25
Turning agricultural waste into ecological and economic assets: ECOBIOCAP experience and NoAW ambition M. Majone 1 and N. Gontard 2 1 Department of Chemistry, University of Rome “La Sapienza”, Rome, 00185, Italy 2 INRA, Montpellier, F34060, France, EcoBioCAP and NoAW coordinator Presenting author email: [email protected]

Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Turning agricultural waste into ecological and economic assets: ECOBIOCAP experience and NoAW ambition

M. Majone1 and N. Gontard2

1Department of Chemistry, University of Rome “La Sapienza”, Rome, 00185, Italy

2 INRA, Montpellier, F34060, France, EcoBioCAP and NoAWcoordinator

Presenting author e‐mail: [email protected]

Page 2: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Where is the triggering point in the loop?Which is(are) main driver(s)? 

Which is(are) main constraint(s)?Either ‐ environmental

‐ regulatory‐ social‐ economical‐ technical

Are there any red‐flags?

A bio‐based technology and business network 

Food‐processing industry

wastetreatment Market

Farmer

Crops

Food

Cropby‐productsor waste

Industrial by‐productswaste andwastewater

Bio‐basedproducts

ConsumersOFMSW and urbanwastewater

Industry A

Industry C Industry Brenewablefeedstock

Bio‐based industry network 

Page 3: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

• Reducing food waste and losses• Controlling unwanted migrations from the 

packaging towards food• Reducing problems of packaging waste 

management• Limiting the use of non‐renewable resources 

& food resources to produce packaging• Recovering by‐products/waste from agro‐

industries

• Improving control of the structure/properties (mass transfer) relationships in agro/bio‐materials

• Fulfilling packaging functions, through customized bio‐composites

• Solving packaging negative issues (biodegradable packaging from renewable feedstock)

DRIVERS REQUIREMENTS

● Top‐down requirement‐driven approaches    ●Process and product innovation●Multi‐criteria Decision‐making tools                ●Extensive product testing  

taking into account the whole food/packaging system and implicating a consortium of researchers & the different stakeholders

3

Sustainable abd advanced packaging to reduce fresh food losses and wastes

Half of the fresh fruit and vegetable production is lost before consumptionMost of the losses during distribution/consumption, when packaging is involved

%O2

%CO2

Passive MAP

Selective pack

Page 4: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Freshproducedatabase

Packaging databasePackaging database

Virtual MAP simulation

Multi‐criteriaflexible querying

Ranked list of most relevantpackagings

Stakeholder preferencesand needs• Consumer preferences• Industrial constraints• Waste management 

policy• Cost, etc.

Development of a Decision Support System

Packaging selection needs multi‐criteria choices“I would like a packaging material made from renewable resources, but I want optimal gas permeabilites in order to guarantee the product quality, 

transparent if possible and with a cost for raw material less than 2 € / kg …”.

solution

Page 5: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Which was EcoBioCAP approach?

Aim: To provide the EU food industry with customizable,ecoefficient, biodegradable packaging solutions.

How this next‐generation packaging was developed?• Using advanced biocomposite structures based on bio‐based constituents (biopolyesters, fibres, proteins,polyphenolic compounds, bio‐adhesives and bio additivesetc.) which were derived from food industry by‐products (oil,dairy, cereals and beer)

• by applying innovative processing strategies to enablecustomisation of the packaging’s properties to fit the functional, cost, safety and environmental impactrequirementsof targeted fresh perishable products (fruits and vegetables,cheeses and ready to eat meals).

Demonstration activities with industrial partners (incl. SMEs)to check EcoBioCAP products towards their full exploitation.

16 partners

8 countries

4 years (2011‐2015)

Page 6: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Food lossreduction

Cheese Whey (CW)

Sugar Cane Molasses(SCM)

Oil Mill  wastewater (OMW)

multi‐criteriachoices

Wheat straw,( or  olive pomace, beer spent grains, bacterial cellulose)

multi‐criteriaevaluation

Page 7: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Polyhydroxyalkanoate(PHA)biopolymers Natural Microbial polyesters Widespread: ~75 genera, 300 species Mostly short‐chain length (scl)  

HB HV

C. necator containing PHA granules

Chanprateep J Biosci Bioeng, 2010

• Not a single polymer, but a family of copolymers

• Properties dependent on monomer composition and several other factors; thus  also largely  tunable 

• 3 times “Bio”1. Produced from renewable feestock2. Produced through biological 

process (most steps) 3. Easily biodegradable 

Pro’s• High cost: pure culture processes, 

which require substrate ad hoc formulaton, sterility, energy

• PHA market is mostly limited toomopolymer PHB or PHBV withvery low HV content– Limits in processability– Rigid and brittle– More restricted range of uses

Con’s

PHBV

Page 8: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

solution: PHA by using microbial mixed cultures (MMC) 

No need of sterile conditions in the process (less energy, simpler equipments)Ubiquitous, abundant and inexpensive inoculum (activated sludge, and no OGM)No need of well‐defined substrates (a wide range of waste feedstock)More tunable process (e.g. better adaptation to seasonal changes of feedstock)Easier to obtain the copolymer P(HB/HV) instead the omopolymer PHB, withbetter and wider properties

Still, lower productivity (less cell densityMore difficult extraction (less PHA content in the cells)

Concerns on possibly poorer characteristics and/or larger variability

Not well established yet (lack of pilot scale data)

Potential disadvantages

Potential advantages

Process productivity improvements

Increase of PHA content,Investigation of impurities effects

Long‐term experiments with true substrates, Improved process control, Extensive investigation of polymer properties, Modifications trough biocomposites, 

Preliminary scale up of PHA production process (≈ 2 kg PHA at different HV/HB ratios)

solutions

Page 9: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Pilot Scale Experimental Setup

Page 10: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Transforming constituents into bioplastic and biocomposites

‐Wide possibility to adjust composite properties through adjustment of processing parameters‐ Characterisation of packaging relevant properties

‐mechanical tests  ‐ permeation measurements

Processing pure PHBV and composites‐ injection moulding (trays)‐ flat film extrusion‐ blown film extrusion‐ Electrospinning (including adesives)

Compounding PHBV materials (either CW‐based Ecobiocap or commercial one):  with fibres, plasticizer, or other biopolymers

<10% impurities in  PHBV could be not detrimental

Page 11: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

FILLER = Wheat strawfibers

By‐productof wheatindustry

First reductionCutting milling

« coarse » powder

Intermediate reductionImpact milling« Fine » powder

Wheat straw fibers

• Poly(3‐hydroxybutyrate‐co‐3‐valerate)

• Bacterial biodegradable polyester• Tianan Enmat Y1000 (3 %HV)• Tg = 0‐5°C, Tm =160‐170°C

Around 5€/kg

BIO-COMPOSITEMATRIX = PHBV

Around 25 to 200€/tonμm

Up to 30wt%

Page 12: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Effect on transfer properties

• Increasing fiber content   Increased permeabilities

• Due to the hydrophilic nature of the wheat straw fibers + percolating pathway for the diffusion of gases

• PHBV/wheat straw fibers composites suitable to pack respiring food products (as lidfilms)

1,0E‐16

1,0E‐15

1,0E‐14

1,0E‐13

1,0E‐12

0 10 20 30

Gaz permeability

(mol/m

.s.Pa)

Fiber content (wt%)

Perm. CO2

Perm. O2

0,E+00

2,E‐12

4,E‐12

6,E‐12

8,E‐12

1,E‐11

0 10 20 30

WVP

(mol/m

.s.Pa)

Fiber content (wt%)

Water Vapour PermeabilityCO2 & O2 permeabilities

Page 13: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

PHBV

10

Mechanical properties

Present tensile properties vs. tray material requirements

• Stress at break : > 20 MPa

• Strain at break : > 5%

PHBV + 20% Wheat Straw Fibers (150µm)

Strain at break should be improved

Too low

OK for PHBV, limit for biocomposites

• Young’s Modulus : 0.3‐2 Gpa Ok

0

10

20

30

40

50

0 1 2 3 4 5

Stress (M

pa)

Strain (%)

Plasticization

PHBV at higherHV ratios: need to produce higheramounts

Page 14: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

•Inertness of PHBVs: PHBV materials suitable for food contact. Ethanol 95% (v/v) was the most severe food simulant, with a strong impact on their physical‐chemical stability (plasticizing effect). • Stability negatively affected by the addition of wheat straw fibres: Composites can be used as food contact materials only for low or intermediate water activity products and/or fat products.

Challenge migrationtests& specific migrationof contaminants

Consumer survey• Qualitative questionnaire: to 

explore the consumers’ acceptance, preference and buying intent (141 consumer)

• Tasting sessions: the impact of packaging variations in terms of sensorial attributes of fresh strawberries (79 consumers)

Products extensively tested

Shelf Life study•Gas composition & respiration:EcoBioCAP films slightly modified the internal atmosphere.• Weight loss: lower than control•pH, soluble solids, colour, firmness, decay & microbiology: no statisticaldifferences

Ecotoxycology tests Biodegradability tests

Page 15: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

General Summary• The production of packaging constituents from agro‐industry by‐products/waste 

was  possible.• Also their biocomposites, e.g. through injection moulding for trays and co‐

extrusion or electrospinning for multilayer films.  • Complete packaging systems were created and tested under several aspects 

(safety, shelf life, consumers’ panel, LCA). Overall, acceptable performanceandscalable processes

• Permeability was suitable for some applications, but needs to be increased for other fresh produce (e.g perforation).

• After consumers panels, no significant negative impact on sensorial attributes of strawberries in comparison to benchmark packaging. However, consumers’ most important expectation is to improve transparency. 

• The brittleness of the base PHBV is an issue for processing, therefore some additional optimisation steps will be necessary

• However, possible improvements of using PHBV with higher HV ratio could not be tested because of too much material was required. 

• A certain level of impurities of PHBV is acceptable. To be further investigated   

Direction for improvements are clear and include need for further scaling up of PHBV production

Page 16: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

The Basic idea of NoAW project is to consider agro‐waste biomass as a true resource,to be fully converted into sustainable bio‐energy, bio‐fertilizers and bio‐chemicals 

by the use of cascading mature, emerging and brand new processes.

Horizon 2020 ‐ Type of action: RIA ‐ Topic: WASTE 7 – Acronym: NoAWNo Agro‐Waste ‐ Innovative approaches to turn agricultural waste 

into ecological and economic assets

32 partners from 12 European countriesplus China, Taiwan and USA

17 research & education , 12 private (all SMEs except one), 

2 Professional associations, 1 management consulting & technology transfer company

4‐year project.

Ready to start  on October 1°, 2016

Page 17: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

By involving all agriculture chain stakeholders, the project will 1‐2 develop innovative eco‐

design and assessment tools of circular agro‐waste management strategies to address case studiesrepresentative of diverse territories.

3‐4‐6 improve technologies by starting from conventional  technologies (i.e. Anaerobic Digestion) and their upgrading through innovative processes and products. Strong focus on full scale, demo and pilot‐scale platforms.

5 develop new business concepts and stakeholders platform for cross‐chain valorisation of agro‐waste on a territorial and seasonalbasis.

NOAW is organized in 6 scientific WPs, one dissemination 

and one management WP.

Several scenarios to be analyzed‐ Small‐size local AD plants vs large size AD‐based biorefinery‐ Upgrading conventional AD products and/or emergingprocesses for new bio‐based products‐ Retroffitting of existing plants vs new plants

Page 18: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

NoAW technical solutions to transform agro‐waste biomass (winery residues, manure, straw, etc.) into a portfolio of useful bio‐based products

Several geographical case‐studies, : Germany, France, Italy, Denmark, GreeceEach one having a full/demo/pilot plant, and dealing with different (mixed) feedstock, representative of the geographical area 

Page 19: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Pilot scale platform of Universities of Venice and Verona at the wastewatertreatment plant of Treviso (Alto Trevigiano Servizi, ATS)

Joint PHA production pilot plant,With RomeUniversity«Sapienza»

Page 20: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

PHAproduction

NaOHor 

NaClO

AD200 L PHA to mild drying

and storage

Page 21: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

The authors thank very much all EcoBioCAPparticipants, whose work and results have been briefly reported here. For more detailed information on specific activities and involved participants please refer to  http://www.ecobiocap.eu/index.php

Aknowledgements

The authors also wish to thank all NoAW participants, whose work contributed to define the project aims, structure and planned activities.

Page 22: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based
Page 23: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

OMW OMW acidogenic

fermentation

OMW phenolsremoval

Phenol recovery

Extractionsolvent

PHA accumulation

reactor

Undilutedstream

Biomasswith high

PHA contentEnrichedbiomassMMCs

selection(SBR )

ExtractionPurification

PHA

Liquid fractionto treatment and disposal)

85% removal of influentCOD; i.e. easier refining forwastewater final disposal

OMW: continuous-flow multi step processlong-term investigation at bench-scale

PBBR at high organic load (5.9 g L-1 day-1)70% of the effluent soluble COD made by VFAs (19 gCOD/L)

Batch tests63% recovery

31% PHA recovery withrespect to removed COD(10% with respect tooverall influent COD)

100 g PHA produced for characterisation

and processing

fermentedOMWs

DephenolizedOMWs

Page 24: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

The upstream fermentation process easily adapts to changes of feedstock 

composition

Horgs (C

mmol L

‐1)

CWSCM

PHA composition can be controlled by feed 

composition

y = 1.00x + 6.80R² = 0.97

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

HV (%

 Cmol basis)

HV precursors (% Cmol basis)

fM

fCW

Synt

(b)

y = 1.00x ‐ 6.83R² = 0.97

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

HB (%

 Cmol basis)

HB precursors (% Cmol basis)

fM

fCW

Synt

(a)

Synt (synthetic organic acids mixture), fM (fermented sugar cane molasses),

fCW (fermented cheese whey)

Produced HB monomer vs. HB precursors (a), and produced HV monomer vs. HV precursors (b); 

Page 25: Turningagriculturalwaste into ecologicaland economicassets ...uest.ntua.gr/cyprus2016/proceedings/presentation/5... · • Using advancedbiocompositestructures based on bio‐based

Different steps of the PHA production from cheese whey were investigated in the presence of a pesticide (HCH)

Neither effect on acidogenic fermentationnor on PHA accumulationcheesewhey

(‐HCH=100)

Acidogenicreactor

Centrifuged sludge

‐HCH=83

VFA‐rich stream( ‐HCH=17)

Selectionreactor(SBR)

Effluent

PHAstoringbiomass

Accumulationreactor

Liquid surnatant ‐HCH=2.7

PHA‐richbiomass( ‐HCH14.3)

NaClOtreatment

Lyophilization

CHCl3purification

TreatedPellets( ‐HCH11.4)

Liquidwastestreams ‐HCH=2.9

Lyophilizedpowder( ‐HCH7.0)

Gasstreams‐HCH=4.4

Purifiedpowder( ‐HCH0.2)

CH3OHstream‐HCH=3.3

Not investigated

99.8 % removalRelease tests from PHA are in progress

Valentino et al., 2015