their unvaccinated male partners

Ali, H. Et al BMJ 2013;346:f2032 doi: 10.1136/bmj.f2032

Differences in HPV genoprevalence between prevaccine and postvaccine

populations.

Tabrizi S N et al. J Infect Dis. 2012;infdis.jis590

Latest Australian data for PAP samples 90% reduction in HPV16, 18 in < 30yrs

ENABLING GLOBAL USAGE

There is disparity between HPV vaccine programs and cervical cancer prevalence

http://www.indexmundi.com/blog/wp-content/uploads/2013/05/HPV-vaccine-infographic.jpg

Vaccine delivery logistics in Vanuatu:

staffing, and a cold chain Vanuatu->50 islands~250,000 people~25 doctors-91 parliamentarians!-1 vaccine fridge-0 reliable electricity

500 well women over 30

Bx result Number

Cancer 5

CIN 3 17

CIN 1 23

Education in Vanuatu: parents, children, staff, and

government

Parents and Kids under the Banyan Tree- north Efate

15

When vaccine is available, vaccination programs in

subsistence economies can be as successful as

Australia

State Age Dose 1 Coverage (%)

Dose 1 immunised receiving

Dose 2 (%) Dose 3 (%)

Australia 12-18 (Opt out)

~ 90% 96 86

Australia 18-25 (Opt in) ~80% 82 50

Vanuatu 10-12 (Opt out)

~80% 98 93~80% coverage for bivalent HPV vaccine for 10-12 year olds in 2008, and 2013Vaccine through Australian Cervical Cancer Foundation: delivery by government

Fighting genital cancer with immunityThe way of the future?

Source : ACIP website 2008/03/30

Cervical cancer prophylactic vaccines are not therapeutic

• E6/E7 – recombinant bacterial

fusion of HPV16 E6 and E7 proteins in 8M Urea

• ISCOMATRIX® adjuvant 120µg/dose– Quillaia saponin based

adjuvant– typically 40nm cage

like structures– promotes both

humoral and cell mediated immunity

ISCOMATRIX® adjuvant

HPV 16 vaccine

100nm

Immunotherapy for HPV associated cancer

Immunotherapy: can we get rid of existing HPV infection

Colposcopy- no change

Pre- and post- vaccination

1 quadrant 9

2 quadrants 11

3+ quadrants 10

Frazer, I. H., M. Quinn, et al. (2004). Vaccine 23(2): 172-181.

3317CIN 1

12223CIN 2,3

NilCIN 1

CIN 2,3

Post vaccination histology

NPre vaccination

histology

Histology- no change

Immunology – a nice response 20mg (3x)

Placebo (1x or 3x)

60mg (3x)

200mg (1x)

DTH

(m

m)

Pre Post Pre Post

0

10

20

30

40

50

100>200

0

10

20

30

40

50

100>200

0

10

20

30

40

50

100>200

0

10

20

30

40

50

100>200

• Antibody +++ • DTH +++• Cytotoxic +++ T cells

Modelling epithelial cancer immunotherapy

Keratinocyte-immune cell interactions

• Antigen expressed only in basal keratinocytes• Stable expression of antigen over time without tumor

related phenomena• Grafts expressing some antigens (eg OVA) reject

spontaneously, • Grafts expressing others (eg HPV E6, E7) don’t

K14 transgenic

Nontransgenic control

Allo matched nontransgenic

RECIPIENT

DONORS

How does inflammation work?A skin resident immunocyte locally inhibits

E7 specific effector T cell function

Not reproduced by:Depletion of CD25+ regulatory cells from graft (Mab), Elimination of FoxP3 positive cells from graft ( DEREG

mouse)Therefore – another regulatory T cell population exists in skin

No immune cells (rag-/-) in E7 graft

immune cells in E7 graft

Mattarollo, S. R., A. Rahimpour, et al. (2010). The Journal of Immunology 184(3): 1242-1250.

NKT CELLS AND IFN-γ ARE KEY REGULATORS OF LOCAL T CELL FUNCTION

Steve Mattarollo, Rachel DeKluyver, Christina Gosmann

The inhibitory cell is an NKT cell.

Mattarollo, S. R., A. Rahimpour, et al. (2010). "Invariant NKT cells in hyperplastic skin induce a local immune suppressive environment by IFN-gamma production." The Journal of Immunology 184(3): 1242-1250.

Conclusion: NKT cells locally inhibit effector function of cytotoxic T cells

NKT cells

No NKT cellsNote – inhibition of rejection local to NKT replete graft

Footnote:Of mice and (wo)men!

Parameter

In mice In humans

IDO In E7tg + Inhibits rejection In CIN a

IL-17 In E7tg + Inhibits rejection In CIN a

IFN-g In E7tg + Inhibits rejection In CIN a

Mast cells In E7tg + Inhibits rejection In CIN a

IL1Ra In E7tg + Inhibits rejection In CIN b

NKT cells Inhibit rejection

a: Frazer Lab Datab: Fujiwaki R Gynecol Oncol. 2003 Apr;89(1):77-83

Progress on a herpes vaccine

Application of a new vaccine technology to an old problem

Conventional vaccines haven’t worked?

N Engl J Med. 2012 Jan 5; 366(1): 34–43

Modified codon usage allows viral gene expression in cell lines

Wt BPVL1 HB BPVL1

Wt BPVL2 HB BPVL2

Using polynucleotides as vaccinesMaking the body’s cells do the work

Codon modification = better responses

0.0

0.5

1.0

1.5

1:50 1:200 1:800 1:3200Serum Dilution

CODON MODIFIED (1 shot)

CODON MODIFIED (2 shots)

NO MODIFICATION

IMM

UN

E R

ES

PO

NS

ETO

VA

CC

INE

Another improvement Ubiqitination = better cellular immunity

L 1 mod E7Ubi

L 1 mod E7H6L1 E7

UH6L1E7

Mixed polynucleotide vaccines have the immunogenicity of both

components

0

25

50

75

100

MIX (LN)MIX (S)Control (LN)Control (S)

A

CT

LIF

N s

pots

/ 10

6ce

lls

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1:50 1:200 1:800 1:3200

B

Co

nfo

rma

tio

na

la

nti

bo

die

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1:50 1:200 1:800 1:3200

C

Ab

to

de

na

ture

d L

1

HSV- 2 Vaccine Development

o Based on glycoprotein D

o Initial gD2 constructs:

• control (wt CU gD2)

• codon modified (O1, O2 and O3 gD2)

• codon de-optimised (W gD2)

o Initial studies identified O2 as best performer

o Made ubiquitinated version of O2

Challenge Survival

50 X LD50

0 1 2 3 4 5 6 7 8 9 1011121314151617181920210

10

20

30

40

50

60

70

80

90

100

days post-infection

surv

ival

(%

)

500 X LD50

0 1 2 3 4 5 6 7 8 9 1011121314151617181920210

10

20

30

40

50

60

70

80

90

100

O2-gD2

O2-UgD225-331

gD mix

W-gD2

empty vector

TK-

days post-infection

HSV-2 Vaccine Phase 1 Study

o Safety, Tolerability & Immunogenicity Endpoints

o Open Label, Multiple Dose Escalation

o Doses of 10µg, 30µg, 100µg, 300µg, and 1mg

o Intradermal injections (Days 0, 21 and 42)

o 22 healthy sero-negative 18-45 yr old subjects

enrolled from 59 volunteers

HSV immunogenicity studies

24 h48 h

HSV-2 Vaccine Phase 1b Study

o 40 18-45 yr old subjects with recurrent culture/PCR

proven HSV-2

oRandomised, blinded, 1mg Dose or placebo

oIntradermal injections (Days 0, 21 and 42)

oSafety, Tolerability & Immunogenicity primary

endpoints

oViral shedding before (2 months) and after (2 months)

vaccine secondary endpoint

Acknowledgements • Frazer Lab, Diamantina Institute, TRI, Brisbane• (Especially Christina Gosmann, Dr Steve Mattarollo, Dr

Deepak Mittal, Dr Antje Blumenthal ) • Lambert Lab, McArdle InsFUNDING • NHMRC Australia• NCI, NIH• Cancer Council Australia• Australian Cancer Research Foundation