UCC28600 Calculation

Embed Size (px)

Citation preview

  • 7/27/2019 UCC28600 Calculation

    1/61

    Design ing w ith th e UCC28600 Quasi-Res

    This worksheet is designed for use with Microsoft Excel 5.0 or later. Its use is intended to a

    routine, day-to-day calculations.

    Component values are calculated as ideal, not to nearest production values

    DisclaimerThis product is designed as an aid for customers of Texas Instruments. No war

    or implied, with respect to this software or its fitness for any particular purpose is

    Instruments or the author. The software is licensed solely on an "as is" basis. T

    quality and performance is with the customer.

  • 7/27/2019 UCC28600 Calculation

    2/61

  • 7/27/2019 UCC28600 Calculation

    3/61

    nant Flyback Converter

    ssist power supply designers in their 2005

    Rev. 1.0

    anties, either express

    claimed by Texas

    he entire risk as to its

  • 7/27/2019 UCC28600 Calculation

    4/61

  • 7/27/2019 UCC28600 Calculation

    5/61

  • 7/27/2019 UCC28600 Calculation

    6/61

  • 7/27/2019 UCC28600 Calculation

    7/61

    QR Design Tool Instructions

    Be sure to Enable the Macros and to have a check in the AnalysisT oolPak box in the Add-Ins section of the Tools

    uas - esonant y ac converter es gn s an terat ve process. s es gn too re uces t e ar ware

    iterations by simulating the steady state operating maps that show the converter modes under different input and

    load conditions. Design adjustments can be explored in order to optimize the power system. Although the design

    spreadsheet is organized around a bridge rectifier bulk capacitor line rectifier, it can be used for fixed output

    Power Factor Corrector (PFC) or voltage follower PFC systems. Systems with PFC must allow the QR flyback

    stage to start-up under the low ac line condition. However, the steady state conduction losses to the QR flyback

    stage will only occur at the PFC bulk capacitor voltage levels.

    Design Tool worksheet. This step also requires an initial selection of the power MOSFET and the output rectifier.

    Enter data in the cells with the BLUE text; the calculated values are in the cells with the RED text. The

    parameters for the UCC28600 are already included. The design tool will generate a recommended design that

    includes transformer parameters. Verify that the current and voltage stresses are compatible with the MOSFET

    and output rectifier that were initially selected. The recommended values in the design may not be practical due

    to integer transformer turns, standard values, etc. Yet the operation of the converter can be significantly alteredby using the closest parameter.

    ,

    recommended by the QR Design Tool worksheet. The Magnetic Specification sheet can be printed and used as

    a guideline for the recommended transformer design. The next step is to see how the design performs using the

    QR Simulator worksheet.

    The QR Simulator will carry over the Converter Requirements, MOSFET Specifications, Diode Data and the

    UCC28600 Characteristics. The transformer information and the programming components, RS (current sense

    resistance), RPL (power limit programming), ROVP1 and ROVP2 (over-voltage programming resistors) must be

    entered by the user. The recommended values are shown beside the cells as a reminder for the ideal values.

    After entering the final values, examine the operating maps. They reveal the boundaries of the different modes of

    operation. The operating maps portray the power levels, peak switch currents, feed back voltages and switching

    frequencies for the full array of line voltages and loads that the converter would experience. These maps can be

    used to explore design alternatives, such as different current sense resistor values, different transformers, etc.

    For example, it might be desirable to change the power level where burst mode occurs in order to avoid audio

    noise at a common load operating point. The QR Simulator worksheet also shows rms currents, whether the

    converter is in power limit, the operational mode among other potentially useful data that can be used to optimize

    For PFC systems that have a fixed bulk voltage, estimate the PFC output voltage at the peak of its ripple.

    Calculate the equivalent ac voltage to achieve that maximum voltage level. Enter that ac voltage as the VAC(max)level. Enter the minimum operational ac line voltage as the VAC(min) level because the QR Flyback must power up

    correctly in order to start the PFC stage.

    For voltage follower PFC systems, estimate the PFC output voltage at the peak of its ripple during maximum line

    conditions. Calculate the equivalent ac voltage to achieve that maximum voltage level. Enter that ac voltage as

    the VAC(max) level. Enter the minimum ac line voltage as the VAC(min) level because the QR Flyback must power up

    correctly in order to start the PFC stage. In the least, converter must be designed to operate at safe temperatures

    under the steady state operating rms currents that occur at the minimum PFC voltage and at the maximum PFC

    voltage. The data tables in the QR Simulator worksheet can assist in finding the required values.

  • 7/27/2019 UCC28600 Calculation

    8/61

  • 7/27/2019 UCC28600 Calculation

    9/61

    menu.

  • 7/27/2019 UCC28600 Calculation

    10/61

  • 7/27/2019 UCC28600 Calculation

    11/61

    Converter Requirements

    POUT(max) limit 120 W

    POUT, during soft start 120 WRLOAD during

    SS =4.800

    efficiency ratio 0.96

    PIN = 125.000 W

    VAC(min) 230 VAC VBULK(min_pk) = 325.269

    VAC(max) ** 264 VAC VBULK(min_valley) = 260.215

    VBULK(ripple), %pp 20 % VBULK(max_pk) = 373.352

    VAC(max) shutdown

    margin %10 % VBULK(ov) = 410.688

    fS(max), value

    must be between

    40kHz and 130kHz,

    default value should

    be 130kHz

    130.0E+3Hz, high line,

    max loadTS(min) = 7.692E-6

    VOUT 24 VDC

    VOUT(ripple), max pp 0.12 V

    VOUT(shutdown) 28 V

    Load step, Watts 100 W

    max dVOUT due to

    Load step0.5 V

    Design Synthesis - type in the blue data

    UCC28600

  • 7/27/2019 UCC28600 Calculation

    12/61

    estimated fCO, Hz 3.0E+3 Hz

    VBIAS at full load 19.4 V

    Snubber overshoot %

    of reflected VOUT50 %

    MOSFET Specifications

    VDS(max) rating 650 V

    VDS derate % 15 %

    VDS(max) limit = 552.5 V

    COSS estimate, at VDStest V

    40.0E-12 F VDS test V 25

    Co', F-sqrt(V) = 2.00E-10 F

    CDS, stray 25.0E-12 F

    CISS 1.6E-9 F

    Qg 60E-9 C

    Transformer Estimates

    Leakage to

    magnetizing

    inductance %

    1.5 %mag Ind

    Leakage to

    magnetizing

    inductance ratio

    =

    0.015

    Diode Estimates

    VF 0.670 V

    UCC28600 Parameters

    VFB, no load 4.87 V, = VREF in chip, @ no load

  • 7/27/2019 UCC28600 Calculation

    13/61

    RFB 20.0E+3 W, internal to chipFB

    1.4 V

    ACS(FB) 2.5 Gain, VFB/VCS

    VCS(OS), CS offset volts 0.4 V, typ value from data sheet

    VPL, power limit 1.2 V, typical CS value during power limit

    VPL - VCS(OS) 0.8 V, CS working range

    VFB @ power limit 3 V, VPL X ACS(FB)

    VFB at FFM boundary 2 V

    fQR(max) clamp 130.0E+3 Hz

    fQR(min) clamp 40.0E+3 Hz

    IOVP(line) 450.0E-6 A, Line OVP typical value in data sheet

    VOVP(on), ON state 0 V, typ VOVP OUT = HIGH

    VOVP(load) 3.75 V, Load OVP typical value in data sheetPL(CS) OVPon),

    gain during OUT = ON 0.5 150 mA/300 mA

    VCS at DCM/FFM 0.4 V, (VFB/ACS(FB)) - VCS(OS)P P(max)

    0.5

    VCO gain, TS/VFB -28.8E-6

    VCO offset, TS(VFB = 0) 65.4E-6 V

    ISS(chg) 6.00E-06 A, SS charge current

    Resulting Converter Features

    VXFMR, reflect 119.432 V

    VDS1(OS) 59.716 V

    ZVS at VAC(min_valley)? FALSE

    ZVS at VAC(max_pk)? FALSE

    COSS @ VAC(min) 6.4E-12 F

    CDS(total) @ VAC(min) 31.4E-12 F

    COSS @ VAC(max) 5.2E-12 F

    CDS(total) @ VAC(max) 30.2E-12 F

    RLOAD, reflect to pri 114.112 W

    tON / sqrt(L) 117.5E-6 s

    tLEAKAGE / sqrt(L) 1.0E-6 s

    tOFF / sqrt(L) 367.2E-6 s

    tVALLEY / sqrt(L) 17.3E-6 s

    min NPRI / NSEC 4.841 turns, N = VXFMR/(VOUT+VF)

    min NPRI / NBIAS 5.989 turns, NBIAS = N*(VOUT/VBIAS)

  • 7/27/2019 UCC28600 Calculation

    14/61

    max L at VAC(max) 233.9E-6 H

    LLEAKAGE(max) 3.5E-6 H

    Total L input 237.4E-6 H

    1+ROVP1/ROVP2 6.180

    ROVP1 152.4E+3 W

    ROVP2 29.4E+3 W

    Ideal Design Using MIN NPRI / NSEC and MAX

    Trial: the step numberfor the coresponding

    input voltage test

    condition

    VBULK: the

    voltage across

    the bulk

    capacitor,

    iterations begin

    at the minimum

    valley voltage

    VAC(equiv): the

    corresponding AC input

    voltage that

    would result

    in VBULK

    ZVS ?: if

    TRUE,

    converter iszero voltage

    switching, if

    FALSE,

    converter is

    Valley switching

    CDS, total:total drain to

    source

    capacitance

    VBULK VAC(equiv) CDS, total

    V V F

    0 260.215 184.000 FALSE 37.8E-12

    1 265.872 188.000 FALSE 37.6E-12

    2 271.529 192.000 FALSE 37.5E-12

    3 277.186 196.000 FALSE 37.3E-12

    4 282.843 200.000 FALSE 37.2E-125 288.500 204.000 FALSE 37.0E-12

    6 294.156 208.000 FALSE 36.9E-12

    7 299.813 212.000 FALSE 36.8E-12

    8 305.470 216.000 FALSE 36.7E-12

    9 311.127 220.000 FALSE 36.6E-12

    10 316.784 224.000 FALSE 36.5E-12

    11 322.441 228.000 FALSE 36.3E-12

    12 328.098 232.000 FALSE 36.2E-12

    13 333.754 236.000 FALSE 36.1E-12

    14 339.411 240.000 FALSE 36.0E-12

    15 345.068 244.000 FALSE 35.9E-12

    16 350.725 248.000 FALSE 35.8E-1217 356.382 252.000 FALSE 35.8E-12

    18 362.039 256.000 FALSE 35.7E-12

    19 367.696 260.000 FALSE 35.6E-12

    20 373.352 264.000 FALSE 35.5E-12

    At VAC(min) IP1 3.160A

    Summary of Maxi

    ZVS ?Trial

  • 7/27/2019 UCC28600 Calculation

    15/61

    ICS1 143E-6A

    At VAC(max) IP2 2.876A

    ICS2 205E-6A

    RS and RPL Values to Achieve IP and ICS

    RCS 0.210 W VRcs, peak 0.663

    RPL

    960.18E+0W

    VRpl

    , min line 0.137

    Snubber Components and Parameters, Primary-Side Voltage Clamping

    CSNUB 1.628E-9 F

    TSNUB 169.02E-9 s

    RSNUB1 11.63E+3 W PRsnub1 2.019

    RSNUB2 46.423 W

    Output Capacitor

    COUT 2.78E-3 F

    ESR, max 7.84E-3 W

    IC(out), rms @ low line 5.165A

    IC(out), rms @ high line 4.694A

    Soft Start

    always no-load start? FALSE

    tSS, minimum 21.26E-3 s

    CSS, minimum 63.77E-9 F

    Summary of Ideal Converter Components

  • 7/27/2019 UCC28600 Calculation

    16/61

    Xfmr LPRI(terminal) 237.4E-6 H

    LPRI(leakage) 3.5E-6 H

    NPRI/NSEC 4.841 turns ratio

    IPRI(rms) 1.006ARMS

    IPRI(peak) 3.160APEAK

    ISEC(rms) @ low

    line7.189

    ARMS, for non-

    PFC design

    ISEC(rms) @ high

    line6.858

    ARMS, for PFC

    design

    MOSFET VDS rating 650 V

    VDS stress 552.5 V

    ID(rms) 1.006A

    Output capacitor COUT 2.8E-3 F

    ESR, max 7.8E-3 Wrms current

    rating @ low line5.165ARMS

    rms current

    rating @ high

    line

    4.694ARMS

    Output Diode VF 0.67 V

    IAVERAGE 5.000A

    IRMS 7.189A

    IPEAK 15.298A

    PDISSIPATE 3.350 W

    VBLOCK 101.120 V

    R current sense RCS 209.8E-3 Wmaximum power 0.319 W

    R power limit RPL 960.2E+0 W

    R2CD snubber CSNUB 1.6E-9 F

    RSNUB1 11.6E+3 W

    PRsnub1 2.019 W

    RSNUB2 46.423 W

  • 7/27/2019 UCC28600 Calculation

    17/61

    OVP ROVP1 152.4E+3 W

    ROVP2 29.4E+3 W

    Soft start CSS 63.8E-9 FtSS 21.3E-3 s

    Minimum VDD

    CapacitorCVDD 51.6E-6 F

    Series resistor RVDD 11.13 W

    Start up resistor RSU 10.4E+6 W

  • 7/27/2019 UCC28600 Calculation

    18/61

    W, VOUT2/POUT during SS

    V, VAC(min)2

    V, minus ripple

    V, VAC(max)2

    V, plus ripple

    s

    ALL CELLS WITH BLUE TEXT MUST BE VERI

    UPDATED BY THE USER FOR EACH DES

    - VBULK(ripple), %pp is the ripple voltage on the input voltage (enter the

    peak to peak ripple voltage on the input bus in cell C16)

    - VAC(max) shutdown margin % is the User programmable Line Over V

    Protection limit (enter the percentage of margin that the line voltage ca

    VAC(max) before initiating Line OVP, in cell C17)

    - For systems that wish to utilize the full range of the controller, most

    130E+3 (for the 130kHz max switching frequency of the UCC2860

    C18; for designs that do not wish to use the full range of modes, enter

    than 130kHz but greater than 40kHz (default value entered into cell

    be 130E+3). Enter frequency, in Hertz, in cell C18.

    - VOUT is the regulated output voltage of the converter (enter, in Volts, i

    - VOUT(ripple), max pp is the maximum peak to peak output ripple of the

    output, i.e. usually equal to 1% of the regulated output voltage (enter, i

    C20)

    - VOUT(shutdown) is the User programmable Output Over Voltage Protecti

    in Volts, the maximum output voltage that will initiate Load OVP in cell

    - Load step is the maximum output load transient, in Watts, i.e. no-loa

    (enter, in Watts, in cell C22)

    - max dVOUT due to Load step is the maximum output voltage deviati

    transient or load step (enter, in Volts, in cell C23)

    and the spreadsheet responds with the calculated red data.

    Design Spreadsheet

    - POUT(max) limit is maximum output power of converter (enter, in W, in

    - POUT during SS, default: use POUT(max) if design will start into full load

    into cell C11)

    - efficiency ratio is the Expected converter efficiency (enter, in decim

    C12)

    - Resultant input power from User input (calculated by spreadsheet)

    Comments on REQUIRED USER INPUTS:

    - VAC(min) is the minimum AC line input voltage (enter, in VAC, in cell C- **For systems with a PFC front end, the VAC(max) value entered in

    should be equivalent to the maximum regulated output voltage o

    stage divided by SQRT(2), as calculated by the USER, otherwise,

    that DO NOT have a PFC input stage, enter the maximum AC line

    voltage. (enter, in VAC, in cell C15)

  • 7/27/2019 UCC28600 Calculation

    19/61

    V

    - Leakage to magnetizing inductance % is the desired magnetizing i

    the Flyback transformer (enter, as a percent, in cell C39)

    - VF is the forward voltage drop of the User-selected output rectifier as

    rectifier data sheet (enter, as a voltage, in cell C43)

    - VDS derate % is the User chosen derating (for safety margin) of the

    the FET (enter, as a percentage, in cell C31)

    - Resultant maximum allowed voltage on switch due to User selected

    - COSS is the output capacitance of the chosen MOSFET as stated in t

    data sheet (enter, in Farads, in cell C33). VDS test V is the defined vol

    the MOSFET data sheet, that the COSS specification is tested at (enter,

    cell F33).

    - CDS, stray is the estimated parasitic Drain to Source capacitance (e

    Farads, in cell C35) ex.TO-220 tab to GND is about 25 pF

    - Qg is the total gate charge of the chosen MOSFET as stated in the M

    sheet (enter, in Cou;ombs, in cell C37).

    - CISS is the input capacitance of the chosen MOSFET as stated in the

    data sheet (enter, in Farads, in cell C36).

    - VDS(max) rating is the chosen FET's drain to Source maximum voltag

    as Volts, in cell C30)

    - VBIAS is the output of the Aux winding of the Flyback Transformer, us

    UCC28600 and, if used, also the PFC controller. VBIAS must be equal t

    maximum UVLO stop threshold of the UCC28600 (equal to 9.3V) or th

    start up voltage of the PFC controller, whichever is greater. (enter, inC25)

    - Snubber overshoot % of reflected VOUT is used to determine the s

    components. The percentage value entered in this cell will be used to

    clamp voltage, taking into account the derated VDS of the switch, the m

    voltage, and the reflected output voltage. Recommended 50% as defa

    (enter, as a percentage, in cell C26)

    - estimated fCO is the desired crossover frequency of the control loop,

    between 2kHz and 3kHz (enter, in Hertz such as 3.0E+3, in cell C24)

    The User selects a MOSFET for the design and inputs the FET's

    characteristics:

  • 7/27/2019 UCC28600 Calculation

    20/61

    - calculated Drain-Source overshoot voltage

    - TRUE only if VXFMR,reflect > VBULK(min_valley), FALSE = valley switchin

    - TRUE only if VXFMR,reflect > VBULK(max_pk), FALSE = valley switching

    - calaculated circuit capacitances

    Note: RS and RPLand the snubber follow simulation because the result

    their calculation.

    - calculated allowable reflected output voltage

    - The parameters within the blue box are internal to the UCC28600 an

    programmable.

    - min NPRI / NBIAS is the Minimum Turns Ratio for the Primary to Bi

    Windings (this value is inverted and carried over to the Simulator pag

    Internal IC

    parameters

    - calculated maximum load impedance based upon the reflected outpu

    - calculated timing segments normalized with respect to the primary in

    - min NPRI / NSEC is the Minimum Turns Ratio for the Primary to Se

    Windings (this value is carried over to the Simulator page)

  • 7/27/2019 UCC28600 Calculation

    21/61

    over VAC Range @ MAX LoadIPEAK:

    calculated

    peak primary

    current at

    maximum load

    taking into

    account

    operating

    mode

    TON:

    calculated on

    time at

    maximum

    load

    TS: calculated

    switching

    period at

    maximum

    load

    IPRI(rms): primary

    side rms current

    TDEMAG: time

    required for the

    inductor to

    demagnetize at

    maximum load

    ISEC(rms):

    secondary

    side rms

    current at

    maximum load

    IPEAK TON TS IPRI(rms) TDEMAG ISEC(rms)

    A s s A, rms s A, rms

    3.160 2.841E-6 9.344E-6 1.006 6.190E-6 7.19

    3.140 2.763E-6 9.226E-6 0.992 6.151E-6 7.17

    3.121 2.689E-6 9.114E-6 0.979 6.113E-6 7.14

    3.103 2.619E-6 9.008E-6 0.966 6.077E-6 7.12

    3.085 2.552E-6 8.906E-6 0.953 6.043E-6 7.103.068 2.488E-6 8.808E-6 0.941 6.010E-6 7.08

    3.052 2.427E-6 8.715E-6 0.930 5.978E-6 7.06

    3.036 2.369E-6 8.626E-6 0.919 5.947E-6 7.05

    3.021 2.314E-6 8.541E-6 0.908 5.918E-6 7.03

    3.007 2.261E-6 8.459E-6 0.897 5.889E-6 7.01

    2.993 2.210E-6 8.381E-6 0.887 5.862E-6 7.00

    2.979 2.162E-6 8.306E-6 0.877 5.836E-6 6.98

    2.966 2.115E-6 8.233E-6 0.868 5.810E-6 6.96

    2.954 2.070E-6 8.164E-6 0.859 5.785E-6 6.95

    2.941 2.027E-6 8.097E-6 0.850 5.762E-6 6.94

    2.930 1.986E-6 8.032E-6 0.841 5.739E-6 6.92

    2.918 1.947E-6 7.970E-6 0.833 5.716E-6 6.912.907 1.908E-6 7.910E-6 0.825 5.695E-6 6.90

    2.897 1.872E-6 7.852E-6 0.817 5.674E-6 6.88

    2.886 1.836E-6 7.796E-6 0.809 5.654E-6 6.87

    2.876 1.802E-6 7.742E-6 0.801 5.634E-6 6.86

    - ROVP2 is the ideal value of the bottom resistor on the OVP pin (thi

    adjusted for actual turns ratio and carried over to the Simulator page)

    um Load at Minimum and Maximum Line

    - ROVP1 is the ideal value of the top resistor on the OVP pin (this val

    for actual turns ratio and carried over to the Simulator page)

    - max L at VAC(max) is the Calculated Primary Inductance (this val

    over to the Simulator page)

    - LLEAKAGE(max) is the Allowable Leakage Inductance (this value is car

    the Simulator page)

    - IP1 is the peak primary current at low line, full load

  • 7/27/2019 UCC28600 Calculation

    22/61

    V PRcs 0.319 W

    V VRpl

    , max line 0.196 V

    W

    - Select a capacitor bank (COUT) to handle IC(out),rms at high line.

    - CSS, minimum is the rewquired capacitor fo SS. Select astandard value close to this.

    - tSS, minimum is the required soft start time

    - Select a capacitor bank (COUT) to handle IC(out),rms at low line.

    - COUT is the ideal value of the output capacitor. Select a standard value close to this.

    - the ideal value of the Power Limit

    (RPL), the peak voltage across it at

    (VRpl, min line), and the peak volta

    maximum line (VRpl, max line). RPfor actual turns ratio and carried ov

    Simulator page where the User mu

    standard value.

    - IP2 is the peak primary current at high line, full load

    - ICS2 is the power limit current that is sourceed at the CS pin at high line

    - the ideal value of the Current Sen

    (RCS), the peak voltage across it (V

    and the power dissipated by it (PRc

    adjusted for actual turns ratio and c

    the QR Simulator page where the

    select a standard value.

    - RSNUB1 is the ideal value of the snubber resistor that is in parallel to CSNUB, PRsnub1 is

    dissipation of RSNUB1. Select a standard value close to this.

    - TSNUB is the period of the ringing frequency

    - CSNUB is the ideal value of the primary side snubber capacitor. Select a standard val

    this.

    - ICS1 is the power limit current that is sourceed at the CS pin at low line

    - RSNUB2 is the ideal value of the snubber resistor that is in series with CSNUB. Select a

    value close to this.

    - Select a capacitor bank (COUT) with a total ESR less than this.

  • 7/27/2019 UCC28600 Calculation

    23/61

    - LPRI(terminal) is the required primary inductance. LPRI is carried over to the QR Simulat

    the User must select a standard value.

    - LPRI(leakage) is the maximum allowable leakage inductance. LPRI(leakage) is carried over

    Simulator page where the User must select a standard value.

    - NPRI/NSEC is the ideal primary to secondary turns ratio. NPRI/NSEC is carried over to th

    Simulator page where the User must enter the actual turns used.

    - IPRI(rms)is the primary rms current at low line, maximum load

    - VDSstress is the resultant maximum allowed voltage on switch due to User selected

    - ISEC(rms)@high lineis the maximum secondary side rms current at high line for desig

    front end

    - ID(rms) is the maximum primary rms current

    - ISEC(rms)@ low lineis the maximum secondary side rms current at low line for design

    PFC front end

    - VDS rating is the voltage rating on the User selected MOSFET

    - IPRI(peak)is the peak primary current at low line, maximum load

    - VBLOCK is the required reverse voltage rating of the diode

    - RCS is the ideal value of the Current Sense resistor

    - maximum poweris the calculated dissipated power across the current sense resist

    - IRMS is the RMS output current

    - ESR, max is the maximum allowable equivalent series resitance of the output capa

    - rms current rating at low line is the required rms ripple current rating for low line o

    designs that do not use a PFC front end

    - rms current rating at high line is the required rms ripple current rating for low line

    designs that use a PFC front end

    - COUT is the ideal value of the output capacitor. Select a standard value close to this.

    - VF is the forward voltage drop of the selected diode

    - IAVERAGE is the average output current

    - PDISSIPATE is the calculated power dissipation of the output diode

    - IPEAK is the PEAK output current

    - RSNUB1 is the ideal value of the snubber resistor that is in parallel to CSNUB, Select a

    close to this.

    - RSNUB2 is the ideal value of the snubber resistor that is in series with CSNUB. Select a

    value close to this.

    - PRsnub1 is the power dissipation of RSNUB1.

    - RPL is the ideal value of the power limit resistor

    - CSNUB is the ideal value of the primary side snubber capacitor. Select a standard valthis.

  • 7/27/2019 UCC28600 Calculation

    24/61

    - RSU is the start up resistor from the bulk input into VDD

    - RVDD is the series resistor from the Bias windings into VDD

    - tSS, minimum is the required soft start time

    - ROVP1 is the ideal value of the top resistor on the OVP pin

    - ROVP2 is the ideal value of the bottom resistor on the OVP pin

    - CVDD is the minimum required value for the bulk capacitor on VDD

    - CSS, minimum is the required capacitor fo SS. Select astandard value close to this.

  • 7/27/2019 UCC28600 Calculation

    25/61

    IED AND

    IGN.

    ercentage of

    oltage

    n exceed

    esigns, enter

    ) into cell

    a value less

    C18 should

    n cell C19)

    converter

    Volts, in cell

    on limit (enter,

    C21)

    d to full load

    n due to a

    o cell C10)

    (enter, in W,

    l form, in cell

    4)o cell C15

    the PFC

    or systems

    input

  • 7/27/2019 UCC28600 Calculation

    26/61

    nductance of

    found in the

    DS voltage on

    erating

    e MOSFET

    age, found in

    in Volts, in

    ter, in

    OSFET data

    MOSFET

    rating (enter,

    d to BIAS the

    the

    e maximum

    olts, in cell

    ubber

    determine the

    aximum input

    lt value.

    usually

  • 7/27/2019 UCC28600 Calculation

    27/61

    s are used in

    are not User

    s (AUX)

    )

    t voltage

    uctance

    ondary

  • 7/27/2019 UCC28600 Calculation

    28/61

    D: duty cycle

    0.304

    0.299

    0.295

    0.291

    0.2870.282

    0.278

    0.275

    0.271

    0.267

    0.264

    0.260

    0.257

    0.254

    0.250

    0.247

    0.2440.241

    0.238

    0.236

    0.233

    value is

    D

    ue is adjusted

    e is carried

    ried over to

  • 7/27/2019 UCC28600 Calculation

    29/61

    Resistor

    minimum line

    e across it at

    is adjustedr to the QR

    t select a

    e resistor

    Rcs, peak),

    ). RCS is

    arried over to

    ser must

    the power

    e close to

    tandard

  • 7/27/2019 UCC28600 Calculation

    30/61

    r page where

    to the QR

    e QR

    derating

    ns with a PFC

    without a

    r

    itor bank

    peration of

    peration of

    tandard value

    tandard

    e close to

  • 7/27/2019 UCC28600 Calculation

    31/61

  • 7/27/2019 UCC28600 Calculation

    32/61

    Converter Requirements:POUT 120 W

    POUT, during soft start 120 W RLOAD during SS 4.800

    Efficiency ratio 0.96

    PIN 125.000 W

    VAC(min) 230 VAC VBULK(min_pk) 325.269

    VAC(max) 264 VAC VBULK(min_valley) 260.215

    VBULK(ripple), %pp 20 % VBULK(max_pk) 373.352

    VAC(max) shutdown margin % 10 % VBULK(shutdown) 410.688

    fS(max) 130.0E+3 Hz TS(min) 7.69E-06

    VOUT 24 V

    VOUT(ripple), max pp 0.12 V

    VOUT, shut-down 28 V

    Load step, Watts 100 W

    max dVOUT due to load step 0.5 V

    estimated fCO, Hz 3.0E+3 Hz

    VBIAS at full load 19.4 V

    Snubber overshoot % of reflectedVOUT

    50 %

    MOSFET Specifications:VDS(max) rating 650 V

    VDS derate % 15 % Actual derating % 21.003

    VDS(max) limit 552.5 V

    COSS estimate, at VDS = 25 V 40.0E-12 F VDS test V 25

    Co', F-sqrt(V) 200.0E-12 F

    CDS, stray 25.0E-12 F

    Diode Data:VF 0.670 V

    Transformer Data

    UCC28600 An

    Design Simulation - type in the blueNote: The converter requirements and recommended component values have been c

    TYPE IN STANDARD COMPONENT VALUES IN THE BLUE CEMOD

  • 7/27/2019 UCC28600 Calculation

    33/61

    Actual Leakage to magnetizing

    inductance % (from magnetic

    manufacturer's drawing spec)

    2.5 %

    Leakage to

    magnetizing

    inductance ratio

    0.025

    Actual LM (from magnetic

    manufacturer's drawing spec).

    The recommended primaryinductance is shown in cell E42,

    carried over from the QR Design

    page.

    300.0E-6 H

    Recommended LMcarried over from

    QR Design page

    and shown for theUser's

    convenience in

    cell E42

    233.9E-6

    LLEAKAGE 7.5E-6 H

    Total L, primary 307.5E-6 H

    NPRI/NSEC (from magnetic

    manufacturer's drawing spec)5.680 turns ratio 4.841

    VXFMR, reflect 140.126 VRecommended

    VXFMR, reflect119.4

    NPRI/NBIAS 4.000 5.989

    Sense Resistors & Power Limit

    Recommended values, carried over

    from the QR Design Tool page andadjusted for the actual turns ratio are

    shown in cells D54 through D57. The

    User must insert the closest standard

    value for each component in cells B54

    through B57, iterating until the

    recommended values no longer self-

    adjust (usually 2-3 iterations are all

    that are needed)

    Input the actual Primary to Secondary Turns Ratio, from the magnetic manufacturer's drawing spec, into cell

    B47. This value should very closely match the recommended turns ratio calculated on the QR Design Tool

    sheet and shown for the User's convenience in cell E47 of this sheet.

    Input the actual Primary to Bias Turns Ratio, from the magnetic manufacturer's drawing spec, into cell B50.

    This value should very closely match the recommended turns ratio calculated on the QR Design Tool sheet

    and shown, for the User's convenience, in cell E50 of this sheet.

  • 7/27/2019 UCC28600 Calculation

    34/61

    RCS, current sense 0.350 W 0.229 WRPL, power limit 1.40E+03 W 6.08E+02 WROVP1 133.0E+3 W 228.2E+3 WROVP2 29.4E+3 W 23.1E+3 W

    UCC28600 Parameters

    VFB, no load 4.87 V, = VREF in chip, @ no load

    RFB 20.0E+3 W, internal to chipVFB at Burst/FFM boundary 1.4 V

    ACS(FB) 2.5 Gain, VFB/VCSVCS OS , CS offset volts 0.4 V, typ value from data sheet

    VPL, power limit 1.2 V, typical CS value during power limit

    VPL - VCS(OS) 0.8 V, CS working range

    VFB @ power limit 3 V, VPL X ACS(FB)

    VFB at FFM boundary 2 V

    fQR(max) clamp 130.0E+3 Hz

    fQR(min) clamp 40.0E+3 Hz

    IOVP(line) 450.0E-6 A, Line OVP typical value in data sheet

    VOVP(on), ON state 0 V, typ VOVP OUT = HIGH

    VOVP(load) 3.75 V, Load OVP typical value in data sheet

    IPL(CS)/IOVPon), current gain during

    OUT = ON state0.5 150 mA/300 mA

    VCS at DCM/FFM 0.4 V, (VFB/ACS(FB)) - VCS(OS)IP/IP(max) at DCM/FFB boundary 0.5VCO gain, TS/VFB -28.8E-6

    VCO offset, TS(VFB = 0) 65.4E-6 V

    ISS(chg) 6.00E-06 A, SS charge current

    VBULK VAC, equiv. IP, actual

    V V A

    Recommended with Turns ADJ 0 260.215 184.000 2.848

    20 373.352 264.000 2.565

    Actual with Real Values 0 260.215 184.000 2.8481 265.872 188.000 2.828

    2 271.529 192.000 2.809

    3 277.186 196.000 2.791

    4 282.843 200.000 2.773

    5 288.500 204.000 2.756

    6 294.156 208.000 2.740

    7 299.813 212.000 2.724

    8 305.470 216.000 2.709

    Operation Cha

    Trial

  • 7/27/2019 UCC28600 Calculation

    35/61

    9 311.127 220.000 2.695

    10 316.784 224.000 2.681

    11 322.441 228.000 2.668

    12 328.098 232.000 2.655

    13 333.754 236.000 2.642

    14 339.411 240.000 2.630

    15 345.068 244.000 2.61816 350.725 248.000 2.607

    17 356.382 252.000 2.596

    18 362.039 256.000 2.585

    19 367.696 260.000 2.575

    20 373.352 264.000 2.565

    Min line 260.215 184.000 2.848

    Max line 373.352 264.000 2.565

    VBULK(min) 260.215 V Vac, equiv

    Pload PLINEW W

    1 120 125.000 QR

    0.95 114 118.750 QR

    0.9 108 112.500 QR

    0.85 102 106.250 QR

    0.8 96 100.000 QR

    0.75 90 93.750 DCM

    0.7 84 87.500 DCM

    0.65 78 81.250 DCM0.6 72 75.000 DCM

    0.55 66 68.750 DCM

    0.5 60 62.500 DCM

    0.45 54 56.250 DCM

    0.4 48 50.000 DCM

    0.35 42 43.750 DCM

    0.3 36 37.500 DCM

    0.25 30 31.250 DCM

    0.2 24 25.000 DCM

    0.15 18 18.750 DCM

    0.1 12 12.500 DCM

    0.05 6 6.250 DCM0.01 1.2 1.250 DCM

    VBULK(min) 373.3523805 V VAC, equiv

    ModePLOAD/PRATED

    Operation Characteristi

    Operation Characteristi

  • 7/27/2019 UCC28600 Calculation

    36/61

    Pload PLINE

    W W

    1 120 125.000 QR

    0.95 114 118.750 QR

    0.9 108 112.500 DCM

    0.85 102 106.250 DCM

    0.8 96 100.000 DCM0.75 90 93.750 DCM

    0.7 84 87.500 DCM

    0.65 78 81.250 DCM

    0.6 72 75.000 DCM

    0.55 66 68.750 DCM

    0.5 60 62.500 DCM

    0.45 54 56.250 DCM

    0.4 48 50.000 DCM

    0.35 42 43.750 DCM

    0.3 36 37.500 DCM

    0.25 30 31.250 DCM

    0.2 24 25.000 DCM0.15 18 18.750 DCM

    0.1 12 12.500 DCM

    0.05 6 6.250 DCM

    0.01 1.2 1.250 FFB

    VBULK fS PIN(limit)

    V Hz W

    0 260.215 209.1E+3 54.963

    1 265.872 213.8E+3 54.379

    2 271.529 218.6E+3 53.7703 277.186 223.4E+3 53.137

    4 282.843 228.4E+3 52.482

    5 288.500 233.5E+3 51.804

    6 294.156 238.8E+3 51.105

    7 299.813 244.1E+3 50.386

    8 305.470 249.6E+3 49.648

    9 311.127 255.3E+3 48.890

    10 316.784 261.1E+3 48.115

    11 322.441 267.1E+3 47.323

    12 328.098 273.2E+3 46.514

    13 333.754 279.6E+3 45.689

    14 339.411 286.1E+3 44.849

    15 345.068 292.9E+3 43.994

    16 350.725 299.8E+3 43.124

    17 356.382 307.0E+3 42.241

    18 362.039 314.5E+3 41.345

    19 367.696 322.2E+3 40.436

    20 373.352 330.3E+3 39.514

    Trial

    PLOAD/PRATED Mode

    Actual Power Limit, as Programmed by Actual RPL,

  • 7/27/2019 UCC28600 Calculation

    37/61

    W

    V

    V

    V

    V

    s

    %

    V

    lysis Spreadsheet

    data and it responds with the red data.rried over from the QR Designer Tool page and are shown in RED. The U

    LS FOR THE SIMULATOR TO GENERATE THE DESIGN SCHARTS

    1.5

    2.0

    2.5

    3.0

    rimaryCurrent-A

    Primary Current vs Switching Freq

    0

    20

    40

    60

    80

    100

    120

    140

    0 20 40 60 80

    PIN-InputPower

    -W

    fS - Switching Frequency - kHz

    Input Power vs Switching Frequ

    Input Low Line Input High Line

  • 7/27/2019 UCC28600 Calculation

    38/61

    H

    Recommended

    NPRI/NSEC turns

    ratio

    V

    Recommended

    NPRI/NBIAS turns

    ratio

    In regards to the above Mode Plots: The green shaded region represents th

    where the controller applies packets of 40kHz pulses to the MOSFET gate.

    the average switching frequency of the 40kHz packets of pulses while in thi

    transition from Green mode into Frequency Foldback mode (FFM) at approxim

    increasing load, the converter will either operate in Discontinuous Mode (DCM)

    be fixed at 130kHz, or transition directly into Quasi-Resonant mode (QR) wh

    with increasing load. Due to the limitaions of this QR Simulator spreadsh

    0.0

    0.5

    1.0

    0 20 40 60 80 1

    IP-P

    fS - Switching Frequency - kHz

    Rated Power Input Low Line Input High Line

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    3.50

    4.00

    4.50

    5.00

    0 20 40 60 80 1

    V

    FB-FeedbackVoltage-V

    fS - Switching Frequency - kHz

    Feedback Voltage vs Switching Frequ

    Rated Power Input Low Line Inpu

  • 7/27/2019 UCC28600 Calculation

    39/61

    TS, actual TON, actual f S, actual VFB

    s s Hz V

    9.976E-6 3.365E-6 100.2E+3 FALSE 2.845

    8.094E-6 2.113E-6 123.6E+3 FALSE 2.777

    9.976E-6 3.365E-6 100.2E+3 TRUE 4.3489.837E-6 3.271E-6 101.7E+3 TRUE 4.349

    9.705E-6 3.181E-6 103.0E+3 TRUE 4.351

    9.579E-6 3.096E-6 104.4E+3 TRUE 4.354

    9.459E-6 3.015E-6 105.7E+3 TRUE 4.357

    9.344E-6 2.938E-6 107.0E+3 TRUE 4.361

    9.235E-6 2.864E-6 108.3E+3 TRUE 4.365

    9.130E-6 2.794E-6 109.5E+3 TRUE 4.370

    9.030E-6 2.727E-6 110.7E+3 TRUE 4.376

    acteristics of Design Using LM and LLEAK at Full Rated Power

    accurately show the internal 40kHz clamp of Quasi-Resonant operation. As s

    frequency hits the internal 40kHz minimum frequency clamp, the operating fre

    increasing load, dependent upon line and load condi

    Power Limit?

    fsw FFM (VS)

    fMAX

    = Oscillator

    Frequency

    (130 kHz)

    fQR_MIN

    :

    internally limited to

    40 kHz.

    QR Mode

    (Valley

    Switching)

    Switching

    Frequency

    VFB

    Feedback

    Voltage

    SS Mode

    (fixed fSW

    )

    fSS

    (40kHz)

    f

    DCM(maximum fs)

    Hysteretic

    transition into

    Burst Mode.

    IC Off Softstart Regular Operation Frequency Foldback

    Load Shown is slightly less

    than Over Current Threshold

    Fixed Frequency

    POUT

    LoadPower

    VSTATUS

    Status,pulledup

    toVDD

  • 7/27/2019 UCC28600 Calculation

    40/61

    8.934E-6 2.664E-6 111.9E+3 TRUE 4.382

    8.842E-6 2.603E-6 113.1E+3 TRUE 4.388

    8.753E-6 2.544E-6 114.2E+3 TRUE 4.395

    8.668E-6 2.488E-6 115.4E+3 TRUE 4.402

    8.587E-6 2.434E-6 116.5E+3 TRUE 4.410

    8.508E-6 2.383E-6 117.5E+3 TRUE 4.418

    8.433E-6 2.333E-6 118.6E+3 TRUE 4.4268.360E-6 2.286E-6 119.6E+3 TRUE 4.435

    8.290E-6 2.240E-6 120.6E+3 TRUE 4.444

    8.222E-6 2.196E-6 121.6E+3 TRUE 4.453

    8.157E-6 2.154E-6 122.6E+3 TRUE 4.463

    8.094E-6 2.113E-6 123.6E+3 TRUE 4.473

    9.976E-6 3.365E-6 100.2E+3 TRUE 4.348

    8.094E-6 2.113E-6 123.6E+3 TRUE 4.473

    184 V

    IP actual f S actual TON VCS VFBA Hz s V V

    2.848 100.2E+3 3.365E-6 1.339 4.348

    2.711 105.1E+3 3.203E-6 1.291 4.228

    2.573 110.5E+3 3.041E-6 1.243 4.108

    2.436 116.5E+3 2.878E-6 1.195 3.987

    2.298 123.1E+3 2.716E-6 1.147 3.867

    2.166 130.0E+3 2.559E-6 1.100 3.751

    2.092 130.0E+3 2.473E-6 1.075 3.687

    2.016 130.0E+3 2.383E-6 1.048 3.6201.937 130.0E+3 2.289E-6 1.020 3.551

    1.855 130.0E+3 2.192E-6 0.992 3.479

    1.768 130.0E+3 2.090E-6 0.961 3.403

    1.678 130.0E+3 1.982E-6 0.930 3.324

    1.582 130.0E+3 1.869E-6 0.896 3.240

    1.479 130.0E+3 1.748E-6 0.860 3.151

    1.370 130.0E+3 1.619E-6 0.822 3.054

    1.250 130.0E+3 1.478E-6 0.780 2.950

    1.118 130.0E+3 1.322E-6 0.734 2.835

    0.969 130.0E+3 1.145E-6 0.681 2.703

    0.791 130.0E+3 934.519E-9 0.619 2.548

    0.559 130.0E+3 660.805E-9 0.538 2.3450.250 130.0E+3 295.521E-9 0.430 2.075

    264 V

    s of Design Using LM and LLEAK at High Line

    s of Design using LM and LLEAK at Low Line

  • 7/27/2019 UCC28600 Calculation

    41/61

    IP actual f S actual TON VCS VFB

    A Hz s V V

    2.565 123.6E+3 2.113E-6 1.389 4.473

    2.442 129.5E+3 2.012E-6 1.346 4.365

    2.372 130.0E+3 1.954E-6 1.322 4.304

    2.306 130.0E+3 1.899E-6 1.298 4.246

    2.237 130.0E+3 1.842E-6 1.274 4.1852.166 130.0E+3 1.784E-6 1.249 4.123

    2.092 130.0E+3 1.723E-6 1.224 4.059

    2.016 130.0E+3 1.661E-6 1.197 3.992

    1.937 130.0E+3 1.595E-6 1.169 3.923

    1.855 130.0E+3 1.528E-6 1.140 3.851

    1.768 130.0E+3 1.456E-6 1.110 3.775

    1.678 130.0E+3 1.382E-6 1.078 3.696

    1.582 130.0E+3 1.303E-6 1.045 3.612

    1.479 130.0E+3 1.219E-6 1.009 3.523

    1.370 130.0E+3 1.128E-6 0.971 3.427

    1.250 130.0E+3 1.030E-6 0.929 3.322

    1.118 130.0E+3 921.122E-9 0.883 3.2070.969 130.0E+3 797.715E-9 0.830 3.076

    0.791 130.0E+3 651.331E-9 0.768 2.920

    0.559 130.0E+3 460.561E-9 0.687 2.717

    -0.261 119.6E+3 -214.737E-9 0.400 1.977

    IPRI(rms) ISEC(rms)

    ARMS ARMS

    0.429 3.321

    0.419 3.277

    0.409 3.2310.399 3.185

    0.389 3.138

    0.379 3.090

    0.370 3.042

    0.360 2.993

    0.351 2.944

    0.342 2.894

    0.333 2.843

    0.324 2.792

    0.315 2.741

    0.307 2.689

    0.298 2.636

    0.290 2.584

    0.282 2.530

    0.273 2.477

    0.265 2.422

    0.257 2.368

    0.249 2.313

    OVP1 & ROVP2 Values

  • 7/27/2019 UCC28600 Calculation

    42/61

    SER MUST

    PECIFIC

    uency

    100 120 140

    ency

    Power Limit

  • 7/27/2019 UCC28600 Calculation

    43/61

    fs, actual (kHz)

    for Rated P

    map 1, 2, 3

    fs, actual (kHz) for

    Input Low Line Map

    1, 2, 3

    fs, actual

    (kHz) for

    Input High

    Line Map 1,

    2, 3

    e Green Mode area of operation

    he frequency shown is actually

    region. Ideally, a design will

    ately 10% load. From FFM, with

    at which point the frequency will

    re the frequency will decrease

    et. the Mode plots do NOT

    00 120 140

    Power Limit

    00 120 140

    ency

    t High Line

  • 7/27/2019 UCC28600 Calculation

    44/61

    100 100 124

    102 105 129

    103 111 130

    104 116 130

    106 123 130

    107 130 130

    108 130 130

    110 130 130

    111 130 130

    112 130 130

    113 130 130

    114 130 130

    115 130 130

    116 130 130

    118 130 130

    119 130 130

    120 130 130

    121 130 130

    122 130 130

    123 130 130

    124 130 120

    IPRI(rms) ISEC(rms) resonant leakage resonant

    ARMS ARMS ZVS ? CDS, total time TL1=Tr / (2pi) f, reset, Hz

    0.955 7.392 FALSE 3.792E-11 1.686E-08 1.474E+06

    0.757 7.015 FALSE 3.555E-11 1.633E-08 1.522E+06

    0.955 7.392 FALSE 3.792E-11 1.686E-08 1.474E+060.941 7.366 FALSE 3.775E-11 1.683E-08 1.477E+06

    0.928 7.341 FALSE 3.760E-11 1.679E-08 1.480E+06

    0.916 7.317 FALSE 3.745E-11 1.676E-08 1.483E+06

    0.904 7.294 FALSE 3.730E-11 1.673E-08 1.486E+06

    0.892 7.272 FALSE 3.716E-11 1.670E-08 1.489E+06

    0.881 7.251 FALSE 3.703E-11 1.667E-08 1.491E+06

    0.870 7.230 FALSE 3.690E-11 1.664E-08 1.494E+06

    0.860 7.210 FALSE 3.678E-11 1.661E-08 1.497E+06

    hown below, once the switching

    uency will begin to increase with

    itions.

    Green Mode

    t

    t

    GRMODE_MX

    (40 kHz)

    This mode applies bursts

    of 40kHz soft-start pulses

    to the power MOSFET

    gate. The average fsw is

    shown in this operating

    mode.

    Green Modet

    t

    Green Mode,PFC bias OFF

  • 7/27/2019 UCC28600 Calculation

    45/61

    0.850 7.191 FALSE 3.666E-11 1.658E-08 1.499E+06

    0.840 7.172 FALSE 3.654E-11 1.655E-08 1.501E+06

    0.830 7.154 FALSE 3.643E-11 1.653E-08 1.504E+06

    0.821 7.137 FALSE 3.632E-11 1.650E-08 1.506E+06

    0.812 7.120 FALSE 3.621E-11 1.648E-08 1.508E+06

    0.804 7.104 FALSE 3.611E-11 1.646E-08 1.510E+06

    0.795 7.088 FALSE 3.601E-11 1.643E-08 1.513E+060.787 7.072 FALSE 3.591E-11 1.641E-08 1.515E+06

    0.779 7.058 FALSE 3.581E-11 1.639E-08 1.517E+06

    0.771 7.043 FALSE 3.572E-11 1.637E-08 1.519E+06

    0.764 7.029 FALSE 3.563E-11 1.635E-08 1.520E+06

    0.757 7.015 FALSE 3.555E-11 1.633E-08 1.522E+06

    0.955 7.392 FALSE 3.792E-11 1.686E-08 1.474E+06

    0.757 7.015 FALSE 3.555E-11 1.633E-08 1.522E+06

  • 7/27/2019 UCC28600 Calculation

    46/61

  • 7/27/2019 UCC28600 Calculation

    47/61

  • 7/27/2019 UCC28600 Calculation

    48/61

    fs, actual (kHz) for

    Power Limit Map

    1, 2

  • 7/27/2019 UCC28600 Calculation

    49/61

    209

    214

    219

    223

    228

    234

    239

    244

    250

    255

    261

    267

    273

    280

    286

    293

    300

    307

    315

    322

    330

    TR, dMAG(valley) residue dMAG(l) VV, valley VDS

    seconds Amps Volts TZV IP1 TS1 TL2

    3.392E-07 0.000E+00 1.201E+02 0.000E+00 2.745E+00 9.267E-06 5.530E-09

    3.284E-07 0.000E+00 2.332E+02 0.000E+00 2.454E+00 7.406E-06 7.438E-09

    3.392E-07 0.000E+00 1.201E+02 0.000E+00 2.745E+00 9.267E-06 5.530E-093.385E-07 0.000E+00 1.257E+02 0.000E+00 2.724E+00 9.130E-06 5.626E-09

    3.378E-07 0.000E+00 1.314E+02 0.000E+00 2.705E+00 8.999E-06 5.722E-09

    3.371E-07 0.000E+00 1.371E+02 0.000E+00 2.686E+00 8.874E-06 5.818E-09

    3.365E-07 0.000E+00 1.427E+02 0.000E+00 2.668E+00 8.755E-06 5.914E-09

    3.358E-07 0.000E+00 1.484E+02 0.000E+00 2.651E+00 8.642E-06 6.010E-09

    3.352E-07 0.000E+00 1.540E+02 0.000E+00 2.634E+00 8.534E-06 6.105E-09

    3.346E-07 0.000E+00 1.597E+02 0.000E+00 2.618E+00 8.430E-06 6.201E-09

    3.341E-07 0.000E+00 1.653E+02 0.000E+00 2.603E+00 8.331E-06 6.297E-09

  • 7/27/2019 UCC28600 Calculation

    50/61

    3.335E-07 0.000E+00 1.710E+02 0.000E+00 2.588E+00 8.236E-06 6.392E-09

    3.330E-07 0.000E+00 1.767E+02 0.000E+00 2.573E+00 8.145E-06 6.488E-09

    3.325E-07 0.000E+00 1.823E+02 0.000E+00 2.559E+00 8.057E-06 6.583E-09

    3.320E-07 0.000E+00 1.880E+02 0.000E+00 2.546E+00 7.974E-06 6.678E-09

    3.315E-07 0.000E+00 1.936E+02 0.000E+00 2.533E+00 7.893E-06 6.774E-09

    3.310E-07 0.000E+00 1.993E+02 0.000E+00 2.521E+00 7.815E-06 6.869E-09

    3.306E-07 0.000E+00 2.049E+02 0.000E+00 2.509E+00 7.741E-06 6.964E-093.301E-07 0.000E+00 2.106E+02 0.000E+00 2.497E+00 7.669E-06 7.059E-09

    3.297E-07 0.000E+00 2.163E+02 0.000E+00 2.486E+00 7.599E-06 7.154E-09

    3.293E-07 0.000E+00 2.219E+02 0.000E+00 2.475E+00 7.532E-06 7.249E-09

    3.288E-07 0.000E+00 2.276E+02 0.000E+00 2.464E+00 7.468E-06 7.344E-09

    3.284E-07 0.000E+00 2.332E+02 0.000E+00 2.454E+00 7.406E-06 7.438E-09

    3.392E-07 0.000E+00 1.201E+02 0.000E+00 2.745E+00 9.267E-06 5.530E-09

    3.284E-07 0.000E+00 2.332E+02 0.000E+00 2.454E+00 7.406E-06 7.438E-09

  • 7/27/2019 UCC28600 Calculation

    51/61

  • 7/27/2019 UCC28600 Calculation

    52/61

  • 7/27/2019 UCC28600 Calculation

    53/61

  • 7/27/2019 UCC28600 Calculation

    54/61

    TE1 IP2 a b c d TD(mag) D1, actual

    9.629E-06 2.923E+00 1.230E-06 -3.376E-06 -3.561E-07 -1.518E-08 6.250E-06 3.373E-01

    7.758E-06 2.635E+00 1.230E-06 -3.018E-06 -3.448E-07 -1.825E-08 5.629E-06 2.610E-01

    9.629E-06 2.923E+00 1.230E-06 -3.376E-06 -3.561E-07 -1.518E-08 6.250E-06 3.373E-019.491E-06 2.903E+00 1.230E-06 -3.351E-06 -3.553E-07 -1.533E-08 6.206E-06 3.325E-01

    9.359E-06 2.883E+00 1.230E-06 -3.327E-06 -3.546E-07 -1.548E-08 6.164E-06 3.278E-01

    9.234E-06 2.865E+00 1.230E-06 -3.304E-06 -3.539E-07 -1.563E-08 6.124E-06 3.232E-01

    9.115E-06 2.847E+00 1.230E-06 -3.282E-06 -3.532E-07 -1.578E-08 6.086E-06 3.187E-01

    9.001E-06 2.830E+00 1.230E-06 -3.260E-06 -3.525E-07 -1.593E-08 6.049E-06 3.144E-01

    8.892E-06 2.813E+00 1.230E-06 -3.240E-06 -3.519E-07 -1.608E-08 6.013E-06 3.102E-01

    8.788E-06 2.797E+00 1.230E-06 -3.220E-06 -3.513E-07 -1.623E-08 5.979E-06 3.061E-01

    8.688E-06 2.782E+00 1.230E-06 -3.201E-06 -3.507E-07 -1.639E-08 5.946E-06 3.021E-01

  • 7/27/2019 UCC28600 Calculation

    55/61

    8.592E-06 2.767E+00 1.230E-06 -3.183E-06 -3.501E-07 -1.654E-08 5.914E-06 2.982E-01

    8.501E-06 2.753E+00 1.230E-06 -3.165E-06 -3.496E-07 -1.669E-08 5.884E-06 2.943E-01

    8.413E-06 2.739E+00 1.230E-06 -3.148E-06 -3.490E-07 -1.685E-08 5.854E-06 2.906E-01

    8.329E-06 2.726E+00 1.230E-06 -3.132E-06 -3.485E-07 -1.700E-08 5.826E-06 2.870E-01

    8.248E-06 2.713E+00 1.230E-06 -3.116E-06 -3.480E-07 -1.716E-08 5.798E-06 2.835E-01

    8.170E-06 2.701E+00 1.230E-06 -3.100E-06 -3.475E-07 -1.731E-08 5.772E-06 2.801E-01

    8.094E-06 2.689E+00 1.230E-06 -3.086E-06 -3.470E-07 -1.747E-08 5.746E-06 2.767E-018.022E-06 2.677E+00 1.230E-06 -3.071E-06 -3.465E-07 -1.763E-08 5.721E-06 2.734E-01

    7.952E-06 2.666E+00 1.230E-06 -3.057E-06 -3.461E-07 -1.778E-08 5.697E-06 2.702E-01

    7.885E-06 2.655E+00 1.230E-06 -3.044E-06 -3.456E-07 -1.794E-08 5.674E-06 2.671E-01

    7.820E-06 2.645E+00 1.230E-06 -3.031E-06 -3.452E-07 -1.809E-08 5.651E-06 2.640E-01

    7.758E-06 2.635E+00 1.230E-06 -3.018E-06 -3.448E-07 -1.825E-08 5.629E-06 2.610E-01

    9.629E-06 2.923E+00 1.230E-06 -3.376E-06 -3.561E-07 -1.518E-08 6.250E-06 3.373E-01

    7.758E-06 2.635E+00 1.230E-06 -3.018E-06 -3.448E-07 -1.825E-08 5.629E-06 2.610E-01

  • 7/27/2019 UCC28600 Calculation

    56/61

  • 7/27/2019 UCC28600 Calculation

    57/61

  • 7/27/2019 UCC28600 Calculation

    58/61

  • 7/27/2019 UCC28600 Calculation

    59/61

    ICS(pl) VCS(pk) PIN

    1.426E-04 7.380E-01 1.250E+02

    2.045E-04 7.110E-01 1.250E+02

    2.446E-04 1.339E+00 1.250E+022.499E-04 1.340E+00 1.250E+02

    2.552E-04 1.340E+00 1.250E+02

    2.605E-04 1.341E+00 1.250E+02

    2.658E-04 1.343E+00 1.250E+02

    2.711E-04 1.344E+00 1.250E+02

    2.765E-04 1.346E+00 1.250E+02

    2.818E-04 1.348E+00 1.250E+02

    2.871E-04 1.350E+00 1.250E+02

  • 7/27/2019 UCC28600 Calculation

    60/61

    2.924E-04 1.353E+00 1.250E+02

    2.977E-04 1.355E+00 1.250E+02

    3.030E-04 1.358E+00 1.250E+02

    3.084E-04 1.361E+00 1.250E+02

    3.137E-04 1.364E+00 1.250E+02

    3.190E-04 1.367E+00 1.250E+02

    3.243E-04 1.370E+00 1.250E+023.296E-04 1.374E+00 1.250E+02

    3.349E-04 1.378E+00 1.250E+02

    3.403E-04 1.381E+00 1.250E+02

    3.456E-04 1.385E+00 1.250E+02

    3.509E-04 1.389E+00 1.250E+02

    2.446E-04 1.339E+00

    3.509E-04 1.389E+00

  • 7/27/2019 UCC28600 Calculation

    61/61

    Topology:

    Main Output Power: 120

    Anticipated Overall Efficiency of the Converter: 0.96

    Maximum Switching Frequency: 130.0E+3

    Minimum Switching Frequency: Burst packets of 40kHz pulses at loads of 15% or less

    Minimum Input Voltage: 260.22

    Maximum Input Voltage: 373.35

    Peak PRIMARY Current: 3.16

    PRIMARY RMS Current: 1.01

    Duty Cycle at Minimum Input Voltage, Maximum Load: 0.30

    Duty Cycle at Maximum Input Voltage, Maximum Load: 0.23

    SECONDARY Output Voltage: 24

    SECONDARY Output Peak Current: 15.30

    SECONDARY RMS Current: 7.189

    BIAS Voltage: 19.4

    Approximate RMS BIAS Current: 44.5E-3

    Magnetizing Inductance: 233.9E-6

    Maximum Leakage Inductance: 3.5E-6

    PRIMARY to SECONDARY Turns Ratio (NPRI/NSEC): 4.841

    PRIMARY to BIAS Turns Ratio (NPRI/NBIAS): 5.989

    Isolation Requirement: 1500

    INPUT:

    INDUCTANCE AND TURNS RATIO:

    OUTPUTS:

    A

    A

    V

    V

    V

    V

    The flyback transformer plays a crucial role in the performance of the green mode controller.

    Considerations must be given to adequate coupling for the bias windings, minimizing leakage

    inductance, and minimizing audible noise. All of these criteria can easily be met with proper transformer

    design from the start.

    A

    A

    GENERAL:

    A

    H

    H

    Flyback Inductor Specification for the UCC28600 Greenmode

    Quasi-Resonant Converter

    SPECIAL NOTES REGARDING THE FLYBACK TRANSFORMER:

    Quasi-Resonant Flyback with Bias Winding

    W

    Hz

    1. The BIAS windings must be well coupled to the PRIMARY. Interleave BIAS ans SECONDARY windings

    between the primary for equal coupling.

    2. Use bundled stranded wire.

    3. Encase the windings in as much Ferrite as possible; a round post core is a must to help reduce leakage.

    4. Do not use tape barriers. Use triple insulated wire on the SECONDARY to meet the isolation requirement while

    minimizing leakage inductance.

    V

    8. Wind the SECONDARY so that the non-dot end is the outer most layer.

    5. Must be potted or heavily varnished to reduce audible noise. Also, fill the gap with flexible epoxy to reduce

    audible noise.

    6. Distribute the BIAS windings over the entire width of the bobbin.

    7. Place the dot end of the PRIMARY winding as close to the core as possible to help shield the dv/dt noise.

    Secondary,

    Triple insulated

    wire

    Primary

    Insulation tape