15
C(2, TAB) E(3) NG1E3C2T G(1) Features Maximum junction temperature : T J = 175 °C Low V CE(sat) = 1.65 V(typ.) @ I C = 30 A Co-packaged protection diode Minimized tail current Tight parameter distribution Low thermal resistance Positive V CE(sat) temperature coefficient Applications Welding Power factor correction Description The newest IGBT 650 V HB2 series represents an evolution of the advanced proprietary trench gate field-stop structure. The performance of the HB2 series is optimized in terms of conduction, thanks to a better V CE(sat) behavior at low current values, as well as in terms of reduced switching energy. A diode used for protection purposes only is co-packaged in antiparallel with the IGBT. The result is a product specifically designed to maximize efficiency for a wide range of fast applications. Product status link STGWA30HP65FB2 Product summary Order code STGWA30HP65FB2 Marking G30HP65FB2 Package TO-247 long leads Packing Tube Trench gate field-stop, 650 V, 30 A, high-speed HB2 series IGBT in a TO-247 long leads package STGWA30HP65FB2 Datasheet DS13149 - Rev 1 - November 2019 For further information contact your local STMicroelectronics sales office. www.st.com

Trench gate field-stop, 650 V, 30 A, high-speed HB2 series

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

C(2, TAB)

E(3)NG1E3C2T

G(1)

Features• Maximum junction temperature : TJ = 175 °C• Low VCE(sat) = 1.65 V(typ.) @ IC = 30 A• Co-packaged protection diode• Minimized tail current• Tight parameter distribution• Low thermal resistance• Positive VCE(sat) temperature coefficient

Applications• Welding• Power factor correction

DescriptionThe newest IGBT 650 V HB2 series represents an evolution of the advancedproprietary trench gate field-stop structure. The performance of the HB2 series isoptimized in terms of conduction, thanks to a better VCE(sat) behavior at low currentvalues, as well as in terms of reduced switching energy. A diode used for protectionpurposes only is co-packaged in antiparallel with the IGBT. The result is a productspecifically designed to maximize efficiency for a wide range of fast applications.

Product status link

STGWA30HP65FB2

Product summary

Order code STGWA30HP65FB2

Marking G30HP65FB2

Package TO-247 long leads

Packing Tube

Trench gate field-stop, 650 V, 30 A, high-speed HB2 series IGBT in a TO-247 long leads package

STGWA30HP65FB2

Datasheet

DS13149 - Rev 1 - November 2019For further information contact your local STMicroelectronics sales office.

www.st.com

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit

VCES Collector-emitter voltage (VGE = 0 V) 650 V

ICContinuous collector current at TC = 25 °C 50 A

Continuous collector current at TC = 100 °C 30 A

ICP(1)(2) Pulsed collector current 90 A

VGEGate-emitter voltage ±20

VTransient gate-emitter voltage (tp ≤ 10 μs) ±30

IFContinuous forward current at TC = 25 °C 5

AContinuous forward current at TC = 100 °C 5

IFP(1)(2) Pulsed forward current 10 A

PTOT Total power dissipation at TC = 25 °C 167 W

TSTG Storage temperature range -55 to 150 °C

TJ Operating junction temperature range -55 to 175 °C

1. Pulse width is limited by maximum junction temperature.2. Defined by design, not subject to production test.

Table 2. Thermal data

Symbol Parameter Value Unit

RthJCThermal resistance junction-case IGBT 0.9

°C/WThermal resistance junction-case diode 5

RthJA Thermal resistance junction-ambient 50

STGWA30HP65FB2Electrical ratings

DS13149 - Rev 1 page 2/15

2 Electrical characteristics

TC = 25 °C unless otherwise specified

Table 3. Static characteristics

Symbol Parameter Test conditions Min. Typ. Max. Unit

V(BR)CESCollector-emitter breakdownvoltage VGE = 0 V, IC = 1 mA 650 V

VCE(sat)Collector-emitter saturationvoltage

VGE = 15 V, IC = 30 A 1.65 2.1

VVGE = 15 V, IC = 30 A, TJ = 125 °C 1.85

VGE = 15 V, IC = 30 A, TJ = 175 °C 2.0

VF Forward on-voltage

IF = 5 A 2 2.8

VIF = 5 A, TJ = 125 °C 1.85

IF = 5 A, TJ = 175 °C 1.75

VGE(th) Gate threshold voltage VCE = VGE, IC = 1 mA 5 6 7 V

ICES Collector cut-off current VGE = 0 V, VCE = 650 V 25 µA

IGES Gate-emitter leakage current VCE = 0 V, VGE = ±20 V ±250 nA

Table 4. Dynamic characteristics

Symbol Parameter Test conditions Min. Typ. Max. Unit

Cies Input capacitance

VCE = 25 V, f = 1 MHz, VGE = 0 V

- 1570 -

pFCoes Output capacitance - 98 -

Cres Reverse transfer capacitance - 40 -

Qg Total gate chargeVCC = 520 V, IC = 30 A, VGE = 0 to 15 V

(see Figure 27. Gate charge test circuit)

- 90 -

nCQge Gate-emitter charge - 15.3 -

Qgc Gate-collector charge - 41.5 -

Table 5. Switching characteristics (inductive load)

Symbol Parameter Test conditions Min. Typ. Max. Unit

td(off) Turn-off delay time VCC = 400 V, IC = 30 A,

VGE = 15 V, RG = 6.8 Ω

(see Figure 26. Test circuit for inductiveload switching)

- 71 - ns

tf Current fall time - 41 - ns

Eoff (1) Turn-off switching energy - 310 - µJ

td(off) Turn-off delay time VCC = 400 V, IC = 30 A,

VGE = 15 V, RG = 6.8 Ω, TJ = 175 °C

(see Figure 26. Test circuit for inductiveload switching)

- 79 - ns

tf Current fall time - 105 - ns

Eoff (1) Turn-off switching energy - 643 - µJ

1. Including the tail of the collector current.

STGWA30HP65FB2Electrical characteristics

DS13149 - Rev 1 page 3/15

Table 6. Diode switching characteristics (inductive load)

Symbol Parameter Test conditions Min. Typ. Max. Unit

trr Reverse recovery time

IF = 5 A, VR = 400 V,

VGE = 15 V, di/dt = 1000 A/µs

(see Figure 29. Diode reverse recoverywaveform)

- 140 - ns

Qrr Reverse recovery charge - 21 - nC

Irrm Reverse recovery current - 6.6 - A

dIrr/dt Peak rate of fall of reverserecovery current during tb

- 430 - A/µs

Err Reverse recovery energy - 1.6 - µJ

trr Reverse recovery timeIF = 5 A, VR = 400 V,

VGE = 15 V, di/dt = 1000 A/µs,

TJ = 175 °C

(see Figure 29. Diode reverse recoverywaveform)

- 200 - ns

Qrr Reverse recovery charge - 47.3 - nC

Irrm Reverse recovery current - 9.6 - A

dIrr/dt Peak rate of fall of reverserecovery current during tb

- 428 - A/µs

Err Reverse recovery energy - 3.2 - µJ

STGWA30HP65FB2Electrical characteristics

DS13149 - Rev 1 page 4/15

2.1 Electrical characteristics (curves)

Figure 1. Power dissipation vs case temperature

GADG111120191425PDT

160

120

80

40

025 75 125 175

PTOT (W)

TC (°C)

VGE ≥ 15 VTJ ≤ 175 °C

Figure 2. Collector current vs case temperature

GADG111120191426CCT

50

40

30

20

10

025 75 125 175

IC (A)

TC (°C)

VGE ≥ 15 VTJ ≤ 175 °C

Figure 3. Output characteristics (TJ = 25 °C)

GADG111120191427OC25

75

60

45

30

15

00 1 2 3 4 5

IC (A)

VCE (V)VGE = 7V

VGE = 9V

VGE = 11VVGE = 13V

VGE = 15V

Figure 4. Output characteristics (TJ = 175 °C)

GADG111120191428OC175

75

60

45

30

15

00 1 2 3 4 5

IC (A)

VCE (V)

VGE = 7V

VGE = 9V

VGE = 11VVGE = 13V

VGE = 15V

Figure 5. VCE(sat) vs junction temperature

GADG111120191429VCET

2.8

2.4

2.0

1.6

1.2

0.8-50 0 50 100 150 TJ (°C)

IC = 15 A

IC = 30 A

IC = 60 AVGE = 15 V

VCE(sat) (V)

Figure 6. VCE(sat) vs collector current

GADG111120191430VCEC

3.2

2.8

2.4

2.0

1.6

1.2

0.80 15 30 45 60 75 IC (A)

VCE(sat) (V)

TJ = -40°C

TJ = 25°C

TJ = 175°C

STGWA30HP65FB2Electrical characteristics (curves)

DS13149 - Rev 1 page 5/15

Figure 7. Forward bias safe operating area

GADG111120191432SOA

100

10

11 10 100

IC (A)

VCE (V)

Single pulse, TC =25°C,VGE =15V, TJ ≤ 175 °C

tp =10µs

tp =1ms

tp =100µs

tp =1µs

Figure 8. Transfer characteristics

75

60

45

30

15

05 6 7 8 9 10

IC (A)

VGE (V)

TJ = 25 °CTJ = 175 °C

VCE = 6 VGADG111120191435TCH

Figure 9. Diode VF vs forward current

IGBT090420181403DVF

2.4

1.6

0.8

0.00 2 4 6 8

VF (V)

IF (A)

TJ = 175 °C

TJ = 25 °C

TJ = -40 °C

Figure 10. Normalized VGE(th) vs junction temperature

IGBT090420181403NVGE

1.1

1.0

0.9

0.8

0.7

0.6-50 0 50 100 150

VGE(th) (norm.)

TJ (°C)

VCE = VGE

IC = 1 mA

Figure 11. Normalized V(BR)CES vs junction temperature

IGBT090420181404NVBR

1.08

1.04

1.00

0.96

0.92-50 0 50 100 150

V(BR)CES (norm.)

TJ (°C)

IC = 1 mA

Figure 12. Capacitance variations

GADG111120191436CVR

1000

100

10

10.1 1 10 100

C (pF)

VCE (V)

Cies

Coes

Cres

f = 1 MHz

STGWA30HP65FB2Electrical characteristics (curves)

DS13149 - Rev 1 page 6/15

Figure 13. Gate charge vs gate-emitter voltage

GADG111120191438GCGE

15

12

9

6

3

00 20 40 60 80 100

VGE (V)

Qg (nC)

VCC = 520 V, IC = 30 A, IG = 6 mA

Figure 14. Switching energy vs collector current

GADG111120191438SLC

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.00 10 20 30 40 50 60

E (mJ)

IC (A)

VCC = 400 V, RG = 6.8 Ω,VGE = 15 V, TJ = 175 °C

Eoff

Figure 15. Switching energy vs temperature

GADG111120191439SLT

0.8

0.6

0.4

0.2

0.00 50 100 150

E (mJ)

TJ (°C)

Eoff

VCC = 400 V, IC = 30 A,RG = 6.8 Ω ,VGE = 15 V

Figure 16. Switching energy vs collector emitter voltage

GADG111120191440SLV

0.8

0.6

0.4

0.2150 250 350 450

E (mJ)

VCE (V)

Eoff

IC = 30 A, RG = 6.8 Ω,VGE = 15 V, TJ = 175 °C

Figure 17. Switching energy vs gate resistance

GADG111120191441SLG

0.9

0.8

0.7

0.6

0.50 10 20 30 40

E (mJ)

RG (Ω)

IC = 30 A, VCC = 300 V,VGE = 15 V, TJ = 175 °C

EOFF

Figure 18. Switching times vs collector currentGADG211120191613STC

100

100 10 20 30 40 50 60 IC (A)

tf

VCC = 400 V, VGE = 15 V,RG = 6.8 Ω, TJ = 175 °C

td(off)

(ns)t

STGWA30HP65FB2Electrical characteristics (curves)

DS13149 - Rev 1 page 7/15

Figure 19. Switching times vs gate resistanceGADG111120191443SLG

100

100 10 20 30 40 Rg (Ω)

tf

td(off)

VCC = 400 V, VGE = 15 V,IC = 30 A, TJ = 175 °C

t(ns)

Figure 20. Reverse recovery current vs diode currentslope

IGBT120120160800RRC

12

10

8

6

4

2

00 300 600 900 1200

Irrm(A)

di/dt (A/µs)

VCC =400 V, VGE = 15 V,IF = 5 A, TJ =175 °C

Figure 21. Reverse recovery time vs diode current slope

IGBT120120160820RRT

350

300

250

200

150

1000 300 600 900 1200

trr (ns)

di/dt (A/μs)

VCC = 400 V, VGE = 15 V,IF = 5 A, TJ = 175 °C

Figure 22. Reverse recovery charge vs diode currentslope

IGBT120120160824RRQ

50

48

46

44

420 300 600 900 1200

Qrr(µC)

di/dt (A/µs)

VCC = 400 V, VGE = 15 V,IF = 5 A, TJ = 175 °C

Figure 23. Reverse recovery energy vs diode current slope

IGBT120120160826RRE

5

4

3

20 300 600 900 1200

Err(μJ)

di/dt (A/µs)

VCC = 400 V, VGE = 15 V,IF = 5 A, TJ = 175 °C

STGWA30HP65FB2Electrical characteristics (curves)

DS13149 - Rev 1 page 8/15

Figure 24. Thermal impedance for IGBT

10 10 10 10 10 tp(s)-5 -4 -3 -2 -110-2

10-1

K

0.2

0.05

0.02

0.01

0.1

Zth=k Rthj-cδ=tp/t

tp

t

Single pulse

δ=0.5

ZthTO2T_B

Figure 25. Thermal impedance for diode

STGWA30HP65FB2Electrical characteristics (curves)

DS13149 - Rev 1 page 9/15

3 Test circuits

Figure 26. Test circuit for inductive load switching

A AC

E

G

B

RG+

-

G

C 3.3µF

1000µF

L=100 µH

VCC

E

D.U.T

B

AM01504v1

Figure 27. Gate charge test circuit

GADG160420181048IG

RL

VCC

D.U.T.100 Ω IG = CONSTVi ≤ VGMAX

2200 μF

2.7 kΩ

PW1 kΩ

47 kΩ

Figure 28. Switching waveform

AM01506v1

90%

10%

90%

10%

VG

VCE

IC td(on)

ton

tr(Ion)

td(off)

toff

tf

tr(Voff)

tcross

90%

10%

Figure 29. Diode reverse recovery waveform

t

GADG180720171418SA

10%

VRRM

dv/dt

di/dt

IRRM

IF

trr

ts tf

Qrr

IRRM

STGWA30HP65FB2Test circuits

DS13149 - Rev 1 page 10/15

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,depending on their level of environmental compliance. ECOPACK specifications, grade definitions and productstatus are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-247 long leads package information

Figure 30. TO-247 long leads package outline

8463846_2_F

STGWA30HP65FB2Package information

DS13149 - Rev 1 page 11/15

Table 7. TO-247 long leads package mechanical data

Dim.mm

Min. Typ. Max.

A 4.90 5.00 5.10

A1 2.31 2.41 2.51

A2 1.90 2.00 2.10

b 1.16 1.26

b2 3.25

b3 2.25

c 0.59 0.66

D 20.90 21.00 21.10

E 15.70 15.80 15.90

E2 4.90 5.00 5.10

E3 2.40 2.50 2.60

e 5.34 5.44 5.54

L 19.80 19.92 20.10

L1 4.30

P 3.50 3.60 3.70

Q 5.60 6.00

S 6.05 6.15 6.25

STGWA30HP65FB2TO-247 long leads package information

DS13149 - Rev 1 page 12/15

Revision history

Table 8. Document revision history

Date Version Changes

05-Nov-2019 1 First release.

STGWA30HP65FB2

DS13149 - Rev 1 page 13/15

Contents

1 Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

2 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

2.1 Electrical characteristics (curves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

4 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

4.1 TO-247 long leads package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

STGWA30HP65FB2Contents

DS13149 - Rev 1 page 14/15

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to STproducts and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. STproducts are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design ofPurchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or servicenames are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

STGWA30HP65FB2

DS13149 - Rev 1 page 15/15