92
TSDSI-M2M-TR-SmartCitiesICT-V0.1.0-20150310 Technical Report TSDSI - Sub Group on Indian Smart Cities Smart Cities - An overview of the role of Information and Communication Technologies in the Indian context. Draft Release 1.0 Page 1 of 92 Attention: This is not a publication made available to the public, but an internal TSDSI document intended only for use by members of TSDSI and their collaborators. It shall not be made available to, and used by, any other persons or entities without the prior written consent of TSDSI. 5

TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

  • Upload
    lyxuyen

  • View
    217

  • Download
    3

Embed Size (px)

Citation preview

Page 1: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

TSDSI-M2M-TR-SmartCitiesICT-V0.1.0-20150310

Technical Report

TSDSI - Sub Group on Indian Smart Cities

Smart Cities - An overview of the role of Information and Communication Technologies in the Indian context.

Draft Release 1.0

Page 1 of 65

Attention: This is not a publication made available to the public, but an internal TSDSI document intended only for use by members of TSDSI and their collaborators. It shall not be made available to, and used by, any other persons or entities without the prior written consent of TSDSI.

5

Page 2: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Table of Contents

1 Introduction...................................................................................................................................4

2 Scope.............................................................................................................................................5

3 Public objectives achievable from ICT in Smart Cities....................................................................6

4 Business Drivers for Smart Cities...................................................................................................7

5 A ‘Common’ approach to Smart Cities...........................................................................................9

5.1 Financial viability of this unifying common model...............................................................11

6 ICT Pillars of a Smart city.............................................................................................................12

6.1 Integrated Management Centre..........................................................................................14

6.2 Services and Applications....................................................................................................16

6.2.1 Services and Applications for Physical Infrastructure..................................................16

6.2.2 Services and Applications for Social Infrastructure......................................................17

6.2.3 Services and Applications for Institutional Infrastructure............................................17

6.2.4 Services and Applications for Economic Infrastructure................................................17

6.3 Communications Network...................................................................................................19

6.4 Devices.................................................................................................................................21

6.5 Data Center and Cloud.........................................................................................................23

6.6 Information and Digital Security..........................................................................................24

7 Challenges...................................................................................................................................24

8 Smart Ministries and Departments..............................................................................................25

9 Use Cases for Smart Cities...........................................................................................................26

9.1 Vertical: Transportation.......................................................................................................26

9.2 Vertical: Health....................................................................................................................29

9.3 Vertical: Pollution Control....................................................................................................35

9.4 Vertical: Smart Home...........................................................................................................37

9.5 Vertical: Remote Access Management (RAM).....................................................................39

9.6 Vertical: Public Safety..........................................................................................................46

9.7 Vertical: Utilities..................................................................................................................47

9.8 Vertical: Industrial Automation............................................................................................54

10 Bibliography.............................................................................................................................58

Page 2 of 65

10

15

20

25

30

35

Page 3: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Index of Tables

Table 1 - Smart applications for Public Infrastructure........................................................................20Table 2 – Smart applications for Social Infrastructure.........................................................................20Table 3 – Smart applications for Institutional Infrastructure...............................................................20Table 4 – Smart applications for Economic Infrastructure...................................................................21Table 5 – Use Cases for Transportation...............................................................................................32Table 6 - Use Cases for Health.............................................................................................................38Table 7 - Use Cases for Pollution Control.............................................................................................40Table 8 - Use Cases for a Smart Home.................................................................................................42Table 9 - Use Cases for Remote Asset Management...........................................................................49Table 10 - Use Cases for Public Safety.................................................................................................50Table 11 - Use Cases for Utilities.........................................................................................................58Table 12 - Use Cases for Industrial Automation...................................................................................61

Index of Figures

Figure 1 – Silo’d systems......................................................................................................................12Figure 2 – Common Information Infrastructure..................................................................................13Figure 3 – ICT Pillars of a Smart City....................................................................................................15Figure 4 – Integrated Management Center.........................................................................................17Figure 5 – City IMC: From Ingestion to Insight.....................................................................................18Figure 6 – Different networks in a city.................................................................................................22Figure 7 – Network Technologies........................................................................................................23Figure 8 – Various Sensors...................................................................................................................25

Page 3 of 65

40

45

50

55

60

Page 4: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

About this Technical Report

This Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup.

Acknowledgements

This Technical Report was researched and principally authored by Bipin Pradeep Kumar from Reliance Jio Infocomm (RJIL). The author would like to thank TSDSI for providing such an exciting opportunity to work and research under the TSDSI M2M Working Group. Aastha Sayal (RJIL), Bindoo Srivastava (TICET), Sumit Chowdhury (GSC), Anuj Asokan (TTSL), Hem Thukral (ISGF) provided inputs for this Technical Report. Mayuri Nayak (GSC) provided fresh views to the graphics. Individual vertical heads and contributors provided their respective uses cases which were then adopted as appropriate for Smart City uses.

Page 4 of 65

65

70

75

Page 5: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Left Blank for Procedural information to be addressed

Page 5 of 65

Page 6: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Left Blank for Procedural information to be addressed

Page 6 of 65

Page 7: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Some have called the smart city trend the most transformative thing to happen to cities since the urban renewal movement of the 1960s1

1 Introduction

One of the captains of the Internet world – the W3C sees Smart cities as a web of people, things and services2. Whilst this is a contextual manner to begin this document, its relevance is compounded as it also illustrates the notion that cities are viewed differently by different professions and people. City engineers view the city as a complex system with multiple layers. Information Technology companies view cities as an area where information and technology can be unleashed. Architects and Non-Governmental Organizations (NGOs) see the city in terms of people, social inclusion, and a sense of space. Government leaders view the city in terms of economic growth, managing scarce resources and a political arena. Visionaries view it as space for new or improved city services supported by policy initiatives designed to effect positive change. Regardless of their viewpoint, most agree on a common vision: make cities smarter and more sustainable; to improve quality of life.

Smart Cities present an opportunity to achieve most of the views expressed by integrating technology advancements, especially in the Information and Communications Technology space to physical city infrastructures—from utilities, transportation, education, health and real estate to city services; thereby bringing about a cyber-physical metamorphosis. But ultimately, no matter how technologically adept or challenged it may be, a Smart City is not about M2M or IoT or Big Data or any particular Information or Communication Technology, but about what technology enables one to do, about how technology empowers citizens, and how technology improves the quality of life for every individual.

This becomes paramount in the Indian context. From the 2001 census to 2011 census, there is an insignificant a shift in urban – rural users in India. Roughly 70% of India still lived in villages and the remaining 30% in urban areas. But reports released last year3, show that by 2030 India will have 590 million urban inhabitants. Taking this number along with another 200 million that is expected to live in close proximity to the major cities, it means that in another 15 years, roughly more than half of India will live in its cities or close to cities.

This unprecedented shift to urban areas, areas that are more contained, creates overwhelming challenges for local municipalities such as growing demand for services, safety of its citizens, and effective utilisation of resources and consequently impacts their ability to manage their citizens’ quality of life. Mismanaged or under managed cities are likely to have detrimental social and environmental repercussions, as well as significant economic costs on the nation. It would be arguable to say that Information and Communications Technologies, that we all acknowledge is and was an important economic driver for India, has not been leveraged optimally within India and its cities. It needs to move from being seen as a mere 'employment spinner' or ‘economic contributor’ to a medium for infrastructure improvement and large scale upliftment.

1 http://www.govtech.com/data/The-Rise-of-the-Sensor-Based-City.html2 http://www.w3.org/2013/Talks/smart-cities-dsr-mws-2013.pdf3 India’s Urban Awakening: Building Inclusive Cities, sustaining Economic Growth. McKinsey Global Institute

Page 7 of 65

80

85

90

95

100

105

110

115

Page 8: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

As we compose and discuss this document in early January 2015, 6 Indian cities have made it to the ‘Megacities’ list of which there are only 35 in the world4. A megacity is usually defined as a metropolitan area with a total population in excess of ten million people. In India these are Delhi, Mumbai, Kolkata, Bengaluru, Chennai and Hyderabad, in respective order of ranking.

Furthermore, not just about size, but going forward, Indian cities are expected to dominate world competitiveness. The Economist’s Hotspots for 20255, that benchmarks the future competitiveness of cities, has New Delhi (along with Tianjin) leading the City Competitiveness Index globally. Nine Chinese and seven Indian cities are in the top 20, with Bengaluru 11th on the global list.

Information and Communications Technologies (ICT) has the capability to provide environmentally friendly and economically viable solutions for cities. Potential advancements could be made in the forms of efficient water management based on real-time information exchanges, public transport systems organized through information gathered by satellites, cellular technologies or plain exchange of data among other civic systems, exploring solutions to concerns related to air quality monitoring and electromagnetic fields, among others. These technological solutions enhance the environment, improve governance and facilitate more efficient energy utilisation. In addition, this is where the concept of ICT based smart and sustainable becomes more inclusive.

This document strives to broadly depict areas within Information and Communications Technologies (ICT) that can help cities become smarter, more sustainable and efficient, improve governance structures, bring in more autonomy thereby improving overall quality of life of its citizens.

The material in this document is mostly strategic; it highlights and presents the few but expansive Smart city ICT pillars to the reader. It outlines the scope and possible depth and breadth of each area, at the same time impressing their importance and calling to attention the diligent studies further needed in each of those specific areas.

To drive cohesion, this document includes a non-exhaustive draft of Smart City related use cases that is filtered from some of the vertical study items of TSDSI M2M Study Group.

2 Scope

The Ministry of Urban Development (MoUD) released its draft ‘Concept note on Smart City’ in September 2014. This TSDSI document seeks to complement it by addressing the ICT aspects of Smart Cities.

This document seeks to:

1. provide an overview of the main ICT pillars that contribute to the smartness of cities 2. explore the role and potential of ICTs within smart Cities, and 3. acknowledge, at a general level, the key ICT infrastructure needed to enable smart cities

4 http://en.wikipedia.org/wiki/Megacity5 http://www.citigroup.com/citi/citiforcities/pdfs/hotspots2025.pdf

Page 8 of 65

120

125

130

135

140

145

150

5

Page 9: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

This document is not intended to be a specification or a recommendation for best practices. It aims to lay a general foundation for further, more in-depth explorations of specific topics on smart cities in the Indian context. Consequently, it provides a broad overview of issues that impact the concept of a smart city, while at the same time setting the stage for additional detailed technical reports which could be topics of separate TSDSI Focus Groups on Smart Cities.

The intended audience of this Technical Report are stakeholders and members of the government, industry, academia and even general civil society interested in gaining a better understanding of what constitutes a smart sustainable city, and what its main attributes are.

This document identifies the existence of further opportunities of collaboration in the identified ICT pillars, as well as the need to foster further dialogue and discussion on these issues.

3 Public objectives achievable from ICT in Smart Cities

It is important to begin this section stating the obvious - that different cities have different objectives, and that cities in India are different from each other, sometimes vastly. However, just like the fundamental requirements and basic rights of every citizen in India are the same, expectations of and by every city dwelling Indian for day to day activities and tasks are similarly fundamental and aspirational to large extents.

Combine this with the speed of urbanization occurring in India and it poses an unprecedented managerial and policy challenge—yet India has not engaged in a national discussion about how to handle the seismic shift in the makeup of the nation6. As urban population and incomes increase, demand for every key service such as water, transportation, sewage treatment, low income housing will increase five- to sevenfold in cities of every size and type. And if India continues on its current path, urban infrastructure will fall woefully short of what is necessary to sustain prosperous cities. If not well managed, this inevitable increase in India’s urban population will place enormous stress on the system.

ICT though not a direct answer to any problem, is seen as a means to manage this more efficiently.

In general the objectives expected from Smart Cities and therefore the implementation of ICT in Smart Cities are:

Optimization: Looking at all data coming in from various input sources – resources, utilities, devices and services and putting in systems such that they can improve their operations and make it more efficient.

Predictive failure information: Forecasting the probability or knowing when a system or public machinery will go down. And as next steps, taking measure to address that.

Improved usage information: Understand how citizens are using different services and the consumption of essentials. Enhance what is falling short, and de-emphasize what is excess.

Improved failure and diagnostic information: Make sure services are operating and generating revenue.

6 The Planning Commission, Approach to the 12th Plan, The Challenges of Urbanization in India

Page 9 of 65

155

160

165

170

175

180

185

Page 10: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Transparency: Facilitated by making the information, processes, costs, consequences, more open and democratic

New services packages: With more information about citizen behaviour and consumption patterns, the government will be able to offer more tailored services in and future.

From a sector specific view, the objectives expected by the public that ICT can significantly aid in are:

City administration: to streamline management and deliver new services in an efficient way Education: to increase access, improve quality, and reduce costs Health care: to increase availability, provide more rapid, accurate diagnosis, provide

wellness and preventive care, and create more cost efficiencies Public safety: to use real-time information to anticipate and respond rapidly to emergencies

and threats Real estate: to reduce operating costs, use energy more efficiently, increase value, and

improve occupancy rates Transportation: to reduce traffic congestion while encouraging the use of public

transportation by improving the customer experience and making travel more efficient, secure, and safe

Utilities: to manage outages, control costs, and deliver only as much energy or water as is required while reducing waste

Unlike more developed countries where ICT is more prevalent and city infrastructures are more mature, the dynamics in India are very different and consequently the requirements, uses and methods to achieve this vastly different too.

But, just like the laws of physics and chemistry are not different in India or anywhere e else in the world, the foundations of these requirements or use cases are no different; differences usually lie in the nuances of implementation. A non-exhaustive set of use cases for different verticals worked upon by the different groups in the TSDSI M2M Study Group are listed in Section 10 of this document.

4 Business Drivers for Smart Cities A sound local economy attracts investment, increases the tax base, creates employment opportunities for residents and generates public revenues. An economic strategy which balances the need for development with other city goals and objectives is the call of the hour. As such, while cities may have many social and environmental objectives, one cannot dismiss the economic objectives of cities which are usually common. These include and are not limited to:

Increasing revenue of the various public departments Improving operational efficiencies Reducing costs of services, both top line to citizens and bottom line to the administration Improve citizen satisfaction and quality of life Staying ahead of the consumption cycle Identifying new service opportunities

Page 10 of 65

190

195

200

205

210

215

220

225

Page 11: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Improving Economic investment which results in maximum public revenues and minimum public service costs.

An economic climate conducive to attracting new developments which yield net social and economic benefits to the City

Page 11 of 65

230

Page 12: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Other City Services and Departments

WasteManagement

Sensors

Servers & other ICT

Infra

Power

Meters

Servers & other ICT

Infra

Water

Meters

Servers & other ICT

Infra

Gas

Meters

Transportation

Sensors

Servers & other ICT

Infra

Servers & other ICT

Infra

5 A ‘Common’ approach to Smart Cities

Cities are intricate composite environments and the manner in which cities are operated, financed, regulated and planned are extremely complex to say the least. City operations are multidimensional and comprise of multiple stakeholders whose dependencies and interdependencies affect and ultimately determine the built environment.

These dependencies and interdependencies though known, are mostly overlooked by the various departments in their efforts and focus of providing their services and of being answerable only for the services they provide. Part of the answer to making cities 'smarter' is a more all-embracing coordinated management of resources and infrastructure, a collaborative approach to a cleaner greener environment, and harmonized governance that result in a better quality of living of its citizens.

Coordination, collaboration and harmonization can be better implemented by the effective use of open, common and shareable, information and communication technologies that allows the creation of a truly interconnected system with seamless communication between services. Even though the services and applications can be diverse, they could leverage the use of common infrastructure to achieve this objective. Cities have to move from isolated silo’d systems as depicted in Figure 1 to a more unifying, common model

From a vertical, silo’d approach

To a converged common ICT infrastructure pool

A common infrastructure pool allows the creation of a truly interconnected system with seamless communication between services. Even though the services and applications can be diverse, they

Page 12 of 65

Figure 1 – Silo’d systems

235

240

245

250

255

260

Page 13: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

could leverage the use of common infrastructure which is highly recommended or at the least common data models and semantics.

Page 13 of 65

265

Page 14: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Internet

Com

mon

Info

rmati

on

Infr

astr

uctu

re

WasteManageme

ntPowerWaterGasTransportation

Secure Open Data Platform

Infrastructure Business Support Systems (BSS)

Master DataManagement System

Integrated Data Acquisition /Integrated Data Management

Public Utility Companies

Common Data Platform

Common NetworkMultiple Network Topologies

Secure VPN

Cities with Homes with Multiple Smart Meters

The interconnection or adoption of ICT by different government departments and agencies or the means to do so is not the realm of this document. However, the sharing of infrastructure, unifying the information infrastructure or even the sharing of meaningful information/data such that it can improve efficiency and the quality of life of its citizens is an opportunity that will be recommended.

India has already undertaken a path towards Open government data in collaboration with the United States of America (USA). Together they have pioneered OGPL7, a joint product to promote transparency and greater citizen engagement by making more government data, documents, tools and processes publicly available. This platform is used to build the Open Government Data (OGD) Platform India8 which on date makes available 13,203 resources in 3,439 catalogs provided by over 30 Ministries and Departments. While this refrains from laying basic ontology and semantics, of true ability for interoperable data, of a regular stream of real time data, in many ways, it is a big leap forward. Taking this to the next step would be a similar platform at City or State level, along with a Common Information Model, which going forward could be integrated at a National level

An example for a common information model is the Common Information Model (CIM) for Electricity9, a standard developed by the electric power industry that has been officially adopted by the International Electrotechnical Commission (IEC) that aims to allow application software to

7 http://ogpl.gov.in/8 https://data.gov.in/9 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5772503

Page 14 of 65

Figure 2 – Common Information Infrastructure

270

275

280

285

290

295

10

Page 15: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

exchange information about an electrical network. It defines a common vocabulary and basic ontology for aspects of the electric power industry10. Another example of a common model to share information between various infrastructures at state or central government bodies and departments is the National Information Exchange Model (NIEM) in the United States of America11. NIEM is a community-driven, standards-based approach to exchanging information. Diverse communities can collectively leverage NIEM to increase efficiencies and improve decision making. It was started by a handful of organizations supporting state and local government to overcome the challenges of exchanging information across state and city government boundaries. NIEM was formally initiated in April 2005 by the chief information officers of the U.S. Department of Homeland Security and the U.S. Department of Justice. In October 2010, the U.S. Department of Health and Human Services joined as the third steward of NIEM.

A common information pool can be designed in manners that it need not impact jurisdictional overlap within government agencies nor a shift towards decentralized planning, should that come into play. Unifying the network and data platform would only make it more transparent, easier for informed decision making and less strenuous financially.

5.1 Financial viability of this unifying common model

When one looks at smart cities from financial viability perspective, the common model may make it more economically viable too. It will overwhelmingly likely make the next application or service cheaper and easier to implement, and the next, and the next. This is an important and oft-neglected feature and this increased simple scalability would be an ongoing feature.

Traditionally every department in every city or area puts out its own technology infrastructure as depicted in Figure 1 and they make their procurements and purchases independently. These hinder the financial autonomy of urban local bodies, the state government and of the central government too. The financial implications or burden are borne by the organisation and ultimately by the general public. What this independent, department-wise infrastructure sourcing and operations has resulted in is no sharing of costs and resources – resulting in net higher costs to the city and taxpayer, a lot of waste or duplication in investment and effort and possible under-utilisation of the infrastructure too. Financial viability and feasibility of projects – regardless of whether they are EPC, PPP or through other means of funding could be better addressed and made more feasible by the Common model.

This could in turn ensure the long term viability and health of many projects and of the overall Smart City initiatives too.

Identification of a minimum common set of service layer requirements and capabilities, data model and semantics, visualising meta-models from the varied information sources to create a higher level of information, and consequently ideating the base set of criteria of a ‘Common information pool’ can be the objective of a separate dedicated Study Item.

10 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=577250311 https://www.niem.gov/

Page 15 of 65

300

305

310

315

320

325

330

Page 16: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Services/Applications that cover

Service/Data exchange

Dashboard & Integrated Mngmt and Command Center

Communications Network

Devices and

Chipsets

Data Centre, Cloud and Backend Platforms

Physical Infra

Social Infra

Institutional Infra

Economic Infra

Governance

Safety & Security

Education

Transport

Utilities (Gas, Electricity, Water)

Healthcare

Buildings

123

4

5

Information and Digital Security6

6 ICT Pillars of a Smart city

The Information and Communication Technology - ICT pillars of a Smart City are not to be confused with the pillars of a Smart City. The latter consists of traditional functions – physical, social, institutional and economic infrastructures that are required for a city, are addressed in the document released by the MoUD. The former that is the realm of this document consists of the different technological domains and technologies, and attempts to determine the main classification of methods and means in which each of those functions in cities can be made smarter.

This document identifies and recommends 6 areas as pillars for a Smart City. These are depicted in Figure 3 below.

As such to make a Smart City, the essential pillars comprise of:

1. An Integrated Management and Command Centre – That will provide a single interface to view all integrated city level information. These Command Centres do not imply that only

Page 16 of 65

Figure 3 – ICT Pillars of a Smart City

335

340

345

350

355

360

Page 17: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

one will be applilcable to a city, but many smaller ones could feed requisite information along its various nodes

2. The Services and Applications across various verticals - These have been classified according to the Infrastructure segments identified by the MoUD. It covers vertical solutions or applications in Predictive Maintenance, Vehicle telematics, Insurance, Healthcare, Fleet management, Connected cars, Home automation, Utility solutions and, the software and solutions that can be used by the various departments for Smart Governance

3. The Communications Network – This includes the wired and wireless networks, satellite networks, transmission protocols (MQTT), M2M connectivity; networks that can be called MAN, WAN, PAN, HAN. Dedicated resources could be allocated for critical communication or communication during emergencies or disasters.

4. Devices and Chipsets – Devices are an immense area and comprise a larger umbrella of routers, computers and other networking equipment. For narrowing focus and since M2M is a tenet this study revolves around, this document focuses on Sensors, RFID tags, Chipsets, Mobile devices, Embedded software, etc. that facilitate the ‘sensor web’ in cities

5. Data Centre, Cloud or Backend Platform Infrastructure – This includes the M2M platforms, Service enablement solutions, Application services, Device management software, Cloud services, Integration and Managed services that are hosted on the Cloud or Data Centre

6. Information and Digital Security – Security of Smart City is a very large area and as illustrated in the diagram touches every aspect – the devices themselves, the communications part, the data part, the application part and the storage and services part. Besides information security, security as a topic also encompasses privacy of data and physical security. This section briefly addresses the illegal access to information and attacks causing physical disruptions in service availability in a Smart City.

Each of these ICT pillars are only outlined in this document. Each has their own intricacies and challenges and detailed study items for every pillar will be required. A call for this more focussed study further is outlined in the respective sections

Page 17 of 65

365

370

375

380

385

Page 18: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Data Ingestion from all City Stakeholders

and Systems

Citizens

Sensor data & metadata

Events

Data Modeling for City Operations

Optimize, Process

Historic infusion

EnrichAlgorithms,

ToolsMetadata

Insight & Information Presentation for City

Management

Decision Support

Reports

Forecasts & Prediction

Generate

Apply

Input

Workflows, Processes

Integrated Management Center

Analysis

Integrate from and with all sources

Perform

With an Objective of

6.1 Integrated Management Centre

A vast body like a city consists of large number of heterogeneous information resources. These include sensors, exchanges between or information from citizens, the various workflows and processes, events that occur, etc. that can together complement the integrated management of smart cities. The relationships of these diverse information resources are complicated and could be complementary, reinforced or redundant relationships. The data gathered can further be processed and modelled, correlated with historic data and other activities performed on it before it can be made insightful and can be presented to offer MIS, analysis, decision support or forecasts. This is illustrated in Figure 4

There is also a recursive cycle to the data in a Smart City. Information that is generated is information that is consumed which in turn adds to the information generated which becomes information used again.

Page 18 of 65

Figure 4 – Integrated Management Center

390

395

400

405

410

415

Page 19: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Power, Water, Waste Management and Metering systems

Transport, Production, BuildingAutomation systems

Power, Water, Waste, Transport billing andPricing systems

Governance, Financial, Business andAccounting systems

Data Integration

Data Modelling

Information & Insight

Environmental Impact

CostAllocation

Historic DataReportingEngine

EnergyModelling

TrendAnalysis

BillAnalysis

Data Sharing

Data WarehouseData Quality

Ingestion

Applications

Processing

Other relevant inputs: Metadata, Weather, Occupancy, Area

Forecasts

In India, resources, data and information generated by the city from different sources, systems and services are distributed across the myriad different government departments, agencies, their contractors, in different regions and thus in varied information systems. There is no mechanism or model to connect them together. Disparate, disconnected, silo’ d systems are harbingers of cataclysm of the very concept of smartness.

The integrated management centre is intended to establish a co-ordinated approach to this constraint. The functions of the Integrated Management Centre will include the observation, reporting, analysing, correlation, forecasting and decision supporting for the entire gamut of city-wide services.

At its very foundation, it will integrate with and ingest data from all possible sources, then apply various data models, processes and tools and ensure quality with an aim to provide insight and intelligence on various city resources and services while at the same time establishing a sharing and serving mechanism for all information resources and services in the city.

Different sources of information can blend together, in some ways compensating their own deficiencies, enriching the larger information pool and therefore providing the ability to offer services more efficiently. A drill down of the above is depicted in Figure 5 below.

Page 19 of 65

420

425

430

435

440

445

450

Page 20: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

To this effect, while the semantics of data that sensors generate can be studied for standardisation, prior research (Visconti and Cook, 2002; ISO 2003, Chen, 2014), could facilitate the approach for the metadata for Indian use fairly easily.

A separate more detailed document outlining the information sources of cities in India and their data models uniformly, determining metadata, visualising meta-models from the varied information sources to create a higher level of information, and consequently ideating the base set of data to open and share to citizens will be the objective of a separate dedicated Study Item.

6.2 Services and Applications

The draft Concept note on Smart Cities identified 3 pillars of Smart Cities. These are Physical Infrastructure, Social Infrastructure and Institutional Infrastructure. This was then extended to include Economic Infrastructure. Basing applications and services on this classification we can look at applications and services that enrich these spaces.

6.2.1 Services and Applications for Physical Infrastructure

Physical infrastructures and the services and applications that run on top of, or cater to the physical infrastructure comprises of:

No. Physical Infrastructures Smart Services and Applications

1. Energy Smart Electricity Management Smart Power Grid Smart Metering for Electricity and Gas Smart Gas pipeline ManagementSmart Lighting

2. Buildings Smart buildingsCCTV Surveillance

3. Transportation Smart Transportation (across roads, bridges, highways, local trains, buses, cabs, metro train, ports, airports)Route OptimizationSmart Ticketing Smart SignageSmart ParkingInteractive Bus Stops

4. Water Smart Water ManagementSmart MeteringWater Leakage DetectionSmart pipes and sensor networks

Page 20 of 65

Figure 5 – City IMC: From Ingestion to Insight

455

460

465

470

Page 21: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Smart Irrigation management5. Waste Management Smart Waste Management

Waste tracking systems6. Housing Integrated Building management

Housing finderHousing plan management and tracker

7. Disaster Management and Emergency Integrated Response and Management for Regional Police Headquarters, Coastguard facilities (for coastal cities), Fire Headquarters, Hospitals, Ambulance and Administrative Departments

8. Public works Smart Management of Public Works – Dams, Canals, SubwaysSmart Public Lighting

Table 1 - Smart applications for Public Infrastructure

6.2.2 Services and Applications for Social Infrastructure

Services and applications that run on top of, or cater to Social infrastructure include:

No. Social Infrastructures Smart Services and Applications

1. Safety and Security Smart physical safety and security City SurveillanceRemote Monitoring

2. Health Care Smart health care 3. Education Remote Education

4. Entertainment Open public access digitally5. Environment Smart Lighting

Smart Irrigation management6. Homes and Buildings Controlling appliances remotely

Home security, climate control and lighting.Table 2 – Smart applications for Social Infrastructure

6.2.3 Services and Applications for Institutional Infrastructure

Services and applications that run on top of, or cater to Institutional infrastructure include:

No. Institutional Infrastructures Smart Services and Applications

1. Service Delivery Smart Digital Transactions2. Transparency and Accountability Models, optimization, and decision-support

tools3. Citizens Participation and Advisory Citizens interface to policy

Direct voting 4. Justice and Judicial System Transparent, Integrated Legal processes

Smarter Court SystemTable 3 – Smart applications for Institutional Infrastructure

Page 21 of 65

475

480

Page 22: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

6.2.4 Services and Applications for Economic Infrastructure

Services and applications that run on top of, or cater to Economic infrastructure include:

No. Economic Infrastructures Smart Services and Applications

1. Job Creation Remote EducationSmart Evaluation

2. Livelihood Activities Environmental InformationAccess to Experts

3. Transparency and Accountability Remote Education

4. Taxation Tax calculator and filerClaims management

Table 4 – Smart applications for Economic Infrastructure

Many of the above applications are detailed in the use cases against each vertical addressed towards the end of this document.

To leverage these infrastructure services and applications holistically, fundamental systems need to be connected and exchange information where required between other services and applications. As outlined in the section above, the Common Information Model (CIM) for Electricity12, and the National Information Exchange Model (NIEM) in the United States of America13 are good examples of homogenizing information exchange methods between utilities by the former and the state and local government in the latter to overcome the challenges of exchanging information across silo’d government boundaries.

In order to realize these opportunities – of applications and solutions in Physical, Social, Institutional and Economic infrastructures in cities and of leveraging the benefits of exchanging information between these, a separate more detailed technical report that determines and details the services and emphasizes the need for careful design and proper coordination among all relevant infrastructure sectors will be the matter of a dedicated Study Item.

12 http://en.wikipedia.org/wiki/Common_Information_Model_(electricity) 13 https://www.niem.gov/

Page 22 of 65

485

490

495

500

Page 23: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

MDC

DC1

DRC

Multi-Network

2G, 3G, 4G Network

Ultra NarrowBand Network

WiFi-network

SensorMesh-Network

Back-haul using fiber, microwave

6.3 Communications Network

As part of the realization of a smart city, communication systems are an indispensable part of the public infrastructure. The telecommunications infrastructure is the basis for data generation, exchange of data, control information and their transport that provide intelligence to the city. The reason for this is that many of the requirements of a smart city, including creating systems to reduce the environmental load, revitalization of corporate activities, and the achievement of comfortable living can only be realized by seamlessly coordinating everything14. To this end, communication network or networks are necessary to establish all sorts of connections and share information for coordination, including human to human, human to machine and machine to machine. Within a city, many kinds of communication networks can exist, many kinds of communication networks will be needed to fulfil various needs and all could carry matter relevant for a city’s functioning. A smart city must combine legacy networks and new communication architectures in order to configure existing communication networks to achieve compatibility and interoperability15. There could even be a Network of Networks in a city.

These networks can be visualised as a series of layers as illustrated in Figure 6. Sensors, objects or systems that need to transport information could use more than one type of network to reach its destination.

14 http://www.hitachi.com/products/smartcity/smart-infrastructure/communication/index.html15 Network Architecture based on Virtualized Networks for Smart Cities. A.D. Guerrero-Pérez, A. Huerta, F. González and D. López http://smartcities.ieee.org/images/files/images/pdf/ngn_sdn_v3.1.0.pdf

Page 23 of 65

Figure 6 – Different networks in a city

505

510

515

520

15

Page 24: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

WiredWireless

M2M only NetworksSatelliteCellularINMARSATIRIDIUMDOMESTIC VSAT

FixedUltra Narrow BandWhitespaceDSRC

RFID NFCWi-Fi

xDSLOptic Fiber

GSM/GPRSCDMA/1X3G

Personal & Local Area Network

Wide Area Network

Z WaveX BeeWireless M-Bus

Bluetooth/BLEZigBee

EthernetPLCHomePlug

HomeGridHomePNALonWorks

4G/LTEWiFi

An ideal Network of Networks would offer the benefits of stateless routing with adequate failover mechanisms. Network technologies that can co-exist include the following ones illustrated in the Figure 7.

Communications network in a city should make provisions and be prepared for communication during times of crisis, emergency or disasters. Such systems rely on the common network or cross network principles designed to integrate the cross-communication of messages. This communication could occur between varieties of communication technologies on one plane and citizens and relevant governmental and non-governmental agencies that are part of the Critical Communication axis on another.

This section highlights the communications possibilities for smart cities. It also impresses upon the reader the existence of further opportunities of collaboration in this field, as well as the need to foster further dialogue and discussion on evolving communication networks in cities. A separate more detailed document outlining the various networks, the spectrum used for wireless networks, critical communication needs and other related communication infrastructure for cities would be the objective of a dedicated study item.

Page 24 of 65

Figure 7 – Network Technologies

525

530

535

540

545

Page 25: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

6.4 Devices

Devices needed by a smart city cover a wide spectrum of Electronics and Computational equipment. Typical devices that are part of a Data / ICT city infrastructure include:

Sensors, Actuators, HMI’s and HCI’s Chipsets, Modules, Boards, PLC’s Computers, Servers and Networking LAN infrastructure Mobile phones, Tablets and other Handheld devices Core Routing Switches & Access Switches Wireless Networking Gateways and Routers Firewalls and Network Routers OSP, Base Stations and Towers

For the purposes of this document, since IoT and M2M are central themes, devices will be restricted to the realm of sensors, actuators and HMI/HCI that are embedded in physical objects; tiny electronic devices that can measure and track just about anything that goes on in a city and can control or perform actions. This is linked through communication networks described in the above section. These include the sensors, actuators, HMI’s that are illustrated in the diagram below that can function in systems like:

Building Automation & HVAC Control / Energy Management Systems Lighting Control Systems Building Security and Access Control Video Surveillance Systems Fire and Safety Systems Car Parking Systems Smart Grid systems Health and Medical systems Transportation

“Sensor technology has the power to provide data about what’s going on in a number of unprecedented ways. It changes the way we can understand, manage and study cities. Citizens can be better engaged by having more city data available”16, said the director of New York University’s Center for Urban Science and Progress. Sensors and Actuators are the cornerstone of the devices that will be used in City Management. The notion of having sensors and actuators on every utility pole, water line, bus, train and traffic light is steadily gaining acceptance.

SenML and its extensions are an attempt to arrive at a uniform way to exchange sensor metadata, which includes sensor measurement, name, id, unit, timestamp etc., as well as methods to uniformly exchange actuator metadata, that includes commands to actuators like reduce speed of a motor, switch on or off power17.

16 http://www.govtech.com/data/The-Rise-of-the-Sensor-Based-City.html

Page 25 of 65

550

555

560

565

570

575

580

585

Page 26: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Machine Vision, Ambient Light Electric, Magnetic

Force, Load, Torque, Strain, PressureAcceleration, Tilt

Water Leaks, Levels, Displacement

Position, Presence Motion, VelocityAcoustic, Amplitude, VibrationLiquid/Gas Flow

Temperature, Humidity, Moisture

These devices communicate with each other and with the Command Center

Sensor Virtualisation, the challenges imposed by Heterogeneity where sensors/actuators belong to different domains, using various technologies to communicate, the management of connected objects, their discovery, the naming and addressing of these billions of objects are all items for detailed study

6.5 Data Center and Cloud18

Data and information availability are vital for the functioning of any smart solution. Access to data must be possible under any circumstance, thus enabling corresponding actions to be taken by city officials both through the Integrated Command Centre and through individual applications or services. This becomes particularly important in the case of emergency and crisis situations.

Cross-scale information sharing using common platforms allow policy makers and officials from different sectors to base their decisions on common information, and undertake coordinated courses of action. Such data exchange not only strengthens the collaborative efforts between departments and sectors, but could also be used as part of critical assessments and forecasting of various emergencies, as well as to optimize any smart solutions implemented in the city. The unifying nature of the Common information model has also been illustrated above

Therefore, it is recommended for city managers to base the implementation of smart solutions on appropriate policies and governance structures that can support and sustain such efforts in the short, medium and long term. In addition, the recursive nature of data in a smart city has been

17 Datta, Soumya Kanti; Bonnet, Christian; Nikaein, Navid, "CCT: Connect and Control Things: A novel mobile application to manage M2M devices and endpoints," Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on , pp.1,6, 21-24 April 201418 Largely derived from ITU draft on Smart Sustainable Cities

Page 26 of 65

Figure 8 – Various Sensors

590

595

600

605

610

615

20

Page 27: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

illustrated earlier, highlighting the characteristic of a system of continuous growth and consequently the need for data storage and mechanism of immense scale.

The following are some of the key components that ensure data accessibility and management in a Smart city:

Accessibility to data: There is a need for schemas, semantics and ontology that will promote openness and accessibility to data. While there will always be a concern in terms of privacy and the proprietary nature of data, most sensitive data can be made anonymous or different levels of access rights enabled before being made accessible. This question of balancing the need for security, privacy and accessibility is still not well understood in terms of a legal and regulatory framework and needs to be addressed in the design of smart sustainable cities.

Open data: It is recommended that data on energy, utilities, transportation, and other basic datasets are to be made public. This is vital in facilitating the cross-scale information sharing component of a smart city that was suggested above. Information sharing allows better operational decisions to be made and implemented. It is equally important to note that all data should be presented in a consistent and standardized manner. It is only when all data is based on the same parameters that it allows for meaningful exchanges and decision making, such as in the case of open application programming interfaces (APIs).

Managing massive data: Cities come in various sizes and so does the information associated with them. To get an accurate view of the data from various sources and various places, this information usually comes in huge packets and should be able to provide accuracy, analytical capabilities, data security, and data storage. Therefore, data needs to be managed using highly efficient database constructs.

High performance: Creating new insights from massive volumes of data needs to be complemented with digital infrastructures that are capable of high performance. Large amounts of data can place a lot of pressure on the workload and operational capacity of existing devices. To make the task optimal, the ICT systems should be reliable, ensure precise data transmission, minimize downtime, and avoid system failure. In cases of failure, the solution should be ready to handle and recover from error.

Maximum efficiency: In order for ICTs to be ready to swiftly disseminate the information from one corner of the city to another, it should operate at its peak efficiency at all points of time. Improving quality and flexibility while minimizing capital and operational cost is crucial for both maximizing and maintaining the role of ICTs over time.

6.6 Information and Digital Security

Security of Smart City is a very large area and as illustrated in the Pillars diagram touches every aspect – the devices themselves, the communications part, the data part, the application part and the storage and services part. Besides information security, security as a topic in a city also encompasses privacy of data and physical security.

********************This section will be addressed in a subsequent release******************

Page 27 of 65

620

625

630

635

640

645

650

Page 28: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

7 Challenges

All resources and information generated by the city from different sources, systems and services are distributed in different departments, regions and their respective information systems. There is no mechanism or model to connect them together, leave alone the perceived need. Until this verticalisation is resolved, whatever technology or intelligence applied will be grossly insufficient and inefficient in holistically addressing issues from a city wide perspective.

There is no technical proposal to manage data created across the multiple departments in an integrated way so that the redundant information can be eliminated, the weakness of one kind of information resources can be supplemented by another, and several information resources can be combined together to fulfil tasks more effectively.

While the interconnection of different government departments and agencies is not the space of this document, the sharing of meaningful data that can improve efficiency and the quality of life – a recurrent theme of a Smart City, of citizens is a challenge that can be explored.

Scaling of many newer technologies is unproven. Because ICT is an enabler in Smart City projects, the implementation of the necessary layers

related to ICT services (for example, Communication, Command Centre and Services/Applications) is usually determined by drivers behind the project and those who initiate it.

Although ICT is a key enabler in the development of a Smart City project, the value propositions of most Smart City initiatives do not position ICT as the key to the project’s success.

Technology challenges the existing status quo in how cities are run; and technology is not well understood across city sectors and by its administrators.

Among the main barrier to adopting such solutions is the complexity of how cities are operated, financed, regulated, and planned. City operations are multidimensional and comprised of multiple stakeholders whose dependencies and interdependencies affect and ultimately determine the built environment.

Rapid urbanization adds pressure to the resource base, and increases demand for energy, water, and sanitation, as well as for public services, education and health care. Consequently, social, economic and environmental issues have become tightly interrelated. But this relatedness remains opaque to officials in charge of particular departments responsible for those services

8 Smart Ministries and Departments

A non-exhaustive list of ministries and government departments that are developing ICT based Smart Solutions and could leverage Common Information Pool and other matter described in this document is listed below:

1. Ministry of Urban Development, Government of India2. Ministry of Company Affairs, Government of India

Page 28 of 65

655

660

665

670

675

680

685

690

695

Page 29: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

3. Ministry of External Affairs, Government of India4. Ministry of Finance, Government of India5. Ministry of Home Affairs, Government of India6. Ministry of Water Resources, Government of India7. Ministry of Defense, Government of India8. Ministry of Power, Government of India

9. Department of Administrative Reforms & Public Grievances (DAR&PG), Government of India10. Department of Agriculture and Cooperation, Ministry of Agriculture11. Department of Commerce, Govt. of India12. Department of Food & Civil Supplies, Ministry of Consumer Affairs, Food & Civil Supplies13. Department of Industrial Policy and Promotion (DIPP), Ministry of Commerce14. Department of Personnel & Training, Government of India15. Director General of Income Tax (Legal & Research), Income Tax Department16. Employee’s State Insurance Corporation, Ministry of Labour and Employment, Govt. of India

Page 29 of 65

700

705

710

Page 30: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

9 Use Cases for Smart Cities

These use cases are derived from the various vertical sub-groups of theM2M Work Group.

9.1 Vertical: TransportationCriteria for a use-case’s inclusion in Smart City domain:

1. Use-case is related to public transport2. Use-case is related to essential (must-have) features for all transport vehicles (including

public and private fleet car/cab companies) like safety etc.3. Use-case is related to efficient utilization and management of public/shared infrastructure

(like toll booths, roads, highways, parking lots etc.)4. Use-case is related to safety, security, emergency services on the road

Exclusions or Limitations:

1. Use cases related to smartness of private vehicles for including non-essential features like infotainment etc. are not considered under the purview of smart city use-case list.

S. No.

Use case name Use case objective Can be used directly in Smart Cities

Can be used in Smart Cities with slight modification

Remarks

1 Panic buttons in public conveyance

A panic button in vehicle to raise alarm in emergency control centre

Yes

2 In vehicle Emergency Call System

To Provide Auto Emergency calling in vehicle in case of road accident

Yes

3 Public Security and Emergency Management in India

Framework to provide faster security and emergency services in case of any untoward scenario, This is a very important use case which will enhance the public security and emergency management system in India. M2M technology will enable police emergency VAN to respond to Citizens panic calls efficiently and will reduce the time to react. The framework can enable officials to manage and monitor the incident remotely.

Yes

4 Over Speed and Traffic Signal Violation Monitoring

Framework to monitor and control over speeding and traffic violation centrally

Yes

5 Smart Parking Pre-book parking slot using your smart phone, while vehicle is approaching the parking area at the allocated time slot,

Yes

Page 30 of 65

715

720

725

Page 31: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

various sensors can detect and guide the vehicle to the allocated slot using sign boards, central monitoring system will manage the parking areas and deduct the charges electronically.

6 Traffic management and Route optimizing

Once we have considerable number of vehicles in a city fitted with GPS device, data can be monitored centrally to find out the traffic congestion by determining the speed at which all vehicles are moving on a particular road. This information can be provided to the vehicles approaching the congested area. Same data can be used by traffic regulators to manage it remotely.

Yes Can be done in 3 ways:1. Google Maps traffic density on phone2. GPS-based traffic monitoring with advisory on OBD3. Satellite-based traffic monitoring with advisory on OBD/phone

7 Real-time Passenger Information Systems

Framework to provide bus and route information to the passengers, along with the vacant seats in the public vehicle.

Yes

8 Automatic Passenger Counting

To count the number of passengers coming in and going out of the transport vehicle.

Yes

9 Traffic Signal Priority

Adjusting the signal timing and priority based upon the priority of the vehicle like ambulances etc.

Yes

10 Car Sharing Services

Smart car-pooling to reduce traffic on road

Yes Can be done in ways:1. Smartphone app-based2. GPS-based tracking of vehicle

11 Vehicle Diagnostic & road side assistance (OBDII)

For OBDII complaint vehicles, collect data related to health of the vehicle, oil temperature, coolant temperature, Speed, breaking, Oil level, to perform the vehicle health & driver behaviour analysis and creating use cases for the insurance, Logistics companies.

Yes Road-side assistance comes under purview of smart cities.

12 Fleet Management

This use case will enable transportation fleet enterprises to manage their operations more efficiently. The High Value Asset (fleet) will be connected with a GPS + GSM/CDMA module, and will transmit location information on a predefined time or on request. The Application will utilize the data transmitted by the device to derive maintenance schedule, route optimization, distance travelled, speed, driving behaviour, fleet efficiency.

Yes For public vehicles, it is a smart city use-case.

Page 31 of 65

Page 32: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

13 Radio Taxi Management

This use case will enable radio taxi operators to automate their operational process. All the CABs operating in the field will be embedded or fitted with a M2M gateway device, which would continuously transmitting the location, status, alerts, driver behaviour. Call Centre Agent can track any CAB through the GUI and allocate the CAB to the nearest customer. Value Added Services like maintenance management, Driver behaviour, Security feature for passengers (Panic Button), In vehicle surveillance etc.

Yes

14 Employee Commutation Safety

This service will enable companies operating in BPO/ITES/IT sector to automate their CAB Management service for employees and ensure their safety. All the CAB operating for a specific company will be tracked along with the employees on board. Companies will be able to manage and monitor their employee commutation policies.

Yes City control centre should be able to access this info on demand, even if it is managed by private companies.

15 Students Commutation Safety

This use case will ensure safety of children traveling by school’s owned transport services. The users of this solution would be school administrators, parents of the students who would track and trace the school bus on real time, receive alerts and notifications. The device installed in the vehicle should be equipped with GPS for Locations tacking, RFID for identifying the students and staff on boarded.

Yes City control centre should be able to access this info on demand, even if it is managed by private companies.

16 Work Force Management (Different sectors)

Assigning tasks online to work force, define beat routes. And track daily movement with regards to the schedule and route as well as monitor progress.

Yes All public utility services involving field force, offered by municipality directly would come under purview of smart city.

17 Road Tolling: Electronic fee collection

This use case will enable private car/fleet owners to decide the most economical toll route and pay the charges automatically through online payment gateway. Using RFID tags telematics box on vehicles, automated road toll collection can be computed.

Yes Electronic toll collection and smart challans come under purview of smart cities.

18 Smart Highways Automated highway system defines relationship with vehicle and highway infrastructure. The concept uses short range communication, sensors and obstacle-detection to enable smooth and safe traffic flow. It will also have smart digital signage to inform driver about the dynamic condition of the road ahead. As a

Yes Real-time broadcast of road condition using digital signage comes under smart city.

Page 32 of 65

Page 33: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

future concept it can also control the vehicles to regulate speed and driving behaviour.

19 Push advertising in public transport

Location Based Advertising on integrated displays in public transport systems has great potential. The passengers are normally bored when they ride with a public transport system (metro, bus, tram etc.) so they are open to general interest information and location based advertising (push approach).Therefore they will receive messages during their ride. Mostly they get value-added information e.g. on events, special activities, opening hours of museums, timetables, delays, city-activities etc.Example: When the public transport system passes an electronics store, on the display of the high resolution screen special offers and saving of the store are displayed. At the next exit you have the chance to get out of the public transport system and go directly to the store to check the service/product and buy it directly.

Yes Can be looked at as a revenue model for the city through advertising for tourist spots, museums etc.

Table 5 – Use Cases for Transportation

9.2 Vertical: HealthCriteria for a use-case’s inclusion in Smart City domain:

1. Use-case is related to ambulance services, elderly care, community city centres, unique patient identification through Adhaar card

2. For hospital-specific use-cases, only the government/municipal hospitals are considered to be under the purview of smart city (Private players would automatically fall in line and follow the best practices)

Exclusions or Limitations:

1. Use cases related to smartness of private hospitals, or non-essential but good-to-have features like medical asset tracking are not considered under the purview of smart city use-case list.

S. No.

Use case name Use case objective Can be used directly in Smart Cities

Can be used in Smart Cities with slight modification

Remarks

1 UC_Health_RPM Remote Patient Monitoring (RPM) is a tele-health solution that enables monitoring of patients outside of conventional clinical settings (e.g. in the

Yes Ambulatory patient monitoring for patients

Page 33 of 65

730

735

740

Page 34: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

home). The patient has medical device on or close to his body which has sensors that capture the patient’s healthcare/ physiological data. This data is then transferred across networks with the help of transmitters and is monitored for any abnormality with the help of software or clinical and healthcare experts.

registered with govt. hospitals falls under smart city domain.

2 UC_Assisted_Living

Assisted Living application combines housing, support services and health care, as needed. It is designed for individuals who require assistance with everyday activities such as meals, medication management or assistance, bathing, dressing and transportation. Some residents may have memory disorders including Alzheimer's, or they may need help with mobility, incontinence or other challenges. Residents are assessed upon move in, or any time there is a change in condition. The assessment is used to develop an Individualized Service Plan.Following scenarios exist specific to Elderly care:i. Fall conditionii. Vital Signs monitoring iii. Routine check-up iv. Scheduler for Medicines reminderv. Activity monitoringvi. Home Dialysis

Yes

3 UC_Mobile_Care This use case deals with transportation of patients to hospitals.i. There are following types of Ambulance services Advance transport ambulance:

Contains special equipment Patient Transport Ambulance: Not

much medical equipment are thereii. Two-way communication is needed using UHF/VHF/ Cellular phonesThis is needed to provide information to hospital about the Patient condition and physical information. iii. Patient allergies need to be recorded and informed to the hospital. The medical equipment can be used which can be used for measurement of the physical data and informed to the hospitaliv. Video conference is also required for transferring medical information of the patientv. Online 12 Lead ECG which can be transmitted from moving Ambulance. ECG with DICOM compatibility is useful.

Yes At present, India has over 18 different models of transportation for emergency, pregnant women, children and other categories of patients, which are broadly categorized as:

a. State-wide models. This is the “108 Emergency Transport Facility”, where the ambulance comes with equipment and trained staff to manage emergencies during transit.

b. Decentralized

Page 34 of 65

Page 35: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

district or block-level public-private partnership (PPP) models. Here, the District Health Society (under the Govt. Department of Health) manages these services. The fleet includes government and contracted private vehicles.

c. Decentralized community-based models. These are managed by community-based organizations and there is significant involvement of communities and private vehicle owners. Typically, these vehicles are not tracked in real time by any government body.

4 UC_Asset_Tracking

Asset Tracking and Device Tracking is important aspect in the health sector where the entire health care instrument needs to be tracked in hospital. RFID, Real time location based services (RTLS) and NFC technology can play an important role in the asset tracking inside the hospital. All the hospital equipment / instruments can have a NFC passive Tag embedded with unique id of the instrument. All the entrance/exit should have NFC transceiver which would record the movement of the medical instrument/equipment and update in the database on the hospital management system.

Over the past decade, there is deployment of hundreds of RFID and RTLS applications, tracking assets as diverse as medical supplies, aircraft subassemblies, agricultural seeds, tissue samples,

Yes For municipal/govt. hospitals, it comes under smart city purview.

Page 35 of 65

Page 36: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

reusable transport items, controlled pharmaceuticals, industrial machinery, lab equipment and storage trailers. In Healthcare, different kinds of organizations use asset tracking for different purposes. Hospitals and clinics may track medical equipment and consumables. Medical facilities may need to pay extra attention to the location of small, highly mobile supplies and equipment stored on their trucks. Medical laboratories need to automate medical specimen tracking, while medical device and pharmaceutical firms have asset tracking processes similar to other complex manufacturers.

5 UC_Patient_Identification

The Patient Identification is needed for correct logging of the data in the servers and systemsThese can be following typesi. Aadhar number: India this number is unique number provided by UIADI (Unique Identification Authority of India). Each citizen has a unique number. ii. Biometric type: User uses the thumb impression as login in the system. The It can be linked to Aadhar system in India for validation and getting the user detailsiii. RFID: Near Field communication tag unique to the user can be issued. It will contain a unique ID for the user and when this tag is put on the authentication device, a unique number is used to get the Patient identity etc. This can be good for Primary health care systemiv. Iris Type: The eye scan can be used as unique identity. However, the technology still needs to be deployed on mass-scale v. Mobile Phone number: Users phone number can be used as unique ID. Though the Mobile phone penetration in the population is high the challenge is that all people do not have the mobile vi. Smart-Cards: Smart cards can be used for the unique ID. These can be ISO7816 compatible. The health-system must have the smart-card reader input.

Yes Initiatives like Smart cards linked to Adhaar number for each citizen come under smart city purview.

6 UC_Video_Conferencing

The video conferencing solution, would bridge the healthcare practitioners and the patients, across geographies, to make basic healthcare services available. It could assist in monitoring with recently discharged or recovering patients, preliminary consultation with patients in locations where in-person appointments with a specialist may not be easily available, among many other possible

Yes For municipal/govt. hospitals and community centres, it comes under smart city purview.

Page 36 of 65

Page 37: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

benefits.7 UC_Tele-

MedicineThe Tele-health Counselling System is used as a Tele-health consultation service, that provides a communication service by video phone between citizens (e.g. elderly people) in rural areas and health professionals (e.g. medical doctors) in urban areas, and includes e-health device (e.g. blood pressure monitor, weight scale and pedometer) to be used by citizens at home or local community centre, and an easy service to upload their data. The purpose of the Tele-health Counselling System is to provide counselling to patients remotely using video phone and easy data uploads from e-health device.

Yes For municipal/govt. hospitals and community centres, it comes under smart city purview.

8 Rural Health This deals with enabling outreach to the rural population through ASHA and AWW workers by supporting them through standardized patient interview kits, audio training packs and remote telephonic support.

Medical services organizations can create a custom questionnaire containing multiple-choice-questions, quantitative input questions, and qualitative audio recordings, that can be broadcast to different contact groups. For example: a network of ASHA workers (community health workers) can be sent a survey to capture self- reported data on the number of visits they did; similarly, AWWs (Aanganwadi Workers) can be sent a survey to get data on the number of children that were fed, the menu that was served, and if they are running out of ration supply and need to alert the district authorities. Audio packs with a series of tutorial messages can be created, which can be played out over a phone call to a desired contact group. For example, ASHAs or AWWs, could be sent messages on best practices to follow during ante-natal care, danger signs to look out for, and ensure that they take expectant mothers for institutional delivery. The users can also ask questions, which can be answered by experts. Thus, if ASHAs or AWWs have any questions or concerns, they can record their message which can be answered by experts live or through recordings over the phone.

Yes For municipal/govt. hospitals and community centres, it comes under smart city purview.

9 Smart Gadgets This includes wearable health monitoring devices that could save your life.

Yes

Page 37 of 65

Page 38: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Some devices allow care givers to constantly monitor patient's medical conditions, so that doctor can be notified immediately on detection of any abnormality and thus avoid development of complications. Other devices can detect whether an elderly patient has taken a fall, or remind patients it's time to take their medications. Still other wearables allow consumers to keep tabs on their own health and fitness, helping them lose weight or sleep better. Wearable devices provide output and connect to the Web in various ways. Some enable wearers to monitor their own readings using a mobile phone and a special website. Others allow data to be downloaded and viewed by third parties such as healthcare managers, or clinicians who are watching for disturbing trends that merit medical intervention. Some devices simply encourage wearers to share their fitness progress with work-out buddies and friends via social media sites.

10 Remote Surgery Remote surgery or tele-surgery is performance of surgical procedures where the surgeon is not physically in the same location as the patient, using a robotic tele-operator system controlled by the surgeon. The remote operator may give tactile feedback to the user. Remote surgery combines elements of robotics and high-speed data connections. A critical limiting factor is the speed, latency and reliability of the communication system between the surgeon and the patient, though trans-Atlantic surgeries have been demonstrated.

Yes

11 Remote Drug Delivery

It is an easy way to provide drugs/medicines to animals and monitor compliance for people far off from healthcare facilities.

Yes

12 Remote Equipment Management

Majority of medical equipments are capital intensive and a remote equipment management can help in preventive measures to reduce the failure of medical equipments. A simple example can be

Page 38 of 65

Page 39: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

seen from “Silent Observer” which sends SMS status to headquarter with respect to the machine on/off/storage statistics etc. Such a system may come handy for medical imaging and ICU related equipments as most hospitals have only limited number of such equipments due to their costs. A more comprehensive diagnostics and remote terminal system for firmware upgrade/bug fixing can cut down on the costs of visits and ensure a timely and cost effective service delivery through Remote Equipment Management.

13 Hospital Information Management System

It addresses the automation needs of all departments of a hospital covering the administrative, clinical back office and peripheral activities. The various components envisaged under a typical HIMS architecture are as follows:

a. Mobile Registration processb. Mobile Admissionc. Patient Transferd. Ambulance Managemente. Patient consultation with resident

doctorsf. Operation theatreg. Blood bank, Stores and Purchases

Inventory Managementh. Billing and Cash Counteri. Payroll

14 Laboratory Information System

A laboratory information system (LIS) is a series of computer programs that process, store and manage data from all stages of medical processes and tests. Physicians and lab technicians use laboratory information systems to supervise many varieties of inpatient and outpatient medical testing, including hematology, chemistry, immunology and microbiology.

Yes

Table 6 - Use Cases for Health

9.3 Vertical: Pollution ControlCriteria for a use-case’s inclusion in Smart City domain:

1. Use-cases related to pollution control, waste disposal and management, monitoring the quality of essentials like air, water, food etc. are considered as smart city use-cases

Page 39 of 65

745

Page 40: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Exclusions or Limitations:

1. Use cases related to pesticide use in agricultural and farm-lands are not considered under smart city

S. No.

Use case name Use case objective Can be used directly in Smart Cities

Can be used in Smart Cities with slight modification

Remarks

1 UC_Automotive Vehicle Pollution Under Control

To control the pollution done by Vehicles, Indian Govt has recently mandated that the fuel to a vehicle will only be provided on producing valid PUC certificate. It is possible to enable the complete process of validation electronically, to ensure the mandate is easily adhered to. Vehicle Pollution checking test records will be uploaded online to a centralized Pollution monitoring server along with scanned vehicle details. The Central system will generate a PUC report online, that can be downloaded by the vehicle owner and more importantly, can be accessed by fuel dispensing owners, traffic police etc. Fuel pump owner will be able to check if vehicle has valid PUC, online from the Centralised server, on submitting vehicle details that are scanned from vehicle RFID tag. RFID tags on vehicle with a facility to upload the details of the vehicle condition on cloud.

Yes

2 UC_Urban Garbage Disposal Management

Objective of this use case is to monitor waste collection and disposal electronically in urban areas. Waste collection vehicle is fitted with a GPS tracking device to monitor its location and movement. Waste bins are fitted with RFID tags that can be used to electronically handshake with the waste collection vehicle. Waste Bins will have sensors to monitor its capacity and the ability to provide alert notification when it is full. This will help Garbage collection vehicle to approach the bin to collect waste immediately.

Yes

3 UC_Water quality monitoring

Water quality monitoring will be a system to ensure that the water is not contaminated from the source to the destination. The water reservoir can have sensors to detect the quality of water; there can be sensors to monitor the water

Yes

Page 40 of 65

Page 41: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

quality at the intermediate distribution centres. Portable sensors will be used in household and societies to ensure that the water is of good consumable quality.

4 UC_Factory Waste monitoring

Monitoring of air water and solid wastes generated by the factories. And penalize them on real time to ensure they are not polluting the environment.

Yes

5 UC_Remote Pollution monitoring in Public Areas

This use case envisages a network of online sensors, which capture the pollution parameters of the City. The sensors can be static and also mounted on public vehicles fitted with GIS/GPS system (in order to mark the location and time of sampling of pollution data). The sensor network can capture the parameters related to within the city for monitoring air, water, soil pollution and also radioactive waves. A Central monitoring centre acquires sensor data online and disseminates the same to relevant stakeholders and public. Pollution heat maps created from this online data can be useful for policy makers and controlling authorities to work out remedial actions.

Yes

6 UC_River Health Monitoring

Health of rivers and other water bodies can be monitored in real time using static sensor networks on banks of river and floating sensors which collect data with the location and time stamp and dump this data to the central monitoring centre whenever they obtain connectivity.

Yes Initiatives like Ganga cleaning to clean/ maintain the city-specific rivers/other infrastructure/resources are considered to be a part of smart city activities.

7 UC_Methane GAS monitoring in drainage

Loss to human life occurs due to methane gas in mines and drainages. A portable device which can check the methane presence before a human enters to complete the operational activity.

Yes

Table 7 - Use Cases for Pollution Control

9.4 Vertical: Smart HomeCriteria for a use-case’s inclusion in Smart City domain:

1. Use-cases related to safety and security of home/office/in-building premises are considered as smart city use-cases

2. Use-cases related to efficient utilization of utilities like power, water, gas etc. are considered as smart city use-cases

Page 41 of 65

750

755

Page 42: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Exclusions/Limitations:

1. Use cases related to good-to-have, but non-essential smart home features like mood-sensing lights, automatic HVAC, mobile control of equipment etc. are not considered a part of smart city use-cases.

S. No.

Use case name Use case objective Can be used directly in Smart Cities

Can be used in Smart Cities with slight modification

Remarks

1 UC_SmartHome_Safety_PanicAlarm

Single touch panic alarm to alert monitoring station and family members during medical, fire or any other emergency situation . Early detection of fire using smoke detectors to ensure timely response.

Yes

2 UC_SmartPremise_Safety_GasLeakageDetection

Detection of hazardous LPG/CO (Carbon monoxide) gas leakage

Yes

3 UC_SmartPremise_Automation_WaterPumpManagement

On/off control of water pump based on the water levels in OH/UG tanks. The system allows monitoring the water levels in the overhead tank as well as the underground sump. Base on the program/logic the pump motor is started or stopped.

Yes In the interest of promoting effective water usage in the city

4 UC_SmartPremise_EnergyManagement_Total Power Consumption

The customer is presented with information about the global energy consumption of his/her house. The Smart Meter provides a sub-set of its data, included instant power. Data are dispatched either periodically, or upon request. The Smart Meter provides its data to the HAN either directly, using its own interface, or through a meter service module [The meter records its measurements in the form of index (one per tariff period type) or load curves. Some smart meter also has a switching device to limit the power output in conformance with the contracted subscribed power. It is also equipped with a HAN interface for delivering information (index, tariff period, etc.) to devices in the HAN. ] This information may be directly received, treated, stored and displayed on a dedicated display, either in kWh or in €. It may also be collected by a Home Gateway, who hosts a Web application that collects data from HAN (Home Area Network) devices and organizes them for a user-friendly presentation.

Yes In the interest of promoting effective power usage in the city

5 C_SmartPRemise_CCI_Monitoring ,Alerts &

1. Central monitoring station for 24*7 alarm monitoring and verification 2. Programmable Notifications of events

Yes Inter-linking of these alarms/notifica

Page 42 of 65

Page 43: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Notifications (like their children coming home from school) via text message, e-mail, instant message on multiple cell-phones & email accounts as registered3. Co-ordinated third party emergency response - Medical, Fire, Police4. In case an alarm goes off, an alert to authorities with message to user cell phone5. Wrong passcode alert6. Duress alert7. Pet alert8. Device health update alerts like low battery, tamper, fault, etc.

tions with services like police, fire, ambulance is under the purview of smart city.

6 Smart LPG Distribution System (SLDS)

India has a discrete LPG gas distribution system, customer need to book a cylinder at least 7 days before the actual requirement. Every household entitled to hold only one connection with a maximum 12 cylinders at subsidised rates. Up to 35% of India’s LP Gas has to be imported, so subsidies constitute a huge drain on national resources which is affecting the CAD.Problem Statement:These subsidised cylinders which are to be used for domestic purposes are being used for commercial illegal consumption in auto gas, manufacturing and hospitality industries. Solution:The smart LPG system designed to address this problem will reduce illegal use of LPG cylinder and help government reduce fiscal deficit. This system will address the following areas: Track illegal usage of domestic

cylinders Smart Gas Leakage Alert System Fuel Gauge Monitoring

Yes In the interest of promoting gas usage in the city.Also, linking the LPG distribution with Adhaar number, comes under smart city purview.

Table 8 - Use Cases for a Smart Home

9.5 Vertical: Remote Access Management (RAM)Criteria for a use-case’s inclusion in Smart City domain:

1. Use-cases related to management of public assets like street-lights, garbage bins, digital signage boards etc. are considered as smart city use-cases

2. Use-cases related to notifications, alerts, data management, insights and reports on city dashboards are considered as smart city use-cases

Exclusions or Limitations:

1. Use cases related to private companies/individuals assets like BTS sites, ATM sites, various sensors etc. are not considered a part of smart city use-cases.

Page 43 of 65

760

765

Page 44: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

S. No.

Use case name Use case objective Can be used directly in Smart Cities

Can be used in Smart Cities with slight modification

Remarks

1 UC_RAM_Cell Tower

The power consumption of assets, energy source utilization, battery health, cooling parameters & asset health are the typical parameters remotely monitored at a cellular base station site. The objective is to ensure high site uptime & maintain conducive environment for BTS & transmission equipment operation while keeping track of energy utilization. For security/theft concerns accurate reporting is more important than immediate preventive action.

Yes

2 UC_RAM_ATM Site

Security is the primary requirement & real –time detection of any theft attempt with actionable insights is critical. Multi-layer detection system based on sensors & CCTV is required, with capability for instant feed retrieval from remote server.

Yes

3 UC_RAM_Logistics fleet management

Consider the case of Refrigerated trucks used for this use case. Other use cases have requirements which are generally a subset of Refrigerated truck fleet requirements. Location tracking, temperature monitoring for different chambers, door open alarm, goods in/out tracking, alerts on route deviation & unexpected delays, energy/fuel monitoring are typical requirements.

Yes

4 UC_RAM_Data center

Monitor temperature, energy consumption & health of equipment.

Yes

5 UC_RAM_Carriers (Railway, Bus, taxi)

Location tracking, secure communication link, Message transfer

Yes

6 UC_RAM_Power Grid Sites

Monitor health and operating parameters Yes

7 UC_RAM_Industrial Equipment (Chiller, Pumps etc.)

Remote management of distributed industrial equipment such Chillers, Pumps, Compressors, Generators, Wind Turbines etc. includes centralized monitoring of operational performance on the field,

Yes

Page 44 of 65

Page 45: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

remote diagnostics and tracking of mobile assets. Remote diagnostics and tracking of the asset (its visibility, availability, and health can be covered in RAM horizontal). Asset connectivity monitoring is also part of RAM (note – not all assets are required to be online all the time). These features are currently considered as part of the specific Industrial Automation solution. This improves asset visibility, availability and utilization thus resulting in reduced operational costs.

8 UC_RAM_Oil/Gas Pipelines

Oil/gas pipelines transmit crude oil/natural gas from point of production to processing facilities and subsequently to point of end use. They are high risk, high value assets in remote locations running into thousands of kilometres and hence require continuous monitoring to detect leaks, tampering, potential damage due to encroachment or environmental factors like floods etc. Near real-time visibility enables the oil/gas companies to respond to any abnormalities quickly to prevent any further damage to the pipeline or to the environment. This application comes under Pipeline SCADA segment. Remote Asset Monitoring and Management (visibility, availability and health of the assets is an inherent part of the SCADA solution).

Yes

9 UC_RAM_Storage Tanks

Remote tanks are deployed in various industries to store liquids, solids or gases. Remote tank monitoring helps in better inventory management, immediate actionable information in case of abnormalities and optimal re-filling trips resulting in reduced operational costs.

Yes

10 UC_RAM_Home Appliances/Equipment

Remote status monitoring of home appliances; Remote control of appliances (start/stop); Remote scheduling of appliances to start/stop at a certain time; Energy consumption insights for the applications.

Yes

11 UC_RAM_Healthcare equipment

Monitor health Yes

Page 45 of 65

Page 46: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

12 UC_RAM_Elevators

Remote monitoring enables automated collection of elevator performance and usage data to detect any issue quickly. The trends allow better visibility of degradation of performance, if any and identify any potential issue to readjust the equipment maintenance cycle. This results in improved uptime of the elevators.

Yes

13 UC_RAM_Digital Signage Management

Digital signage management as an asset (registration, location, health management).Digital signage content management - remote content upgrade. Content can have a static element and some real-time dynamic data.

Yes

14 UC_RAM_Forests/protected environment

Remote monitoring of forests could help in early detection of forest fires which thus can be quickly brought under control. It also enables prevention/detection of cutting of high value trees and movement of animals in the forest environment.

Yes

15 UC_RAM_Street Lights

Street lights should come on based on illumination levels. Street light health monitoring to detect faulty lights.Street lights on lonely stretches should come on when a vehicle is approaching.Street lights powered by solar panels should be monitored for charge status.Street light poles can be used to mount environment monitoring sensors (for pollution and noise level monitoring).Street light infrastructure can be used to mount other utilities like communication cables, TV cables etc.

Yes

16 UC_RAM_High value structures e.g. bridges

Critical and remote infrastructural assets like bridges have to comply to rigid safety demands. These structures may have to bear harsh environmental and operational conditions throughout their expected life which is ever increasing. This calls for continuous monitoring of the structures for cracks, movements, vibration etc. which might indicate a potential problem. Remote monitoring enables remote gathering and analysis of this data which reduces overall cost of inspection, maintenance and repair.

Yes

17 UC_RAM_Sensors

Commonly used sensors in remote asset management applications are: temperature sensor, humidity sensor, smoke sensor, air flow sensor, water sensor, power sensor, door sensor, fuel level sensor – all these need to be

Yes

Page 46 of 65

Page 47: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

managed remotely.

18 UC_RAM_Alarm/Event notification

Ability for a user to define rules against which the asset data may be continuously validated to flag any alarms or events. The validation can happen on real-time or historic data. The rules could be defined in the RAM application or on the edge close to the asset e.g. on the gateway. The rules could be to detect a threshold being exceeded to take an appropriate action or it could be some action based on changing state of an asset. Multiple parameters may be correlated to come up with an actionable event. Alarm/event notification could be done using SMS or email etc.

Yes Notifications to city command and control centre come under the purview of smart city

19 UC_RAM_Registration & Authentication

Detect or acknowledge presence of a new asset in the field. This asset may be configured in the system and is therefore a "Valid" asset or it maybe a "new" asset that is still to be configured OR a "Strange" asset that is not meant to be configured in the system.

Yes

20 UC_RAM_Asset Location Management

Asset geographical time based tracking: Asset proximity sensing - detected

through RFID locator or NFC/ bluetooth.

Some assets are stationary like meters, cell towers, ATMs. but some assets are mobile - like hand-held-units/meter reading instruments etc. therefore location monitoring has a time element.

Asset proximity locator - Previously geotagged devices should pop up when they are within communication range. Example- Walkby meter reader where the meter reading instrument carried by the meter reader is able to detect meters in the vicinity over bluetooth/WiFi and then perform remote meter reading. Another example - radio cabs locator.

Asset geo-fencing: Monitor location of asset and raise alert in case it crosses a predefined geofenced area. Example - pet animals straying out of designated "Safe" areas.

Yes

Page 47 of 65

Page 48: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

21 UC_RAM_Asset Presence Check & Health Diagnostics

Monitor the asset (example - loading condition of a distribution transformer, Monitor "health" of the Asset - example its power supply/battery status, communication signal quality etc. Diagnostic monitoring of asset - example: if an asset is not communicating, perform remote troubleshooting of the asset.

22 UC_RAM_Data Accumulation

Various types of data can be captured from the asset as follows -Asset location data – especially for mobile assets to track their location;Asset usage data – the period for which asset has been used;Asset status/operating data – for monitoring of health and performance of an asset;Asset environment data – monitor environment data like temperature, humidity etc. around the asset. This is important for some assets e.g. perishable assets like dairy products for which maintaining a proper ambient temperature during storage and transit is of utmost important.

Yes

23 UC_RAM_Aggregation & Transmission

Transmission of the collected/aggregated data to a remote centralized location for analytics and visualization.The data could be sent by an asset directly to the RAM application or aggregated for a number of assets by a gateway and then sent to RAM application.

Yes

24 UC_RAM_Analytics & Insights

Operational Analytics: Static information about assets e.g.

asset ID, asset type, owner etc. Trends – Time series trends of the

operating parameters of the asset. Detect patterns and anomalies.

Key performance indicators – Monitor current asset performance e.g. Overall Equipment Effectiveness, Energy consumption etc.

Predictive Analytics: Optimization – Compute optimal

decision based on the sensor data and the defined system constraints. For example, predicting optimal route

Yes Insights about city services comes under smart city

Page 48 of 65

Page 49: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

for vehicles in a fleet , optimal route maintenance personal to reach a remote asset, optimal maintenance schedule for a fleet instead of unit-based maintenance to reduce overall operational costs

Condition based maintenance/ predictive maintenance – use of operational data to predict failures and schedule maintenance accordingly. Also, predict remaining useful lifetimes (RUL) of equipment

Recommendations – context aware recommendations. E.g. promotions/offers on digital kiosks based on user browsing, context aware promotions/information on products etc.

25 UC_RAM_Remote Device Management

Remote over the air firmware upgrades of the asset; Remote configuration of the equipment e.g. sampling interval, threshold etc.; Bulk provisioning and configuration; Remote SIM management if an interface is provided to CSPs SIM management platform e.g. SIM activation/deactivation, SIM data usage information etc.; Remote diagnosis

Yes

26 UC_RAM_Reports and Dashboards

Yes City management dashboards comes under smart city purview

27 UC_RAM_Intergation with Enterprise Systems

The sensor data and related analytics results from the asset may need to be transferred from the RAM to other Enterprise IT systems to trigger business workflows.

Ticketing systems – Alerts from RAM could trigger automated generation of trouble tickets in a ticketing system

Spare parts Inventory – Predictive maintenance information could be fed to inventory system to ensure availability of spare parts on time

Product Engineering IT systems – Asset usage information data may be integrated with product engineering

Yes

Page 49 of 65

Page 50: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

systems to give an insight on how the asset features are being used by end users. This may provide inputs in deciding asset roadmap.

28 UC_RAM_Security

User authentication –through a login and password validated against a user database stored in the RAM application or interfacing with an external Identity management system

Role based access control – Ensure that access to the asset data and operations on the asset/data will be based on the authority and the responsibility pre-defined for a role which is assigned to a user e.g. Only Administrator role can configure the assets or regional offices can only view assets operating within their region.

Data Integrity and Confidentiality – Protect data at rest and data-in-transit. The data stored on the asset could be encrypted if required.

Strong encryption mechanisms between communicating systems to ensure a secure data transfer.

Support for secure connectivity with assets which could be behind firewall

Audit trail – Maintained for user actions for traceability

Yes

Table 9 - Use Cases for Remote Asset Management

9.6 Vertical: Public SafetyCriteria for a use-case’s inclusion in Smart City domain:

1. All Use-cases related to public safety form a part of smart city use-case list

S. No.

Use case name Use case objective Can be used directly in Smart Cities

Can be used in Smart Cities with slight modification

Remarks

1 City Surveillance Countering challenges faced by urban cities like increasing crime rate, terrorist attacks and situation of unrests. There is a strong need to monitor our cities and ensure the satiation is efficiently controlled without causing damage. This can be achieved with use of: • Video surveillance through IP camera network, fixed as well as mobile.

Yes

Page 50 of 65

770

Page 51: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

• Video analytics to detect malicious activities, • Automatic number plate recognition• Facial recognition system• Command and Control Centres for monitoring and management

2 Women safety Yes

3 Water level Monitoring of rivers and DAMs

Sensor network which can detect the level of water reservoirs and take automatic action like raising alarm diverting the water or opening of closing gates of the dam

Yes

4 Controlling Deforestation

Deforestation is a major concern globally as well as in India. Major reasons of deforestation are cutting trees and fire. Sensor network can identify the cutting of trees in an areas using accelerometer and also predict the forest fire using gas sensing, sensing of environment parameters and monitoring through video.

Yes

5 Landslide prediction

Landslides occur during monsoons in India, causing great loss of life and property. Landslide prediction using sensor network can reduce the damage to a great extent.

Yes

6 Smart infra Smart bridge system regularly monitors the bridge and provides real time information regarding health of bridge to the central monitoring system helping the authority to take the corrective measures before the deterioration increases which might led to the high restoration or maintenance costs or bridge collapse. Smart bridges also alert vehicles approaching the bridges of overloading of the bridge and also of the potential collision with the underside of the bridge preventing collisions and damage to both vehicle and bridge.

Yes

Table 10 - Use Cases for Public Safety

9.7 Vertical: Utilities

Criteria for a use-case’s inclusion in Smart City domain:

1. Use-cases related to provision and metering of basic utilities including power, water, gas are considered as smart city use-cases

Exclusions or Limitations:

Page 51 of 65

775

780

Page 52: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

1. Use cases related to asset management and smarter operations of individual utility service providers are not considered as smart city use-cases.

S. No.

Use case name Use case objective Can be used directly in Smart Cities

Can be used in Smart Cities with slight modification

Remarks

1 UC_Utilities_Advanced Metering Infrastructure (AMI)

Advanced Metering infrastructure is a bidirectional communication system between meters installed at customer premises and a “head-end” system installed at utility end. Electricity, Water and Gas utility service providers install meters at consumption point to measure the quantity and quality of the “utility” supplied to the consumer. An Advanced Metering Infrastructure helps the service providers to acquire readings from these meters remotely and automatically at regular predefined intervals and on demand. Apart from shortening the revenue meter reading cycle, this infrastructure also helps utility in monitoring the reliability and quality of supply to each of its consumers. Thus, AMI helps to avoid meter related field trips by utility representative.

Utility can remotely control supply to the consumer premise by sending connect/disconnect commands to the meter. Load Control for Demand Response programs can also be effected through AMI. It can also configure the meters to set their parameters (like contractual threshold for prepayment metering) and update their firmware.

Yes

2 UC_Utilities_Automated Meter Reading (AMR)

Power Utilities have been doing revenue meter reading of users through the mechanism of Automated Meter Reading using walk-by or drive-by methodology: a meter reader walks through a locality carrying a Meter Reading Instrument (MRI). This MRI is able to "connect" with meters in the neighbour-hood over wireless and acquire meter readings. The readings are uploaded to a Head end

Page 52 of 65

Page 53: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

System (HES) as and when backhaul connectivity is available (over an internet connection). HES can give remote route navigation support to the meter reader.

In some cases, the meter reading Instrument can be configured to calculate revenue bill of the user (by pre-loading the user’s tariff rate and revenue history in the instrument). Here, the Meter reader can deliver the bill to the user on the spot, after reading the meter. This is known as Spot Billing. The bills generated by the MRI are uploaded into the utility revenue system later or online for synchronization in the Revenue Management System. Such techniques are very popular in areas that are difficult to reach, as it helps avoid dual visit to the customer premise for delivering bills.

This technique is increasingly being used widely in water and gas revenue metering projects.

3 UC_Utilities_AMI Network Management System (NMS)

AMI requires reliable network connectivity from each meter to the head-end application through the interim gateway/Data Concentrator/Aggregator i.e in the WAN and FAN/NAN segments. A Network Management system helps manage the AMI network by configuring, monitoring, and supporting detection and restoration of connectivity of devices. Many of the functionalities of such systems that are candidates for an M2M platform common services layer are: Configuration, Monitoring, Device connectivity monitoring and Recovery.

Yes

4 UC_Utilities_Distribution Transformer Monitoring

Distribution transformers are the “power gateway” to downstream Low Tension (LT) residential, commercial and agricultural consumers in the predominantly radial distribution systems in India. The intent behind this is to enable remote monitoring of DTs through an AMR system, to identify incipient faults in the DT. A few utilities have implemented remote operation of the DT LT supply to

Yes

Page 53 of 65

Page 54: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

disconnect when the DT is overloaded in order to save it. Here, DT meters are provided with an AMR modem that helps the utility to obtain DT consumption parameter details at a daily frequency. It also gets automated notification alerts in case of supply outage at the DT end.

5 UC_Utilities_Ring Main Utilities (RMU) & Fault Passage Indicator (FPI)

Fault Passage Indicators (FPI) and Ring Main Unit (RMU) devices are being installed on key sub-transmission Network nodes (66kV to 11kV) to improve reliability of the system. Utility can monitor the health of the network at these nodes through remote monitoring of these devices over a SCADA system. These devices can autonomously isolate faults in their section, thus enabling recovery of the remaining system. Alerts sent by these to the control centre, help the maintenance staff to identify the location of the faulty sections immediately and thus reduce the time to detect and locate faulty sections.

Yes

6 Supervisory Control & Data Acquisition (SCADA)

Supervisory Control & Data Acquisition (SCADA) system gathers and displays information from a wide geographical area and permits control of selected elements. Complex systems like road or rail traffic; power, water or gas grids cannot be managed locally. These systems need an overarching monitoring system that has the capability of detecting critical conditions and notifying them to the Operator for their immediate attention and remedial action. The operators in turn may need to control the network remotely in order to respond to such critical situations example – prevent traffic jams or collisions, clearing overloaded power lines in a network, identify gas leakages etc.SCADA systems are the fundamental infrastructure layer in Power systems on which applications like Energy Management Systems (EMS), Distribution Management Systems (DMS), Distribution Automation (DAS), Substation Automation (SSA) are built.Key SCADA system functionalities comprise of continuous data acquisition from RTUs, event notification on its detection at RTU end and remote control of actuators through the RTUs. Sensors and actuators are connected to the RTUs over instrumentation wires. RTU to FEP

yes

Page 54 of 65

Page 55: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

communication links are required to be with deterministic low latency and can be redundant/fault tolerant depending upon the criticality of the application. SCADA systems may have a FEP system at a Primary Data Centre and may have another FEP system at a Disaster Recovery Centre.

7 UC_Utilities_Prepayment metering

Many power utilities are encouraging prepaid mode of electricity purchase for their consumers, as this helps to reduce efforts for collecting payment at their end. Consumers are adopting prepaid mode in order to help them “budget” for its usage. Landlords prefer prepaid mode of payments, to save them the bother of recovering payments from their tenant consumers.Smart Grids of the future will have smart meters that support both prepayment mode as well as credit mode of electricity consumption, from which consumer can select any mode at will. In the conventional credit mode of payment, utility supplies electricity to the consumer on “credit” basis and raises a bill for consumption made in the past, as measured by electricity meter installed at the consumption premise. This scenario applies to water and piped gas supply also and for Guest houses.

Yes

8 UC_Utilities_City Gas distribution

Cities, especially metros are increasingly going in for supply of natural gas through piped gas distribution systems. A gas distribution agency supplies natural gas to consumers through a pipeline network. The gas pipeline network is expected to come with a SCADA/telemetry system to monitor and control the supply pressure at various nodes in the distribution network and to ensure that there is no leakage in the gas flow. AMI meters, also known as smart meters, are designed to transmit pricing and energy information from the utility company to the consumer enabling a two way communication. The various solutions in the smart gas market are Meter Data Management (MDM), meter data analytics, Supervisory Control and Data Acquisition (SCADA), asset management for gas pipeline, Geographic Information System (GIS), leakage detection, and mobile workforce

Yes

Page 55 of 65

Page 56: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

management.

9 City Water Distribution

Water distribution in cities is undergoing renovation and modernization with water SCADA systems inbuilt into the newer systems. Here, SCADA system helps monitor the water flow and pressure at various nodes in the water distribution network as well as help in identifying leakages quickly. A few municipal bodies are in the process of implementing SCADA systems on their existing water and waste water networks, to monitor the flow and pressure characteristics for improving operational efficiencies and planning.

Several water supply boards/municipalities are piloting the concept of actual consumption based water supply billing as against a fixed charge practice prevalent currently. The idea behind this move is to accurately measure the consumption of water by consumers in order to monitor and plan for consumption trends, and also to monitor quality of supply (water pressure) at the consumption points. Metering is also expected to help conduct water audits, a crucial tool for identifying and plugging water leakages. Most bulk consumers of water are being provided with AMR ready/compliant water meters that can be read either through a GSM/GPRS based RAMR mode or through a walk-by AMR mode. AMR metering is being piloted for residential categories of consumers in a few municipalities. These are capable of being read through walk-by AMR. GPRS based RAMR systems for residential consumers with dedicated communication infrastructure does not make commercial sense.

10 UC_Electric Vehicles

As per the National Electric Mobility Mission Plan 2020, there is a potential for sale of 6-7 million xEV (Hybrid and Pure Electric) Vehicles in 2020 in India. Electric Two-wheelers have already gained popularity in the country. These vehicles contribute in saving precious fossil fuel and reduced pollution. However, they are a new class of consumer for the already burdened electric grids.

Yes

Page 56 of 65

Page 57: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

There are 4 types of EV charging:

1. V0G or Dumb Charging: Vehicle is plugged into the power socket and it gets charged like a regular load.

2. V1G or Smart Charging: Vehicle charging characteristics can be controlled from the grid side through an enabling AMI infrastructure via the Home Automation route. Here, the charging current can be controlled to suit the prevailing grid side network characteristics and therefore overburdening of the grid can be avoided.

3. V2G (Vehicle to Grid): Here energy stored in the EV batteries can be pumped back into the Grid for grid support. The EV here acts as a mobile Electric storage device i.e. Virtual Power Plant.

4. V2B (Vehicle to Building): Here, vehicle does not communicate with the Grid but only with the Building Automation System. Energy from vehicle is consumed within the Building and is not fed back into the grid.

A suitable public electric charging infrastructure with standard charging interfaces and billing and payment mechanism is required as a companion to encourage adoption of electric vehicles. This infrastructure will require a system for monitoring of charging behavior at the charging points, and a system to support pay-on the-go billing (Prepayment or credit charging) for the electric charging.

Currently, EVs charge status is monitored remotely by the EV service provider through a GPRS enabled M2M platform and alert notifications are provided on the vehicle dashboard when charge levels are approaching near empty. The EV service providers can also remotely enable release of a “reserve” charge in the vehicle when it is near empty levels at the request of the

Page 57 of 65

Page 58: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

driver.

There is a potential for M2M based solutions for searching for and indicating location of the nearest charging point on the vehicle dashboard, when the vehicle charge is nearing empty levels.

EV reverse charging the home or the grid (in the form of a local storage).

11 UC_Utilities_Microgrids

Electricity Micro grid that can be grid connected or off-grid. It comprises of local distributed generation (example solar/wind/biomass/micro-hydel/Diesel), local storage (battery) and a some local consumption premises. Meters are used to measure the generation and consumption. These can be prepayment or post-paid type; have load connect/disconnect switches to manage or restrict load consumption. Sensors and actuators are installed at the local Generation equipment and storage to manage them from a central control centre. These are getting popular in villages and townships.

Microgrids rely heavily on smart sensor based communicating systems for AMI based metering, dispatching of Distributed Energy Resources (DER) and Storage, and a Control Centre for managing the operations, stability and safety of the grid.

Smart Microgrids integrate various systems such as renewable energy generation, energy storage, Building Management System (BMS), the utility’s Distribution Management Systems (SCADA/DMS) etc. and facilitate active participation in the Demand Response and Ancillary Services markets, create enabling platform for roll out of Electric Vehicles (EV) and transition to Net Zero Energy Buildings (NZEB).

Yes

12 UC_Utilities_Distributed Generation

Small capacity Generation of electricity that can be consumed within the power distribution network locally is known as Distributed Generation. This includes Captive Power Generation from Diesel Generation power backup units, or from solar, wind, biomass, micro-hydel plants

Yes

Page 58 of 65

Page 59: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

that serve the load behind the meter. Small scale solar, wind, or other renewable power generation that can be integrated into the local grid at the distribution network level at community level also come under this category. Example – captive power plants in malls, shopping complexes, hospitals, campuses, industrial complexes, housing societies and townships etc.

Recently, as a result of JNNSM initiative and net metering policy announcements, retail level consumers are turning into prosumers by installing rooftop solar systems in their homes/buildings.

A renewable distributed generation system includes a SCADA system with sensors for monitoring the renewable source intensity (example - insolation or wind speed), voltage, current, power quality (harmonics) etc. This data is required at a central control centre for analysis to help improve the forecasting algorithms and renewable generator performance. An RAMR system with a meter at the power generation point for measuring the actual generation and a meter at the grid injection point to measure the net export/import of energy is also part of the overall distributed generation package.

Table 11 - Use Cases for Utilities

9.8 Vertical: Industrial Automation

Criteria for a use-case’s inclusion in Smart City domain:

1. Use-cases related to automation of industries within/near city geographies are considered as smart city use-cases

S. No.

Use case name Use case objective Can be used directly in Smart Cities

Can be used in Smart Cities with slight modification

Remarks

1 UC_Industrial Automation_Utilities

In the case of transmission and distribution elements of electrical utilities, Supervisory Control and Data Acquisition systems (SCADA) will monitor substations,

Yes

Page 59 of 65

785

Page 60: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

transformers, feeders, lines, capacitor banks, breakers, other switching equipment and other electrical assets. SCADA systems are typically used to control geographically dispersed assets that are often scattered over a wide area.

2 UC_Industrial Automation_Oil & Gas Pipeline

This use case addresses a cellular gateway to transport oil and gas pipeline data to a backend server, to remotely monitor, manage and control devices equipped in the pipeline (e.g. meters, valves, etc.).

Oil and gas companies can have meters are remote destinations that makes manual monitoring of the state of these meters as an expensive task to be pursued on a regular basis. Automated monitoring of oil and gas pipeline data can streamline the remote monitoring and management of these remote pipeline meters.

When a fault is monitored on specific link of the pipeline network, it is necessary to open or shut the pipeline valve to block the link or to provide detour route. Also, when there is a necessity to change the quantity of oil and gas in pipeline, the valves should be damped through remote control.

Yes

3 UC_Industrial Automation_Smart Buildings

Smart building is a M2M service that utilizes a collection of sensors, controllers, alerter, gateways deployed at the correct places in the building combined with applications and server resides on the Internet to enable the automatic management of the building with just limited human labour. Smart building system can greatly reduce the cost involved in managing the building like energy consumption, labour cost. With the smart building system, services like video monitor, light control, air-condition control and power supply can all be managed at the control centre. Some services can be triggered automatically to save the precious time in case of fire, intruder, gas leak etc.

Yes

4 UC_Industrial Automation_Aut

Automated yard management is an example of Wifi/Zigbee or such wireless

Yes

Page 60 of 65

Page 61: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

omated Yard Management

technologies for inventory management & placement of material in a yard. Several variation of automated yard management are available where M2M/IoT technology is used in varied context depending on the material in the yard, speed of material movement, inbound marking & QC of the material, material grade management depending on the production cycle or customer demand, and dispatch.

5 UC_Industrial Automation_Solar Power Generation

Since the installation base is spread over several miles, remote monitoring and alarm based maintenance & repair will have better ROIs and near-real time picture of the performance of their solar farms for increasing cost of operation, maintenance, and reducing yield due to performance degradation during the life cycle of plant equipment. The critical parts which need to be monitored and informed about are Weather monitoring such as solar

radiation etc. Throughput/efficiency or production Plant Condition (dust, rain etc.) Maintenance & repair as per need

Yes

6 UC_Industrial Automation_Remote Equipment Management

Geographical spread of install based of equipments is generally difficult to manage. For example, remote agriculture pump, submersible water pumps, utility substation, power banks, telco-tower sites or at times medical units or industrial/plant equipment (AC/Refrigerators etc.). They are generally installed where the resident population is less, no population area or in case of medical/consumer equipment technically less literate population. It is extremely important for such remote assets to be monitored from central monitoring units. Some of the cases also come into the possibility of remote monitoring as well as control, or complete remotely managed equipment. Some of the important aspects of remote equipment management are: Throughput/efficiency or production

level monitoring Condition Monitoring Maintenance & repair

Yes

7 UC_Industrial Automation_Robotic Arms

Used for uniform painting of an automobile/consumer good

Yes

Page 61 of 65

Page 62: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

8 UC_Industrial Automation_Liquid Flow Management

With regard to the chemical flow management in various industries for cleaning & enriching of various ores in mining; adding of chemicals in food items; bleaching; preservative addition etc.

Yes

9 UC_Industrial Automation_Production Management

Used for qualitative and quantitative measures of a production life cycle

Yes

Table 12 - Use Cases for Industrial Automation

Page 62 of 65

790

Page 63: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

10 Bibliography

http://www.govtech.com/data/The-Rise-of-the-Sensor-Based-City.html

http://www.w3.org/2013/Talks/smart-cities-dsr-mws-2013.pdf

India’s Urban Awakening: Building Inclusive Cities, sustaining Economic Growth. McKinsey Global Institute

http://en.wikipedia.org/wiki/Megacity

http://www.citigroup.com/citi/citiforcities/pdfs/hotspots2025.pdf

The Planning Commission, Approach to the 12th Plan, The Challenges of Urbanization in India

http://ogpl.gov.in/

https://data.gov.in/

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5772503

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5772503

https://www.niem.gov/

http://en.wikipedia.org/wiki/Common_Information_Model_(electricity) 

https://www.niem.gov/

http://www.hitachi.com/products/smartcity/smart-infrastructure/communication/index.html

Network Architecture based on Virtualized Networks for Smart Cities. A.D. Guerrero-Pérez, A. Huerta, F. González and D. López [http://smartcities.ieee.org/images/files/images/pdf/ngn_sdn_v3.1.0.pdf]

http://www.govtech.com/data/The-Rise-of-the-Sensor-Based-City.html

Balazinska M., Deshpande A., J. Franklin M., B. Gibbons P., Gray J., Nath S., Hansen M., Liebhold M., Szalay A., and Tao V.. Data Management in the worldwide sensor web [J]. IEEE Pervasive Computing, 2010, 6(2): 30–40. [Online]

Chanier F, Checchin P, Blanc C, et al. Map fusion based on a multi-map SLAM framework[C]//Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International Conference on. IEEE, 2008: 533-538. [Online]

Di L., Moe K., and Yu G.. Metadata requirements analysis for the emerging Sensor Web [J]. International Journal of Digital Earth, 2009, 2:3-17. [Online]

Page 63 of 65

795

800

805

810

815

820

Page 64: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Nam T, Pardo T A. Conceptualizing smart city with dimensions of technology, people, and institutions[C]//Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times. ACM, 2011: 282-291. [Online]

Nam T, Pardo T A. Smart city as urban innovation: Focusing on management, policy, and context[C]//Proceedings of the 5th International Conference on Theory and Practice of Electronic Governance. ACM, 2011: 185-194. [Online]

Nativi S, Mazzetti P, Geller G N. Environmental model access and interoperability: The GEO Model Web initiative [J]. Environmental Modelling & Software, 2013, 39: 214-228. [Online]

OGC 08-132. OpenGIS Event Pattern Markup Language (EML) [S] (Version 0.3.0). Wayland, MA, USA: Open Geospatial Consortium, 2008a. [Online]

OGC 08-133. OpenGIS Sensor Event Service Interface Specification[S] (proposed) (Version 0.3.0). Wayland, MA, USA: Open Geospatial Consortium, 2008b. [Online]

Toppeta D. The smart city vision: how innovation and ICT can build smart, “livable”, sustainable cities [J]. The Innovation Knowledge Foundation, 2010. [Online]

Vijay Kumar, Dr R.K.Pandit . Problems of Solid Waste Management in Indian Cities . International Journal of Scientific and Research Publications, Volume 3, Issue 3, March 2013

Page 64 of 65

825

830

835

Page 65: TSDSI - Overview of Smart Cities · Web viewThis Technical Report has been prepared as a contribution to the TSDSI Focus Group on Smart Cities under the aegis of M2M workgroup. Acknowledgements

Document history

Version Date Released by Change DescriptionRel 1.0 20150307 7th March,

2015Author: Bipin Pradeep Kumar, RJIL.

Contributors: Aastha Sayal, RJIL; Bindoo Srivastava, IIT Bombay; Hem Thukral, ISGF; Anuj Asokan, TTSL.

Release 1

Page 65 of 65

840