Uji Kualitas Air

Embed Size (px)

Citation preview

  • 5/21/2018 Uji Kualitas Air

    1/62

    Home

    NARUTO MANGA

    RSS

    Search t

    Jalankan

    wildanarchibaldA great WordPress.com site

    Hey there! Thanks for dropping by wildanarchibald! Take a look around and grab

    theRSS feedto stay updated. See you around!

    AGAMA

    COMIK

    o NARUTO

    o Uncategorized

    KIMIA

    PENDIDIKAN DAN SAINS

    o LAPORAN

    o MAKALAH

    L POR N UJI KU LIT S IR

    Filed under:KIMIA,LAPORAN,MAKALAH,PENDIDIKAN DAN SAINSTinggalkan Komentar

    Mei 29, 2012

    1 1 Latar Belakang

    Salah satu permasalah pendidikan yang dihadapi oleh bangsa Indonesia adalah

    rendahnya mutu pendidikan pada setiap jenjang dan satuan pendidikan, mulai dari

    jenjang pendidikan dasar, menengah sampai pada jenjang perguruan

    Berbagai upaya telah dilakukan untuk meningkatkan mutu pendidikan nasional, antara

    lain melalui berbagai pelatihan dan peningkatan kualifikasi guru, pengadaan buku dan

    alat pelajaran, perbaikan sarana dan prasarana pendidikan lainnya, dan peningkatan

    mutu manajemen sekolah. Namun demikian, berbagai indikator mutu pendidikan

    belum menunjukan peningkatan yang merata. Sebagian sekolah, terutama dikota-kota

    http://wildanarchibald.wordpress.com/http://wildanarchibald.wordpress.com/http://wildanarchibald.wordpress.com/naruto-manga/http://wildanarchibald.wordpress.com/naruto-manga/http://wildanarchibald.wordpress.com/feed/http://wildanarchibald.wordpress.com/feed/http://wildanarchibald.wordpress.com/http://wildanarchibald.wordpress.com/http://wildanarchibald.wordpress.com/feed/http://wildanarchibald.wordpress.com/feed/http://wildanarchibald.wordpress.com/feed/http://wildanarchibald.wordpress.com/category/agama/http://wildanarchibald.wordpress.com/category/agama/http://wildanarchibald.wordpress.com/category/comik/http://wildanarchibald.wordpress.com/category/comik/http://wildanarchibald.wordpress.com/category/comik/naruto/http://wildanarchibald.wordpress.com/category/comik/naruto/http://wildanarchibald.wordpress.com/category/comik/uncategorized/http://wildanarchibald.wordpress.com/category/comik/uncategorized/http://wildanarchibald.wordpress.com/category/kimia/http://wildanarchibald.wordpress.com/category/kimia/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/laporan/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/laporan/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/makalah/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/makalah/http://wildanarchibald.wordpress.com/category/kimia/http://wildanarchibald.wordpress.com/category/kimia/http://wildanarchibald.wordpress.com/category/kimia/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/laporan/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/laporan/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/laporan/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/makalah/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/makalah/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/makalah/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/http://wildanarchibald.wordpress.com/2012/05/29/laporan-uji-kualitas-air/#respondhttp://wildanarchibald.wordpress.com/2012/05/29/laporan-uji-kualitas-air/#respondhttp://wildanarchibald.wordpress.com/2012/05/29/laporan-uji-kualitas-air/#respondhttp://wildanarchibald.wordpress.com/http://wildanarchibald.wordpress.com/2012/05/29/laporan-uji-kualitas-air/#respondhttp://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/makalah/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/laporan/http://wildanarchibald.wordpress.com/category/kimia/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/makalah/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/laporan/http://wildanarchibald.wordpress.com/category/pendidikan-dan-sains/http://wildanarchibald.wordpress.com/category/kimia/http://wildanarchibald.wordpress.com/category/comik/uncategorized/http://wildanarchibald.wordpress.com/category/comik/naruto/http://wildanarchibald.wordpress.com/category/comik/http://wildanarchibald.wordpress.com/category/agama/http://wildanarchibald.wordpress.com/feed/http://wildanarchibald.wordpress.com/http://wildanarchibald.wordpress.com/feed/http://wildanarchibald.wordpress.com/naruto-manga/http://wildanarchibald.wordpress.com/
  • 5/21/2018 Uji Kualitas Air

    2/62

    menunjukkan peningkatan mutu pendidikan yang cukup menggembirakan, namun

    sebagian lainnya masih memprihatinkan .

    Berdasarkan data ini, maka berbagai pihak mempertanyakan apa yang salah dalam

    penyelenggaraan pendidikan kita? Dari berbagai pengamatan dan analisis, sedikitnya

    ada tiga faktor yang menyebabkan mutu pendidikan tidak mengalami peningkatan

    secara merata. Faktor Pertama, kebijakan dan penyelenggaraan Pendidikan Nasional

    menggunakan pendekatan education production function atau input-output analysis

    yang tidak dilaksanakan secara konsekuen. Pendekatan ini melihat bahwa lembaga

    pendidikan berfungsi sebagai pusat produksi yang apabila dipenuhi semua input

    (masukan) yang diperlukan dalam kegiatan produksi tersebut, maka lembaga ini akan

    menghasilkan output yang dikehendaki. Pendekatan ini menganggap bahwa apabila

    input pendidikan seperti pelatihan guru, pengadaan buku dan alat pelajaran, dan

    perbaikan sarana serta prasarana pendidikan lainnya dipenuhi, maka mutu pendidikan(output) akan terjadi. Dalam kenyataan, mutu pendidikan yang diharapkan tidak

    terjadi. Mengapa? Karena selama ini dalam menerapkan pendekatan education

    production function terlalu memusatkan pada input pendidikan dan kurang

    memperhatikan pada proses pendidikan. Padahal, proses pendidikan sangat

    menentukan output pendidikan.

    Faktor kedua, penyelenggaraan pendidikan nasional dilakukan secara sentralistik,

    sehingga menempatkan sekolah sebagai penyelenggara pendidikan sangat tergantung

    pada keputusan birokrasi yang mempunyai jalur yang sangat panjang dan kadang-

    kadang kebijakan yang dikeluarkan tidak sesuai dengan kondisi sekolah setempat.

    Dengan demikian, sekolah kehilangan kemandirian, motivasi dan inisiatif untuk

    mengembangkan dan memajukan lembaganya termasuk peningkatan mutu pendidikan

    sebagai salah satu tujuan pendidikan nasional.

    Faktor ketiga, peran serta masyarakat, khususnya orang tua siswa dalam

    penyelenggaraan pendidikan selama ini sangat minim. Partisipasi masyarakat selama

    ini pada umumnya lebih banyak bersifat dukungan input (dana), bukan pada proses

    pendidikan (pengambilan keputusan, monitoring, evaluasi, dan akuntabilitas).

    Berkaitan dengan akuntabilitas, sekolah tidak mempunyai beban untukmempertanggungjawabkan hasil pelaksanaan pendidikan kepada masyarakat,

    khususnya orang tua siswa, sebagai salah satu pihak utama yang berkepentingan

    dengan pendidikan (Stakeholder).

    Berdasarkan kenyataan-kenyataan tersebut diatas, tentu saja perlu dilakukan upaya-

    upaya perbaikan, salah satunya adalah melakukan reorientasi penyelenggaraan

    pendidikan, yaitu dari manajemen peningkatan mutu berbasis pusat menuju

  • 5/21/2018 Uji Kualitas Air

    3/62

    manajemen peningkatan mutu berbasis sekolah.

    Adanya sistem pendidikan berbasis kompetensi (KBK) yang merupakan sistem

    pendidikan yang terbaru di Indonesia merupakan awal dari kebangkitan sistem

    pendidikan. Pada Sistem pendidikan KBK ini siswa diwajibkan untuk lebih aktif, kreatif,

    dan mandiri serta guru difungsikan hanya sebagai fasilitator saja.

    Dalam pembelajaran Produktif Kimia Air di SMK N 13 Bandung secara otomatis akan

    mengikuti metode pembelajaran KBK. Oleh karena itu setiap siswa dibagi ke dalam

    beberapa kelompok belajar dan praktikum yang masing-masing kelompok terdiri dari

    2 orang siswa atau lebih dan ditugaskan untuk membuat laporan Uji Kualitas Air

    sebagai pertanggungjawaban atas kegiatan praktikum kimia air yang dikerjakan pada

    semester genap tahun pelajaran 2007-2008.

    1 2 Tujuan Pembuatan Laporan

    1. Sebagai suatu keharusan untuk memenuhi salah satu syarat memperoleh nilaikelulusan.

    2. Untuk mempertanggungjawabkan setiap hasil praktikum yang didapatkan.

    3. Untuk menentukan layak atau tidaknya sampel air untuk digunakan sebagai air

    sanitasi, air pendingin, air proses, dan air pengisi ketel, dll.

    1 3 Metode Penulisan Laporan

    Metode penulisan Laporan Kimia Air adalah metode pendekatan rasional dengan

    menggunakan pola berpikir deduktif, yakni dengan cara mengemukakan keterangan

    keterangan berdasarkan teori atau pendapat (rujukan-rujukan) yang telah ditemukan

    sebelumnya.

    2 1 TEORI

    Persyaratan untuk air minum mencakup syarat kimia, fisika, biologi, dan radioaktif.Standar mutu air minum atau air untuk kebutuhan rumah tangga ditetapkan

    berdasarkan Peraturan Menteri Kesehatan Republik Indonesia Nomor

    01/Birhukmas/l/1975 tentang Syarat-syarat dan Pengawasan Kualitas Air Minum.

    Standar baku air minum tersebut disesuaikan dengan Standar Internasional yang

    dikeluarkan WHO. Standarisasi kualitas air tersebut bertujuan untuk memelihara,

    melindungi, dan mempertinggi derajat kesehatan masyarakat, terutama dalam

  • 5/21/2018 Uji Kualitas Air

    4/62

    pengelolaan air atau kegiatan usaha mengolah dan mendistribusikan air minum untuk

    masyarakat umum. Dengan adanya standarisasi tersebut dapat dinilai kelayakan

    pendistribusian sumber air untuk keperluan rumah tangga.

    Air merupakan kebutuhan yang paling dibutuhkan di dalam kehidupan manusia. Air

    yang ada di alam bukanlah didapat sebagai air murni, melainkan sebagai air yang

    mengandung bermacam-macam zat, baik yang terlarut ataupun tersuspensi. Jenis dan

    jumlah zat tersebut tergantung dari kondisi lingkungan sekitar sumbernya.

    Siklus Air

    Gambar Siklus Air Di Alam

    Siklus Hidrologi

    Gambar Siklus HidrogenAir yang kita perlukan untuk memenuhi kebutuhan sehari-hari dapat di ambil dari

    setiap titik siklus hidrologis. Sumber-sumber air yang terdapat di alam adalah :

    Laut yaitu memiliki konsentrasi unsur tertinggi, TDS tinggi 30.000-36.000 mg/L. Dan

    laut adalah tempat akhir dari perjalanan aliran air.

    Hujan yaitu penguapan air permukaan/laut dan mengabsorbsi gas-

    gas,uap,debu,bakteri yang ada di udara.

    Air permukaan yaitu sungai, danau, kolam dan merupakan kumpulan air hujan atau

    air tanah yang mengalir dipermukan tanah.

    Air tanah yaitu mengandung garam-garam terlarut, bergantung pada kondisi tanah

    dan memiliki kandungan garam lebih banyak.

    Atmosfer adalah bentuk awan.

    SAMPLING :

    Ada beberapa cara untuk mengambil sampling yang baik dan benar, tapi harus

    disesuaikan dengan keadaan dan tempat air yang akan disampling. Dan dibawah ini

    adalah 3 (tiga) cara yang kami ketahui untuk penyamplingan yang baik dan

    benar,diantaranya :

    1. Sampling sesaat (Grab sampling)SejumLah volume air diambil langsung dari badan air.

    2. Sampling sesaat tersusun (Integrated sampling)

    Sampling saat titik pengambilan terdiri dari beberapa aliran.

    3. Sampling campuran (Composite sampling)

    Sampling untuk mewakili secara merata perubahan parameter selama masa yang

  • 5/21/2018 Uji Kualitas Air

    5/62

    cukup panjang.

    Alat Sampling

    Air yang baik yang digunakan untuk air minum dan keperluan rumah tangga harus

    memiliki persyaratan sebagai berikut:

    A. Syarat fisik:

    Tidak berbau

    Tidak berasa

    Tidak berwarna

    Tidak keruh

    Suhu air lebih kecil dari suhu udara

    B. Syarat syarat kimia:

    Air tersebut tidak mengandung zat zat yang bersifat racun bagi tubuh.

    Air tersebut tidak merusak alat alat rumah tangga yang terbuat dari logam.C. Syarat bakteriologis :

    Air tidak boleh mengandung bakteri pathogen

    Air tidak boleh mengandung bakteri yang apatogen terlalu banyak.

    Untuk mengetahui kriteria atau kualitas air maka perlu dilakukan analisa terhadap air

    tersebut, beberapa analisa air dan parameter yang dianggap penting, diantaranya:

    A. Parameter Fisik :

    Warna

    Penentuan pH

    Kekeruhan

    Daya Hantar Listrik

    Zat padat

    B. Parameter Kimia :

    Asiditas atau Alkalinitas

    Kesadahan

    Kalsium

    Magnesium

    ManganSilika

    Oksigen ( DO )

    COD

    BOD

    Total Sulfida

    Klorida

  • 5/21/2018 Uji Kualitas Air

    6/62

    Zat organik ( angka permanganate )

    Ammonium

    Ammonium proteid

    Nitrat

    Nitrit

    Sulfat

    Pospat

    Syaratsyarat air minum di Indonesia yang ditetapkan oleh Laboratorium Ilmu

    Kesehatan Teknik Bandung adalah:

    A. PARAMETER FISIKA

    1) Suhu harus dibawah suhu udara

    2) Tidak berwarna ( jernih )

    3) Tidak berasa4) Tidak berbau

    5) Memiliki kekeruhan < 1 ppm SiO2

    B. PARAMETER KIMIA

    1) Zat zat yang terlarut : < 1000 ppm

    2) Zat organik ( angka permanganat ) : < 10 ppm

    3) CO2 : Tidak ada

    4) H2S : Tidak ada

    5) NH4 + : Tidak ada

    6) NO2 2- : Tidak ada

    7) NO3 : < 20 ppm

    8) Cl : < 250 ppm

    9) SO4 2- : < 250 ppm

    10) Mg : < 125 ppm

    11) Fe : < 0,2 ppm

    12) Mn : < 0,1 ppm

    13) As : < 0,05 ppm

    14) Pb : < 0,05 ppm15) Cu : < 3,0 ppm

    16) Zn : < 3,0 ppm

    17) F- : 1,5 ppm

    18) pH : 6,5 9

    19) Kesadahan : 5 10 D

    C. Syarat syarat Bakteriologis

  • 5/21/2018 Uji Kualitas Air

    7/62

    1) Angka kuman dalam 1 ml : < 100

    2) Bakteri Coli : Tidak ada dalam 100 ml

    2.2 Parameter Fisika

    2.2.1 Bau dan Warna

    a. Analisis bau

    a.1 TEORI DASAR :

    Analisa bau air yang dilakukan pada percobaan praktikum kimia air ini sifatnya relatif,

    karena untuk pengukurannya dilakukan dengan langsung menggunakan hidung kita

    serta tidak disediakan parameter standar. Maka setiap orang pasti memiliki hasil yang

    berbeda-beda.

    Bau dalam air dapat disebabkan oleh banyak hal, diantaranya adalah adanya

    kandungan logam-logam berat yang terlarut dalam air dan ada juga yang disebabkan

    karena pengaruh mikroorganisme yang hidup di dalam air yang dapat menguraikan airdan zat-zat organik dan anorganik yang menimbulkan bau yang tidak sedap.

    Ilmu Untuk Mencium

    Oleh Tomi Rustamiaji, S.Si

    Institut Teknologi Bandung

    Bau kesuksesan : Teknologi mikrocipBau mempengaruhi banyak dari tingkah laku kita,

    termasuk apa yang kita pilih untuk makan, siapa yang kita rayu, dan bahaya apa yang

    ada di sekitar kita. Namun, dibalik kepentingan dari penciuman, sedikit dari kita yang

    mengetahui ilmu dibalik penciuman. Kini, ilmuwan dari French National Research

    Institute fo Agricultural Research (INRA) di Jouy-en-Josas, Perancis, telah

    menggunakan teknologi mikrochip dalam laboratorium untuk memberikan sedikit

    pencerahan pada proses yang rumit ini.

    Para ilmuwan mengetahui bahwa molekul aroma, atau odoran, terikat ke reseptor

    olfaktori (RO) yang berada dibawah lapisan mukus dibagian atas dari hidung. Terdapat

    lebih dari 350 RO yang berbeda pada manusia, dan kinerja dari kombinasi RO yang

    berbeda ini yang membuat kita mampu untuk mencium berbagai jenis aroma. Odoran

    yang terikat kepada RO membuat suatu reaksi berantai terjadi yang merubah energi

    pengikatan kimia menjadi sebuah sinyal elekrik saraf, dan diterjemahkan oleh otaksebagai bau.

    Yang membingungkan disini adalah bagaimana mekanisme pengikatan pertama dapat

    terjadi. Kebanyakan dari odoran memiliki sifat hidrofobik, sementara mukus yang

    menyelubungi RO dalam hidung adalah cairan. Para ilmuwan telah berasumsi bahwa

    ada spesi lain yang terlibat untuk membantu odoran menembus lapisan mukus ini;

    sebuah protein pengikat odor (PPO). Namun interaksi yang melibatkan ketiga spesi ini

  • 5/21/2018 Uji Kualitas Air

    8/62

    belum pernah didemonstrasikan hingga penelitian ini diterbitkan.

    Kini Jasmina Vidic, Edith Pajot-Augy dan rekan sejawat telah mengamati interaksi

    seperti ini. Menggunakan resonansi permukaan plasmon (RPS) para peneliti telah

    mempelajari pengikatan dari ketiga spesi pada sebuah sensor berbentuk cip. RPS

    menggunakan sinar untuk mengeksitasi permukaan plasmon (gelombang

    elektromagnetik pada sebuah permukaan). Osilasi mereka sangat sensitif terhadap

    perubahan di lingkungan, sehingga proses pengikatan dapat diamati pada cip dengan

    mengukur perubahan pada osilasi ini.

    Seiring dengan penemuan tentang peran transpor pasif dari PPO, ilmuwan Perancis

    menemukan bahwa protein memiliki peran aktif dalam hidung yaitu menjaga aktivitas

    RO pada konsentrasi odoran yang tinggi. Telah ada prediksi dalam arah ini, ujar

    Virdic. Namun dugaan ini belum pernah didemonstrasikan sebelumnya.

    Skema deteksi tanpa penandaan berdasarkan RPS mulai diminati oleh para ilmuwanuntuk studi berbagai macam jenis interaksi reseptor-ligan, ujar Sabine Szuneritz,

    seorang ahli dari Grenoble Institute of Technology, Perancis. Dia mengungkapkan

    bahwa studi ini telah menunjukkan bahwa sensor bioelektronik RPS adalah alat

    ampuh untuk penyelidikan pertanyaan-pertanyaan seputar biologi makhluk hidup

    - Syarat syarat air minum di Indonesia :

    1. Tidak berasa,

    2. Tidak berbau,

    3. Tidak berwarna, dan

    4. Tidak mengandung logam berat.

    Adanya Bau dan Rasa dalam air dapat diakibatkan oleh :

    a Zat-zat anorganik yang terlarut dalam air, misalnya :

    Ion/senyawa sulfida bau sulfur

    Klor yang tinggi bau kaporit

    Ion besi dan mangan yang tinggi bau anyir

    Garam (NaCl) yang tinggi rasa asin

    dll

    b Kontak air dengan zat organik yang lapuk atau penguraian zat organik oleh bakteridalam air, umumnya yang berlangsung secara anaerob.

    a.2 Metode pengujian :

    Secara manual menggunakan indra penciuman.

    a.3 Prinsip penetapan :

    Sejumlah tertentu sampel disiapkan, kemudian baunya dicium dengan menggunakan

    indera penciuman (hidung).

  • 5/21/2018 Uji Kualitas Air

    9/62

    a.4 Prosedur Kerja :

    1. Siapkan beberapa mL sampel.

    2. Cium bau yang terasa oleh indera penciuman

    3. Catat hasilnya.

    b Analisis warna

    b. 1. TEORI DASAR :

    Warna di dalam air dapat disebabkan oleh adanya ion-ion metal alam (besi dan

    mangan), humus, plankton, tanaman air dan buangan industri. Warna air biasanya

    dihilangkan terutama sekali untuk penggunaan air industri dan air minum.

    Warna dalam air dapat disebabkan oleh beberapa hal :

    Karena adanya kontak antara air dengan zatorganik yang sudah lapuk, misalnya

    daun-daunan, kayu dan sebagainya, dalam keadaan tertentu zat organik tersebut akan

    terurai menghasilkan senyawa yang larut dalam air sehingga menyebabkan berwarna. Adanya besi dengan kadar tinggi dalam air akan menyebabkan air berwarna kuning

    Senyawa-senyawa lain, misalnya zat warna yang dipakai dalam pencelupan, air

    limbah yang dikeluarkan pabrik tekstil. Air limbah industri pulp dan kertas mempunyai

    warna yang tinggi karena mengandung senyawa lignin/lindi hitam.

    Derajat warna atau warna air mempunyai persyaratan tertentu di dalam pemakaiannya.

    Sebagai air proses, tidak boleh berwarna, karena akan sangat berpengaruh terhadap

    hasil produksi. Untuk air industry atau air sanitasi, warna dari air tersebut biasanya

    diturunkan. Untuk air minum sebaiknya air mempunyai derajat warna sebanyak 5 unit

    Pt Co.

    Penentuan warna adalah analisa agak kasar. Penyimpangan baku yang relatif untuk

    warna bisa sampai beberapa persen, dan untuk warna nampak sampai 10%.

    Pengawetan Sampel

    Sampel dapat diawetkan di kulkas (suhu 4oC), dan analisa sampel tersebut boleh

    ditunda paling lama 2 hari.

    Pengawetan SampelAnalisis Volume sampel Cara Pengawetan Waktu Pengawetan maksimal

    anjuran/batasan

    Asiditas/alkalinitas 200 Didinginkan 1 / 14 hari

    BOD 1000 Didinginkan 6 jam / 14 hari

    CO2 200 Dianalisis segera 0

    COD 100 ditambah H2SO4 (pH

  • 5/21/2018 Uji Kualitas Air

    10/62

    DHL 500 Didinginkan 28 hari

    Fosfat 100 Penyaringan segera, lalu dibekukan pada -10oC 2 hari

    Kekeruhan 50 Disimpan ditempat gelap 1 / 2 hari

    Kesadahan 500 Ditambah HNO3 (pH

  • 5/21/2018 Uji Kualitas Air

    11/62

    5, 10, 15, 20, 30, 40 Unit Pt.Co (Diencerkan dari larutan standar induk).

    Proses Pengukuran :

    Pengukuran dilakukan secara Kolorimetri dengan membandingkan intensitas warna

    sampel air dengan standar harian

    Alat yang digunakan adalah tabung nessler dan comparator.

    Proses Pengukuran :

    Pengukuran dilakukan secara Kolorimetri dengan membandingkan intensitas warna

    sampel air dengan standar harian.

    Alat yang digunakan adalah tabung nessler dan comparator.2.2.2 pH

    Derajat keasaman atau pH adalah suatu besaran yang menunjukkan kadar sifat asam

    atau basa dari suatu larutan. Derajat keasaman mempengaruhi suasana air dan

    kehidupan alami didalamnya, misalnya kehidupan biologi dan mikrobiologi. pH dari air

    penting ditetapkan, karena air yang mempunyai pH rendah (asam) dan pH tinggi (basa)

    tidak dikehendaki, karena dalam penggunaannya secara teknis akan menyebabkan

    kerusakan pada peralatan. Misalnya pada pipa dan peralatan lainnya. Sebaiknya air

    yang akan digunakan pH-nya netral (pH=7,0).

    Dari kedua sifat larutan ini, asam dan basa, dibedakan lagi dalam dua bentuk, yaitu

    asam / basa kuat dan asam / basa lemah. Harga derajat keasaman berkisar antara 7

    14 skala pH.

    pH dalam air dipengaruhi oleh :

    a) Banyaknya mineral/zat terlarut

    b) CO2 terlarut

    c) Aktivitas bakteri

    d) Turbulensi air

    e) Limbah buangan manusiaPengaruh pH :

    korosi (melarutkan logam)1) Terlalu asam/basa

    2) Banyak biota air yang mati pada pH9)

    Secara Potensiometri, dengan pH meter.

    Setiap kali melakukan pengukuran pH sampel air harus dilakukan kalibrasi terhadap

    alat pH-meter yang akan digunakan, dan mengukur suhu cairan baik untuk standar

  • 5/21/2018 Uji Kualitas Air

    12/62

    maupun untuk sampel air yang akan diperiksa dengan menggunakan alat termometer.

    Pada alat pH-meter, umumnya dilengkapi dengan :

    - Penunjuk angka pH

    - Pengatur suhu

    - Pengatur masuk arus listrik

    - Pengatur kalibrasi

    - Elektroda

    pH air secara teoritis dapat bervariasi antara 0 sampai dengan 14. pH air di Indonesia

    pada umumnya bervariasi antara 2 sampai dengan 10. Data pH diragukan

    keabsahannya apabila pH air kurang dari 2 atau lebih dari 10. . (Pusat Litbang Sumber

    Daya Air)

    2.2.2.1 Metode Pengujian :

    1. Secara kolorimetri menggunakan kertas pH2. Secara kolorimetri dengan komparator dengan menggunakan larutan-larutan

    indikator.

    Adapun indikator yang biasanya dipakai adalah :

    Indikator Trayek pH Perubahan Warna Konsentrasi

    Brom Kresol Puple

    Brom Timbel Biru

    Fenol Merah

    Fenolptalein 5,2 6,8

    6,0 7,6

    6,8 8,4

    8,2 10,00 Kuning Ungu

    Kuning Biru

    Kuning Merah

    Tak Berwarna Merah 0,04 %

    0,04 %

    0,04 %

    0,05 %3. Secara potensiometri, dengan pH meter.

    2.2.2.2 Prinsip Penetapan :

    Secara potensiometri dengan alat pH meter

    Elektroda mempunyai kemampuan untuk mengukur konsentrasi H+ dalam air secara

    elektrometri dengan cara mengukur GGL sel. pH-meter dapat juga digunakan untuk

    menentukan pH air yang biasanya tidak dapat ditetapkan dengan menggunakan

  • 5/21/2018 Uji Kualitas Air

    13/62

    komparator karena ada hal-hal seperti kekeruhan yang tinggi dan tidak dapat

    dihilangkan dengan cara penyaringan.

    Secara kolorimetri dengan menggunakan kertas pH

    Membandingkan warna yang terjadi pada kertas pH yang telah dicelupkan ke dalam

    contoh air dengan warna standar dari kertas pH tersebut.

    Secara kolorimetri dengan alat komparator dengan menggunakan larutan-larutan

    indikator

    Membandingkan warna antara contoh air dengan air aquadest (standar), dimana

    masing-masing telah diberi larutan indikator penunjuk pH dalam tabung komparator.

    2.2.2.3 Prosedur Kerja :

    2.2.2.3.1Secara kolorimetri dengan kertas pH

    Celupkan sepotong kertas pH ke dalam contoh air yang akan diperiksa. Hasilnya kertas

    akan berwarna. Sesuaikan dengan warna yang tercantum pada warna-warna standar.

    2.2.2.3.2 Secara Kolorimetris dengan comparator dengan menggunakan larutan-

    larutan indikator

    Metode :kolorimetri

    perbandingan intensitas warna

    Prosedur :

    1. Masukkan ke dua tabung comparator Masing-masing 10 mL contoh air

    2. Ke dalam salah satu tabung tambahkan 0,5 mL larutan indikator kemudian kocok

    3. Samakan warna yang terjadi dengan skala warna comparator (disc) yang sesuai

    dengan indikator yang dipakai dengan menempatkan tabung yang dibubuhi indikator

    di sebelah kanan yang tidak dibubuhi.

    4. pH-nya dapat dibaca sesuai angka yang ditunjukkan.

    2.2.2.3.3 secara potensiometri,dengan pH meter.

    Metode : Potensiometri

    Alat : pH meter

    Persiapan Potensiometer

    1. Hubungkan potensiometer dengan power suplay 220 watt,

    2. Nyalakan alat potensiometer,

  • 5/21/2018 Uji Kualitas Air

    14/62

    3. Kemudian akan muncul menu utama.

    Kalibrasi alat pH-meter

    1. Siapkan larutan buffer pH 4,7, dan 10.

    2. Cuci elektroda dengan aquadest sebanyak 3 kali, keringkan dengan kertas tissue.

    3. Masukkan elektroda ke dalam larutan buffer pH 4,01. Atur suhu sesuai suhu

    percobaan. Kemudian tekan cal untuk memulai mengkalibrasi.

    4. Tekan tombol read untuk membaca.

    5. Lihat hasilnya dan sesuaikan dengan standar buffer pH.

    6. Lakukan pengerjaan yang sama untuk buffer pH 7.00 dan 9.21.

    7. Bilas kembali sel elektroda dengan aquadest dan simpan pada tempatnya.

    Prosedur :

    1. Masukkan contoh air pada gelas kimia

    2. Kalibrasi Alat pH meter3. Bilas Elektroda dengan aquadest

    4. Keringkan dengan tissue

    5. Masukkan Elektroda ke gelas kimia yang berisi contoh air

    6. Baca skala yang ditunjukkan pH meter jika angkanya sudah konstan.

    2.2.3 DHL (Daya Hantar Listrik)

    2.2.3.1 TEORI DASAR

    Daya hantar listrik didefinisikan sebagai kemampuan dari air untuk menghantarkan

    arus listrik. Kemampuan ini tergantung pada konsentrasi zat yang terionisasi dalam

    air. Jenis ion, valensi dan konsentrasi relatif, suhu mempengaruhi besarnya daya

    hantar listrik (DHL). Absorbsi CO2 dari udara oleh air dapat menyebabkan DHL

    bertambah/naik.

    Kation yang diperhitungkan dalam proses pengawasan ini adalah kalsium (Ca2+),

    magnesium (Mg2+), natrium (Na+), dan kalium (K+). Anionnya adalah bikarbonat

    (HCO3-), sulfat (SO42-), klorida (Cl-), dan nitrat (NO3-). Pengawasan terhadap

    hubungan antara DHL dengan jumlah kation/anion dilakukan sebagai berikut :

    a) kadar tiap-tiap parameter yang satuannya mg/L dibagi dengan berat ekivalennya

    sehingga menjadi miliekivalent/L;b) hasil perhitungan jumlah miliekivalen/L baik kation maupun anion masing-masing

    harus 1/100 x nilai DHL;

    c) apabila jumlah miliekivalen/L baik kation maupun anion tidak sesuai dengan rumus

    di atas, data tersebut diragukan keabsahannya;

    d) batas toleransi yang masih diterima adalah sesuai rumus berikut :

    mhos/cm)S atau 100 x miliekivalen kation/anion = k x DHL (dalam satuan

  • 5/21/2018 Uji Kualitas Air

    15/62

    Catatan 2 : Nilai k antara 0,9 sampai dengan 1,1

    Apabila hubungan antara kedua parameter tersebut tidak sesuai dengan rumus di atas,

    data tersebut diragukan keabsahannya. (Pusat Litbang Sumber Daya Air)

    2.2.3.2 Metode Pengujian

    Metode : Konduktometri (menggunakan alat conduktivity-meter, model CN-2A).

    Pengukuran Conductivity

    Alat : Konduktometer

    Satuan :

    mho/cm atau S/cm

    100 S/m 1 mho/cm

    1 mho/m 1 S/m

    2.2.3.3 Prinsip kerja:Pengukuran DHL berdasarkan kemampuan kation dan anion untuk menghantarkan

    arus listrik yang dialirkan ke dalam air. Energi yang dihasilkan dapat dibaca langsung

    pada alat dengan satuan micromhos/ cm.

    2.2.3.4 Prosedur kerja :

    1. Hidupkan aliran listrik dengan menekan tombol power dan biarkan untuk beberapa

    saat, agar terjadi fluktuasi tegangan listrik.

    2. Bersihkan elektroda dengan air suling, kemudian keringkan dengan tissue.

    3. Elektroda dimasukkan ke dalam contoh air yang akan diukur, sesuaikan

    temperaturnya (misalnya: bila temperatur air 260C, maka putarlah tombol DEG0C

    pada angka 26).

    4. Kalibrasi dengan menggunakan larutan standar (KCl 0,01 N 1413 mmho/cm)

    5. Jarum penunjuk yang menyimpang ke sebelah kiri dari skala tengah dikembalikan ke

    skala tengah dengan menekan tombol 1, kemudian tombol 2 dan seterusnya sampai

    tombol 4, sehingga jarum penunjuk betul-betul tepat di skala tengah.

    6. Baca dan catat angka yang ditunjukkan oleh angka digital dalam satuan

    mikrohos/cm.

    Pengukuran DHL :1) Ukur temperatur sampel air.

    2) Putar pengatur suhu sesuai dengan suhu sampel air.

    3) Elektroda yang bersih dimasukkan ke dalam contoh air. Jarum penunjuk yang

    menyimpang ke sebelah kiri dari skala tengah dikembalikan ke skala tengah dengan

    memutar tombol 1, kemudian tombol 2 dan seterusnya sampai tombol 4, sehingga

    jarum penunjuk betul-betul tepat diskala tengah. Baca dan catat angka yang

  • 5/21/2018 Uji Kualitas Air

    16/62

    ditunjukkan oleh angka digital dalam satuan micromhos/ cm.

    2.2. 4 SUHU

    2.2.4.1 TEORI DASAR :

    Suhu air sangat berpengaruh terhadap keberlangsungan proses biologi dan kimia

    dalam sistem aquatik.

    Pengaruh yang ditimbulkan :

    1. DO level

    2. Proses fotosintesis

    3. Metabolisme organisme air

    4. Reproduksi dan perpindahan beberapa spesies.

    Temperatur air secara teoritis dapat bervariasi antara 0oC sampai dengan100oC.

    Temperatur air di Indonesia pada umumnya bervariasi antara 15oC sampai dengan

    35oC. Data temperatur diragukan keabsahannya apabila nilai temperatur kurang dari15oC atau lebih dari 35oC.

    (Pusat Litbang Sumber Daya Air)

    2.2.4.2 METODE PENGUJIAN :

    Metode : Pengukuran langsung

    2.2.4.3 Prinsip kerja :

    Prinsip : Di dasarkan pada pengukuran suhu pada Termometer.

    Alat : Termometer

    2.2.4.4 Cara Kerja :

    1. Masukkan contoh sampel air dalam gelas kimia.

    2. Pastikan termometer yang akan digunakan dalam keadaan bersih dan kering.

    3. Masukkan Termometer yang bersih dan kering kedalam gelas kimia yang berisi

    contoh sampel air.

    4. Biarkan selama 3

    5. Baca dan catat suhu yang tertera pada termometer.

    2.2. 5 Analisis Padatan(solid analisis

    < 10-9 m

  • 5/21/2018 Uji Kualitas Air

    17/62

    a) Total Padatan / Total Solid ( TS )

    Definisi Total Solid : Semua zat yang tersisa sebagai residu, jika sampel air dikeringkan

    pada suhu tertentu.

    Gangguan yang sering terjadi pada saat penetapan Total Solid:

    harus dihilangkanPartikel besar yang tidak homogen mengambang dan tenggelam

    harus ikut dianalisisMinyak dan lemak

    penimbangan harus segera.Garam-garam yang telah mengendap sangat higroskopis

    Metode : Gravimetri

    Prinsip : Sampel air diuapkan di atas penangas air dalam pingan yang telah diketahui

    beratnya. Setelah kisat lalu dipanaskan dalam oven 103-105oC, kemudian ditimbangsampai konstan.

    Cara kerja

    Pinggan Penguapan dikonstankan

    Pengukuran sampel air (sampel diperkirakan mengandung padatan 50-250 mg).

    Perkiraan ini didapat dari harga DHL.

    Perkiraan TS = 4/3 x DHL

    TS = 4/3 x 375 = 500 mg/LMisal : DHL = 375 mmho

    Maka contoh air yang harus diukur paling sedikit :

    50/500 x 1000 mL = 100 mL

    kisatkanMasukkan dalam pinggan

    Penimbangan ResiduPengeringan (103-105 C)

    b) Zat Tersuspensi / Suspended Solid

    Definisi TSS : Semua zat padat yang tidak larut dalam air (partikel kasar)

    Gangguan yang mungkin terjadi :

    Tersumbatnya pori-pori penyaring turunnya filtrat menjadi lama sampel dapat

    disaring memakai labu isap dan pompa vakum

    Bila terlalu banyak zat tersuspensi pada penyaring banyak air yang terperangkapdalam padatan perlu waktu lama saat pengeringan padatan tersuspensi.

    Metode : Gravimetri

    Prinsip :

    Sampel air disaring dengan penyaring yang diketahui beratnya dan padatan yang

    tersaring dikeringkan dalam oven 10301050 C kemudian ditimbang sampai konstan

    Cara Kerja

  • 5/21/2018 Uji Kualitas Air

    18/62

    Saring sejumlah tertentu air ( misal 100 mL ) dengan Cawan Gouch, Kaca Masir

    dengan pori-pori 0,5 mikron (mm) atau menggunakan Millipored 0,45 mikron.

    Setelah selesai penyaringan, masukkan penyaring dengan endapannya ke dalam oven

    selama 1 jam.

    Dinginkan dalam eksikator, kemudian timbang sampai diperoleh berat yang konstan.

    c) Penetapan Residu Terlarut / Total Dissolved Solid

    Definisi TDS : Semua zat padat yang larut sempurna dalam air (termasuk juga partikel

    koloid)

    Gangguan yang dapat terjadi :

    Air yang kadar mineralnya tinggi (Ca2+, Mg2+, Cl- dan SO42-) dapat bersifat

    higroskopis memerlukan pemanasan yang lama, pendinginan dalam eksikator yang

    baik, dan penimbangan yang cepat

    2.2.6 KekeruhanKekeruhan dalam air diakibatkan oleh :

    Zat-zat yang tersuspensi dalam air (bentuk koloid sampai bentuk lumpur kasar)

    berupa senyawa organik atau pun anorganik (misal : Fe2O3, MnO2)

    Tinggi rendahnya kekeruhan (yang nampak) dipengaruhi oleh turbulensi dalam air

    Penentuan Kekeruhan dalam air :

    Ada 3 metode pengukuran yang dapat digunakan :

    1. Metode Nefelometri (unit kekeruhan NTU)

    2. Metode Hellige Turbidimetri (unit kekeruhan SiO2)

    3. Metode Visual (unit kekeruhan Jackson)

    Metode : Turbidimetri

    PROSES PENGUKURAN TURBIDITAS (Turbidity) TNT-100

    Alat ukur : turbidimeter,

    Prinsip kerjanya :

    Interaksi cahaya dengan partikel penyebab kekeruhan. Pengukuran cahaya yang

    dipendarkan oleh zat zat tersuspensi.Cara Kerja

    1. kalibrasi alat turbidi

    Turbiditas 0 NTU2. Siapkan larutan blanko (biasanya aquadest)

    3. Setelah itu ukur turbiditas sampel air

    2.3 PARAMETER KIMIA

  • 5/21/2018 Uji Kualitas Air

    19/62

    2.3.1 Asiditas dan Alkalinitas

    2.3.1.1 TEORI DASAR :

    Asiditas (keasaman) ialah banyaknya basa yang diperlukan untuk menetralkan asam

    dalam air. Pada umumnya yang menyebabkan keasaman dalam air adalah:

    1. Karbon dioksida (CO2), umumnya terdapat dalam air alam, tetapi juga terdapat

    dalam air permukaan dimana CO2 diserap dari udara jika tekanan CO2 dalam air lebih

    kecil dari tekanan CO2 dalam udara. CO2 juga terdapat dalam air, karena proses

    dekomposisi (oksidasi) zat organik oleh mikroorganisme. Umumnya juga terdapat

    dalam air yang telah tercemar.

    2. Asam mineral, umumnya terdapat dalam air limbah industri pengolahan logam

    atau industri pembuatan senyawa kimia. Kadang-kadang juga asam mineral terdapat

    dalam air alam.

    3. Asam humus, umumnya terdapat dalam air rawa atau danau karena adanya rumput-rumputan atau tumbuh-tumbuhan yang hidup dalam air tersebut melepaskan senyawa

    asam dan warna.

    Air yang bersifat asam dapat mempercepat pengkaratan dari pipa-pipa air, apabila

    pipa-pipa tersebut tidak terbuat atau dilindungi bahan antikarat. Untuk

    menanggulangi hal tersebut di atas, maka pH air harus dinaikkan, dengan

    menambahkan senyawa kimia yang bersifat basa, pada umumnya digunakan kapur

    (CaO).

    Alkalinitas (kebasaan) ialah banyaknya asam yang diperlukan untuk menetralkan basa

    dalam air. Pada umumnya yang menyebabkan air bersifat basa ialah bikarbonat(HCO3-

    ), karbonat(CO32-). Hidroksida (OH-) dan senyawa lain yang menyebabkan air bersifat

    basa, tetapi hanya sedikit terdapat dalam air, sehingga dapat diabaikan. Kombinasi

    campuran yang mungkin terdapat dalam air ialah:

    1. OH- + CO32-

    2. HCO3- + CO32-

    Perhitungan Asiditas

    1. Jika p > q, asiditas disebabkan oleh H+ & CO2

    H+ (mg/L) = x [(p x NNaOH) (q x NHCl)] x 1CO2 (mg/L) = x q x NHCl x 44

    Reaksi yang terjadi :

    I. H+ + OH- H2O atau CO2 + OH- HCO3-

    II. HCO3- + H+ CO2 + H2O

    2. Jika p< q, asiditas disebabkan oleh HCO3 & CO2

    CO2 (mg/L) = x p x NNaOH x 44

  • 5/21/2018 Uji Kualitas Air

    20/62

    HCO3- (mg/L) = x [(q x NHCl) - (p x NNaOH)] x 61

    Reaksi yang terjadi :

    I. CO2 + OH- HCO3-(*)

    II. HCO3- / HCO3-(*) + H+ CO2 + H2O

    3. Jika p = q, asiditas disebabkan oleh CO2

    CO2 (mg/L) = x p x NNaOH x 44 atau

    CO2 (mg/L) = x q x NHCl x 44

    Reaksi yang terjadi :

    I. CO2 + OH- HCO3-(*)

    II. HCO3-(*) + H+ CO2 + H2O

    4. Jika p=0, q ada, asiditas disebabkan oleh HCO3-

    HCO3- (mg/L) = x (q x NHCl) x 61

    Reaksi yang terjadi :I. (langsung TA)

    II. HCO3- + H+ CO2 + H2 O

    5. Jika p ada, q=0, asiditas disebabkan oleh H+

    H+ (mg/L) = x (p x NNaOH) x 1

    Reaksi yang terjadi :

    I. H+ + OH- H2O

    II. (Langsung TA)

    PERHITUNGAN ALKALINITAS

    1. Jika p > q, asiditas disebabkan oleh OH+ & CO32-

    OH-(mg/L) = x (p q) x NHCl x 17

    CO32- (mg/L) = x q x NHCl x 60

    Reaksi yang terjadi :

    I. OH- + H+ H2O dan CO32- + H+ HCO3-

    II. HCO3- + H+ CO2 + H2O

    2. Jika p < q, alkalinitas disebabkan oleh CO32- & HCO3-

    CO32- (mg/L) = x p x NHCl x 60

    HCO3- (mg/L) = 00 x (q p) x NHCl)] x 61Reaksi yang terjadi :

    I. CO32- + H+ HCO3-(*)

    II. HCO3- / HCO3-(*) + H+ CO2 + H2O

    Alkalinitas dihitung juga sebagai mg/L CaCO3

    Tahapan pengerjaan sama 2 tahapan titrasi, dengan larutan standar adalah HCl

    atau H2SO4 Tahap 1 indikator ppt, tahap 2 metil jingga

  • 5/21/2018 Uji Kualitas Air

    21/62

    Keterangan :

    (p+q) = Volume total larutan standar asam, mL

    Asiditas dan alkalinitas sangat bergantung pada pH air. Pengawasan keabsahan data

    dapat dilakukan berdasarkan ketentuan sebagai berikut :

    a) asiditas sebagai H+ hanya ada dalam air pada pH lebih kecil dari 4,5;

    b) asiditas sebagai CO2 hanya ada dalam air pada pH antara 4,5 sampai dengan 8,3;

    c) alkalinitas sebagai HCO3- hanya ada dalam air pada pH antara 4,5 sampai dengan

    8,3;

    d) alkalinitas sebagai CO32- hanya ada dalam air pada pH lebih besar dari 8,3;

    e) alkalinitas sebagai hidroksida hanya ada dalam air pada pH lebih besar dari 10,5.

    Data di luar ketentuan di atas merupakan data yang diragukan keabsahannya.

    (Pusat Litbang Sumber Daya Air)

    Untuk menentukan apakah percobaan Asiditas/Alkalinitas yang harus kita kerjakanmaka kita harus menambahkan indikator Fenolptalein ke dalam contoh air (10 mL

    contoh air + 0,5 mL Fenolptalein). Jika contoh air berwarna ungu merah maka pHnya

    basa sehingga yang dilakukan adalah alkalinitas. Sedangkan bila larutan tidak

    berwarna ungu merah (tetap warna asli dari contoh air) maka pH asam sehingga yang

    dilakukan adalah asiditas.

    Setelah dicek dengan cara di atas , pada praktikum kali ini kami melakukan praktikum

    asiditas.

    2.3.1.2 Metode Penetapan :

    Titrasi penetralan (Alkalimetri dan Asidimetri) dengan menggunakan NaOH standar dan

    HCl standar sebagai larutan penitrasi.

    2.3.1.3 Prinsip Penetapan :

    Asidimetri : Sejumlah tertentu sampel air dititrasi pertama-tama oleh NaOH standar

    dengan indikator fenolpthalein dari tidak berwarna menjadi ros pucat, kemudian

    tambahkan indikator metil jingga dan titrasi kembali dengan larutan HCl standar

    sampai larutan berwarna jingga merah.

    Alkalimetri: Sejumlah tertentu sampel air dititrasi pertama-tama oleh larutan HClstandar dengan indikator fenolphtalein dari warna merah muda menjadi ros pucat,

    kemudian tambahkan indikator metil jingga kemudian titrasi kembali dengan larutan

    HCl standar sampai larutan berubah warna dari kuning menjadi jingga merah.

    2.3.1.4 Pereaksi :

    1. Larutan standar HCl 0,1 N

    Dibuat dengan mengencerkan 8,85 ml HCl pekat (12 N) dilarutkan dengan aquadest

  • 5/21/2018 Uji Kualitas Air

    22/62

    hingga 1 Liter. Kemudian larutan tersebut di standarkan terhadap zat baku primer

    boraks atau soda abu.

    2. Larutan standar NaOH 0,1 N

    Dibuat dengan melarutkan 4,2 g NaOH dalam aquadest dingin yang telah dididihkan

    hingga 1 L. Kemudian larutan tersebut di standarkan terhadap zat baku primer asam

    oksalat (H2C2O4.2H2O).

    3. Larutan indikator fenolpthalein 0,1 %

    0,1 g fenolpthalein dilarutkan dalam 100 ml alkohol 70 % kemudian dinetralkan

    dengan NaOH 0,1 N sampai berwarna rose.

    4. Larutan indikator metil jingga 0,1 %

    0,1 g metil jingga dilarutkan dalam 100 ml aquadest.

    2.3.1.5 Prosedur penetapan :CO2 asam mineral dan asam humus dalam air dinetralkan oleh larutan standar basa

    dan asam dengan indikator ppt dan metil jingga.

    Titrasi dilakukan dalam 2 tahap :

    Tahap 1

    Sampel dititrasi dengan larutan standar NaOH 0,1 N, indikator phenolptalein.

    Perubahan warna saat TA dari tidak berwarna menjadi ros pucat

    (jika Volume NaOH = p mL)

    Tahap 2

    Sampel tadi dilanjutkan dititrasi dengan larutan standar HCl 0,1 N, indikator metil

    jingga. Perubahan warna saat TA dari kuning menjadi jingga merah

    (jika Volume HCl = q mL)

    Kesadahan (Total, Tetap, dan Sementara), Kalsium (Ca), dan Magnesium (Mg).

    2.3.2.1 TEORI DASAR :

    Kesadahan air disebabkan oleh ion-ion Ca dan Mg. Jadi air yang mempunyai

    kesadahan tinggi mengandung banyak garam-garam Ca dan Mg. Pada umumnya air

    yang terdapat di alam adalah sadah. Kandungan ion Ca dan Mg dalam air dapatdipengaruhi oleh 2 faktor, yaitu :

    1. Faktor Alamiah : karena sumber air berdekatan dengan lokasi penambangan batu

    kapur atau pun daerah tersebut dekat lokasi persawahan.

    2. Faktor non alamiah : karena ditambahkan dalam air baik disengaja atau pun tidak

    sengaja.

    Kesadahan merupakan petunjuk kemampuan air untuk membentuk busa apabila

  • 5/21/2018 Uji Kualitas Air

    23/62

    dicampur dengan sabun. Pada air berkesadahan rendah, air akan dapat membentuk

    busa apabila dicampur dengan sabun, sedangkan pada air berkesadahan tinggi tidak

    akan terbentuk busa. Kesadahan sangat penting artinya bagi para akuaris karena

    kesadahan merupakan salah satu petunjuk kualitas air yang diperlukan bagi ikan.

    Tidak semua ikan dapat hidup pada nilai kesadahan yang sama. Dengan kata lain,

    setiap jenis ikan memerlukan prasarat nilai kesadahan pada selang tertentu untuk

    hidupnya. Disamping itu, kesadahan juga merupakan petunjuk yang penting dalam

    hubungannya dengan usaha untuk memanipulasi nilai pH.

    Kesadahan pada umumnya dinyatakan dalam satuan ppm (part per million/ satu

    persejuta bagian) kalsium karbonat (CaCO3), tingkat kekerasan (0D), atau dengan

    menggunakan konsentrasi molar CaCO3. Satu satuan kesadahan Jerman atau 0D sama

    dengan 10 mg CaO (kalsium oksida) per liter air. Di Amerika, kesadahan pada

    umumnya menggunakan satuan ppm CaCO3, dengan demikian satu satuan Jerman(0D) dapat diekspresikan sebagai 17.8 ppm CacO3. Sedangkan satuan konsentrasi

    molar dari 1 mili ekuivalen = 2.8 0D= 50 ppm. Perlu diperhatikan bahwa kebanyakan

    teskit pengukur kesadahan menggunakan satuan CaCO3. Untuk lebih jelasnya bacalah

    petunjuk pembacaan pada teskit yang anda miliki untuk mengetahui dengan pasti

    satuan pengukuran yang digunakan, untuk menghindari terjadinya kesalahan

    pembacaan.

    Berikut adalah criteria selang kesadahan yang biasa dipakai

    pH 0D Keterangan

    0 4 0 70 sangat rendah (sangat lunak)

    4 8 70 140 rendah (lunak)

    8 12 140 210 Sedang

    12 18 210 320 agak tinggi (agak keras)

    18 30 320 530 tinggi (keras

    Ada dua macam kesadahan, yaitu:

    1. Kesadahan Sementara (temporer hardness)

    2. Kesadahan Tetap (permanent hardness)

    Kesadahan sementara adalah kesadahan karena adanya garam bikarbonat dari Ca danMg, sedangkan kesadahan tetap karena adanya garam non karbonat seperti sulfat,

    klorida, nitrat. Kesadahan sementara dan tetap disebut kesadahan jumlah (total

    hardness).

    Kesadahan sementara dapat dihilangkan dengan memanaskannya, karena CO2 akan

    keluar dan meninggalkan garam karbonat yang tidak larut (mengendap). Air yang

  • 5/21/2018 Uji Kualitas Air

    24/62

    mempunyai kesadahan tinggi tidak baik apabila dipergunakan sebagai air pengisi ketel

    (boiler feed) maupun dalam pencucian dengan sabun.

    Penentuan Kesadahan

    a Tinjauan penyebab kesadahan adalah Ca2+ dan Mg2+

    b Kesadahan ditetapkan melalui metode titrimetri Kompleksometri

    c Larutan baku EDTA (Ethylen Diamin Tetra Acetic Acid)/Complexon II/TItriplex II

    Complexon III/Titriplex III/Na-EDTA

    d Satuan Kesadahan :1. Derajat Kesadahan Jerman = oD (Germany Degree)

    1oD = 10 mg CaO/L

    2. Derajat Kesadahan Francis = oF (French Degree)

    1oF = 10 mg CaCO3/L

    3. Derajat Kesadahan Inggris = oE (England Degree)

    1oE = 1 g/gallon = 14,3 mg CaCO3/L

    3. Derajat Amerika (Dalam mg CaCO3/L)

    2.3.2.2 Metode Penetapan :

    Metode Penetapan kesadahan tetap,sementara,Total& Ca :

    Titrimetri ( kompleksometri ) dengan menggunakan EDTA standar sebagai larutan

    penitrasi.

    Kesadahan Sementara

    Metode : cara tidak langsung

    Penentuan Kesadahan Magnesium

    METODE : Cara tidak langsung

    2.3.2.3 Prinsip penetapan :

    Kesadahan TotalPrinsip

    Sejumlah tertentu sampel air yang mengandung Ca2+ dan Mg2+ dititrasi oleh larutan

    standar EDTA pada pH 10 dengan indikator EBT. Pada saat TA terjadi perubahan warna

    TA dari warna merah anggur menjadi biru jelas.

    Kesadahan tetap

    Prinsip

  • 5/21/2018 Uji Kualitas Air

    25/62

    Sejumlah tertentu sampel air dipanaskan terlebih dahulu untuk menghilangkan ion

    bikarbonat,selama 15 menit, Ca2+ dan Mg2+ dalam sentrat dititrasi oleh larutan

    standar EDTA pada pH 10 dengan indikator EBT. Pada saat TA terjadi perubahan warna

    dari merah anggur ke biru

    Kesadahan Sementara

    Prinsip : Diperhitungkan dari hasil pengurangan kesadahan total dengan kesadahan

    tetap.

    Kesadahan Ca

    Prinsip

    Sejumlah tertentu Ca2+ dalam sampel air dibasakan dengan NaOH kemudian dititrasi

    dengan larutan EDTA standar pada pH > 11 dengan indikator Murexide. Pada saat TA

    terjadi perubahan warna dari merah ke ungu biru.

    TE : mol Ca2+ = mol EDTA.Penentuan Kesadahan Magnesium

    Prinsip : Didapatkan dari hasil pengurangan kesadahan total dan kesadahan Ca2+

    2.3.2.4 Pereaksi :

    1. Larutan standar EDTA (compexion III) 0,0179 M ~ 6,6429 g/L.

    Dibuat dengan melarutkan 6,6429 g dinatrium etilen diamin tetra asetat

    (Na2H2C10H12O8N2.2H2O) dalam aquadest hingga 1liter. BM = 372.

    2. Indikator Eriochrome Black T (EBT) 1 % dalam NaCl pa.

    0,5 g EBT digerus dalam mortar dengan 50 g NaCl sampai didapat campuran yang

    homogen.

    3. Larutan buffer pH = 10

    Bila Mg-EDTA tersedia, 16,9 NH4Cl dilarutkan dalam 143 ml NH4OH pekat dalam labu

    seukuran 250 ml. Ditambahkan 1,25 g Mg-EDTA, kemudian diencerkan dengan

    aquadest hingga tanda batas dan simpan dalam botol plastik bertutup rapat.

    Bila Mg-EDTA tidak tersedia, 1,179 g Na2EDTA dan 0,780 g MgSO4.7H2O (0,644 g

    MgCl2.6H2O) dalam 50 ml aquadest, larutan ini dimasukan ke dalam labu labu

    seukuran 250 ml yang berisi 16,9 NH4CL dan 143 ml NH4OH pekat, diaduk, kemudian

    diencerkan dengan aquadest hingga tanda batas, dan simpan dalam botol plastik yangbertutup rapat.

    Pereaksi

    1. Larutan standar EDTA (compexion III) 0,0179 M ~ 6,6429 g/L.

    Dibuat dengan melarutkan 6,6429 g dinatrium etilen diamin tetra asetat

    (Na2H2C10H12O8N2.2H2O) dalam aquadest hingga 1liter. BM = 372.

    2. Larutan NaOH 3 N

  • 5/21/2018 Uji Kualitas Air

    26/62

    Larutkan 120 gram NaOH dalam aquadest hingga 1 Liter.

    3. Indikator Murexide 1 % dalam NaCl pa.

    0,5 gram Murexide digerus dalam mortar dengan 50 gram NaCl sampai terjadi

    campuran yang homogen.

    2.3.2.5 Prosedur Kerja :

    Kesadahan Total

    Cara Kerja

    1. Ambil 100 mL sample, masukkan ke dalam labu erlenmeyer 250 mL

    2. Tambah 2 mL larutan buffer pH = 10

    3. Tambah 50 mg indikator EBT

    4. Titrasi dengan larutan standar EDTA sampai terjadi perubahan warna dari

    Merah menjadi biru.

    Kesadahan tetapCara Kerja

    1. Ambil 100 mL sample

    2. Masukkan ke dalam erlenmeyer, tutup dengan corong

    3. Penaskan selama 15 menit.

    4. Dinginkan. Saring, tampung filtratnya

    5. Tambahkan 2 mL larutan buffer pH 10, dan 50 mg EBT

    6. Titrasi dengan larutan EDTA standar sampai terjadi perubahan warna dari

    merah anggur menjadi biru.

    Kesadahan Sementara

    Secara tidak langsung

    Kesadahan Ca

    Cara Kerja

    1. ambil 100 mL sample

    2. Tambahkan 1 mL NaOH 3N

    3. Tambahkan 50 mg Murexide

    4. Dititrasi dengan EDTA standar sampai terjadi perubahan warna dari merah

    menjadi ungu biru.Penentuan Kesadahan Magnesium

    Secara tidak langsung

    Penggunaan paramater kesadahan total sering sekali membingungkan, oleh karena itu,

    sebaiknya penggunaan parameter ini dihindarkan.

    2.3.3 Penetapan Dissolved Oksigen (DO)

    2.3.3.1 TEORI DASAR :

  • 5/21/2018 Uji Kualitas Air

    27/62

    Oksigen Terlarut (Do)

    Oksigen terlarut (Dissolved Oxygen =DO) dibutuhkan oleh semua jasad hidup

    untukpernapasan, proses metabolisme atau pertukaran zat yang kemudian

    menghasilkan energi untuk pertumbuhan dan pembiakan.Disamping itu, oksigen juga

    dibutuhkan untuk oksidasi bahan-bahan organik dan anorganik dalam proses aerobik.

    Sumber utama oksigen dalam suatu perairan berasal sari suatu proses difusi dari udara

    bebas dan hasil fotosintesis organisme yang hidup dalam perairan

    tersebut(SALMIN,2000).http://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.

    pdf.

    Kelarutan oksigen (O2) dalam air sangat dipengaruhi oleh temperatur, tekanan udara

    dan gerak dari pada air (turbulensi). Oksigen yang terdapat dalam air ini sangat

    diperlukan untuk kehidupan tumbuh-tumbuhan dan hewan air.

    Kadar oksigen dalam air juga tergantung kepada bersih atau kotornya air itu. Makinkotor air tersebut makin kecil kadar oksigen dalam air itu. Oleh karena itu oksigen

    juga sering dipakai sebagai parameter untuk menentukan tingkat pencemaran pada

    air, khususnya untuk air limbah. Untuk keperluan air minum dan kehidupan aquatik,

    makin tinggi kadar oksigen makin baik, tetapi untuk keperluan secara teknik (misalnya

    untuk pengisian ketel uap) kadar oksigen yang tinggi tidak dikehendaki.

    Kandungan oksigen terlarut (DO) minimum adalah 2 ppm dalam keadaan normal dan

    tidak tercemar oleh senyawa beracun (toksik). Kandungan oksigen terlarut ini mum ini

    sudah cukup mendukung kehidupan organisme (SWINGLE,

    1968).http://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdf

    ANALISIS OKSIGEN TERLARUT (DO)

    Oksigen terlarut dapat dianalisis atau ditentukan dengan 2 macam cara, yaitu :

    1. Metoda titrasi dengan cara WINKLER

    2. Metoda elektrokimia

    1. Metoda titrasi dengan cara WINKLER

    Metoda titrasi dengan cara WINKLER secara umum banyak digunakan untuk

    menentukan kadar oksigen terlarut. Prinsipnya dengan menggunakan titrasi iodometri.

    2. Metoda elektrokimiaCara penentuan oksigen terlarut dengan metoda elektrokimia adalah cara langsung

    untuk menentukan oksigen terlarut dengan alat DO meter. Prinsip kerjanya adalah

    menggunakan problem oksigen yang terdiri dari katoda dan

    anoda yang direndam dalarn larutan elektrolit.

    2.3.3.2 Metode Penetapan :

    Metode : Titrimetri (Iodometri)/Titrasi winkler.

    http://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdfhttp://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdfhttp://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdfhttp://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdfhttp://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdfhttp://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdfhttp://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdfhttp://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdfhttp://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdfhttp://www.oseanografi.lipi.go.id/download/ose_xxx3_oksig.pdf
  • 5/21/2018 Uji Kualitas Air

    28/62

    2.3.3.3 Prinsip Pengerjaan :

    Oksigen dalam sampel akan mengoksidasi Mn2+ yang ditambahkan pada kondisi

    basa, sehingga terbentuk endapan MnO2. Dengan penambahan H2SO4 dan KI, maka

    akan dibebaskan I2 yang ekivalen dengan O2 terlarut. I2 yang dibebaskan dititrasi oleh

    larutan standar Na2S2O3 dengan bantuan indikator amylum. TA ditunjukkan oleh

    warna biru tepat menghilang.

    2.3.3.4 Cara kerja :

    1. Botol bersumbat gelas diisi dengan contoh air kemudian ditutup dengan

    hati-hati sehingga tidak ada gelembung didalamnya.

    2. 2 mL MnSO4 dan 2 mL larutan alkali Iodida Azida dengan pipet ukur dari

    dasar botol.

    3. Botol ditutup kembali dengan hati-hati dan dikocok selama 1 menit,

    kemudian dibiarkan hingga endapan turun4. Cairan jernih yang terpisah dituangkan secara dekantasi kemudian melalui

    dinding botol ditambahkan 12 mL H2SO4 6N

    5. Kemudian dititrasi dengan Na2S2O3 standar 0,025 N dengan indikator

    amylum sampai TA biru tepat hilang.

    4 Penetapan Zat Organik (ZO) , Penetapan Chemical Oxygen Demand (COD) & BOD

    (Biochemical Oxygen Demand)

    TEORI DASAR :

    Penetapan zat organik :

    Metode ini digunakan untuk penentuan nilai permanganat dengan metode oksidasi

    suasana asam dalam contoh air dan air limbah yang mempunyai kadar klorida (Cl-)

    kurang dari 300 mg/L. SNI 06-6989.22-2004

    Adanya zat organik yang melebihi dari yang disyaratkan berarti menunjukkan adanya

    pencemaran/pengotoran terhadap air tersebut. Zat organik merupakan makanan

    mikroorganisme, yang menyebabkan pesatnya pertumbuhan sehingga membahayakan

    masyarakat yang menggunakannya. Zat organik dapat pula mengganggu proses

    pengolahan, disamping menyebabkan air menjadi berwarna, memberikan rasa dan bauyang tidak sedap. Untuk mengetahui berapa banyak zat organik dalam air sulit sebab

    banyak sekali macamnya, maka zat organik lalu ditetapkan dengan pemakaian oksigen

    secara kimia, yang dikenal dengan COD.

    Metode Penetapan

    Titrimetri ( permanganimetri )

    Prinsip Pengerjaan :

  • 5/21/2018 Uji Kualitas Air

    29/62

    Zat organik dalam contoh air dioksidasi oleh KMnO4 standar berlebih dalam suasana

    asam dan panas. Kelebihannya direaksikan dengan asam oksalat berlebih, dan sisanya

    dititrasi oleh KMnO4 standar.

    Pereaksi :

    1. Larutan KMnO4 0,01 N

    Dibuat dengan mengencerkan Larutan KMnO4 0,1 N

    2. Larutan H2C2O4 0,01 N

    Dibuat dengan mengencerkan Larutan H2C2O4 0,1 N

    3. H2SO4 4N bebas zat organik dan zat-zat reduktor lainnya.

    4. NaOH ( 1 : 2 )

    Cara Kerja :

    1. 100 mL contoh air dimasukkan kedalam erlenmeyer

    2. Ditambahkan 5 mL H2SO4 4N3. Ditetesi dengan KMnO4 0,01N hingga berwarna merah jambu dan

    panaskan sampai hampir mendidih.

    4. Ditambahkan 10 mL KMnO4 0,01N, kemudian dididihkan selama 10

    menit tepat.

    5. Ditambahkan 10,00 mL asam oksalat 0,01N

    6. Dititrasi kelebihan oksalat dengan larutan KMnO4 0,01N sampai berwarna

    merah jambu.

    Teori Dasar :

    COD (CHEMICAL OXYGEN DEMAND)

    COD (chemical oxygen demand) atau KOK (kebutuhan oksigen kimiawi) adalah jumlah

    (mg) oksigen yang dibutuhkan untuk mengoksidasikan zat organik dalam 1 liter air

    dengan menggunakan oksidator kalium dikromat selama 2 jam pada suhu 150o C.

    COD adalah banyaknya oksigen yang dibutuhkan untuk mengoksidasi zat organik

    secara kimia dalam tiap liter air pada kondisi tertentu.

    Metode Penetapan :

    Titrimetri ( ferrometri )

    Prinsip Pengerjaan :Zat-zat yang bersifat reduktor dalam contoh air dioksida oleh K2Cr2O7 berlebih,

    sisanya dititrasi oleh garam ferro terhadap indikator ferooin dengan perubahan warna

    dari hijau menjadi merah coklat.

    Pereaksi :

    1. Larutan standar Kalium Bikromat 0,250 N

    12,259 g K2Cr2O7 pa dilarutkan dalam labu seukuran dengan aquadest hingga 1 liter.

  • 5/21/2018 Uji Kualitas Air

    30/62

    2. Larutan standar Ferro Ammonium Sulfat 0,25 N

    98 g Fe(NH4(SO4)2).6H2O pa. dilarutkan dengan air,di tambah 20 ml H2SO4 pekat ,

    didinginkan kemudian diencerkan hingga 1 liter.

    Larutan ini harus distandarkan dengan K2Cr2O7 dengan cara sebagai berikut :

    25,00 ml larutan K2Cr2O7 0,250 N diencerkan dengan aquadest hingga 250 ml

    dalam labu erlenmeyer 500 mL.

    Di tambah 20 ml H2SO4 pekat, kemudian didinginkan.

    Kemudian dititrasi dengan larutan Ferro Ammonium Sulfat standar 0,250 N terhadap

    indikator feroin.

    3. H2SO4 pekat pa.

    4. Larutan indikator feroin.

    Cara Kerja :

    1. 50 mL air dimasukkan ke dalam labu didih.2. Ditambahkan 10 mL larutan standar K2Cr2O7 0,25 N dan 25 mL H2SO4

    Pekat melalui dinding labu.

    3. Batu didih dimasukkan, campuran diaduk, direfluks selama 2 jam

    4. Didinginkan, alat refluks dibilasi 3x dengan sedikit air, dipindahkan ke

    erlenmeyer 500 mL, diencerkan sampai 300 mL.

    5. Ditambahkan 2 3 tetes indikator ferroin. Dititrasi dengan larutan FAS

    standar 0,25 N sampai terjadi perubahan warna dari hijau ke merah coklat

    BOD (Biochemical Oxygen Demand)

    BOD didefinisikan sebagai jumlah oksigen yang diperlukan oleh mikroorganisme

    (bakteri) untuk menguraikan zat organik yang terkandung.

    BOD merupakan parameter yang menunjukkan banyaknya zat organik yang teroksidasi

    oleh mikroorganisme pada suhu 20oC selama 5 hari, sedangkan COD menunjukkan

    banyaknya zat organik yang teroksidasi oleh larutan oksidator kuat K2Cr2O7 pada

    temperatur 150oC selama 2 jam. Berdasarkan kenyataan ini maka berlaku ketentuan

    berikut.

    kadar BODKadar COD

    Data di luar ketentuan di atas merupakan data yang diragukan keabsahannya.Penetapan Besi (Fe)

    2.3.5.1 Teori dasar :

    Secara umum Fe (II) terdapat dalam air tanah berkisar antara 1,0 10,0 mg/L, namun

    demikian tingkat kandungan besi sampai sebesar 50 mg/L dapat juga ditemukan

    dalam air tanah di tempat-tempat tertentu. Air tanah yang mengandung Fe(II)

    mempunyai sifat unik. Dalam kondisi tidak ada oksigen air tanah yang mengandung

  • 5/21/2018 Uji Kualitas Air

    31/62

    Fe(II) jernih, begitu mengalami oksidasi oleh oksigen yang berasal dari atmosfer, ion

    ferro akan berubah menjadi ion ferri dengan reaksi sebagai berikut :

    4 Fe2+ + O2 + 10 H2O 4 Fe(OH)3 + 8 H+

    Dan air menjadi keruh. Pada pembentukan besi (III) oksidasi terhidrat yang tidak larut

    menyebabkan air berubah menjadi abu-abu.

    Besi (II) dapat terjadi sebagai jenis stabil yang larut dalam dasar danau dan sumber air

    yang kekurangan oksigen. Ion Fe(OH)+ dapat terjadi dalam perairan yang bersifat

    basa, tetapi bisa ada CO2 maka terbentuk FeCO3 yang tidak larut. Dalam perairan

    dengan pH sangat rendah, kedua bentuk ion ferro dan ferri dapat ditemukan. Hal ini

    terjadi bila perairan memperoleh buangan dari limbah tambang asam (Acid Mine

    Waters). Limbah yang bersifat H2SO4 yang dihasilkan oleh oksidasi dari oksidasi FeS2

    (bijih Besi) melalui reaksi sebagai berikut:

    2 FeS2(s) + 2 H2O + 7 O2 4 H+ + 4 SO42- + 2 Fe2+Dan tahap selanjutnya oksidasi dari ion ferro menjadi ion ferri dalam suatu proses

    yang terjadi sangat lambat. Di bawah pH 3,5 oksidasi tersebut dikatalisi oleh bakteri

    besi, Thiobacillus ferroxidaus. Bakteri lainnya yang terlibat dalam oksidasi besi dengan

    adanya air tambang asam adalah Thiobacillus thiooxidaus dan Thiobacillus

    ferrooxidaus.

    Dengan bantuan bakteri ini ion ferri selanjutnya melarutkan pyrite

    FeS2(s) + 14 Fe3+ + 8 H2O 15 Fe2+ + 2 SO42- + 16 H+

    Ion ferro selanjutnya mengalami oksidasi menjadi ion ferri. Peristiwa tersebut

    merupakan siklus dari pelarutan pyrite.

    Kerusakan perairan yang disebabkan oleh aliran limbah tambang asam ini

    diperlihatkan dengan penutupan permukaan air oleh suatu lapisan yang sangat tipis

    dari Fe (OH)3 yang bersifat semi gelatin.

    Besi dalam air berada dalam 2 bentuk, yaitu

    - Fe2+ yang larut dalam air (air tidak berwarna)

    - Fe3+ yang tidak larut dalam air menyebabkan

    kekeruhan dalam air (larut pada pH < 5)

    Umumnya dalam air tanah besi berada dalam bentuk Fe2+ dan dipermukaanberbentuk Fe3+

    Bentuk besi (ferro/ferri) berubah-ubah akibat adanya bakteri besi

    Tingginya kandungan besi menyebabkan :

    1. Noda pada pakaian, kertas dan peralatan

    2. Rasa logam pada air

    3. Bau amis/anyir

  • 5/21/2018 Uji Kualitas Air

    32/62

    2.3.5.2 Metode Penelitian :

    Metode Kolorimetri dengan menggunakan tabung nessler.

    2.3.5.3 Prinsip Pengerjaan :

    Besi dalam air ditetapkan sebagai besi total dalam bentuk Fe3+, Fe2+ dioksidasi

    menjadi Fe3+, Fe3+ dengan pereaksi KSCN membentuk senyawa Fe(SCN)3 yang

    berwarna kuning merah darah. Warna yang terbentuk dibandingkan dengan standar.

    2.3.5.4 Pereaksi :

    1. Larutan standar Fe ( 1 mL = 0,10 mg Fe)

    0,860 g Fe(NH4(SO4)2).12H2O dilarutkan dalam aquadest hingga 1 liter dalam labu

    seukuran, sebelum diencerkan sampai tanda batas ditambah 25 ml H2SO4 pekat.

    2. Asam Sulfat 4N

    111 ml H2SO4 pekat pa. diencerkan dengan aquadest hingga 1 liter.

    3. Larutan Kalium tiosianat 20 %Melarutkan 100 g KCNS dalam aquadest hingga 500 mL.

    4. Air Brom jenuh

    2 ml brom (Br2) dimasukan ke dalam 100 ml air suling.

    Fungsi air Brom adalah untuk mengoksidasi ferro menjadi ferri sehingga di dalam

    sampel air hanya ada ferri sehingga kadar besi dapat ditetapkan.

    2.3.5.5 Cara pengerjaan :

    1. Pembuatan larutan induk Fe3+ 100 ppm dari Tawas Ferri

    2. Pembuatan standar pengukuran 0,1 0,5 ppm dalam tabung nessler

    3. Preparasi sampel : (max. Fe 0,5 ppm)

    Masukkan 100 mL sampel kedalam labu erlenmeyer. Tambahkan

    H2SO4 + Br2 dan panaskan warna Br2 hilang. Dinginkan dan masukkan

    Dalam tabung Nessler.

    4. Tambahkan ke dalam sampel dan standar H2SO4 dan pereaksi KSCN

    Penetapan Mangan (Mn)

    2.3.6.1 TEORI DASAR

    Mangan (Mn) sifatnya hampir sama dengan besi. Mn dalam air bila teroksidasi akan

    menimbulkan endapan kecoklatan dari MnO2. Bila kadar Mn dalam air lebih dari 0,5mg/L akan menimbulkan noda pada pakaian/kertas berupa titik coklat yang sukar

    dihilangkan. Dalam konsentrasi yang lebih tinggi akan bersifat racun.

    Keberadaan Mangan dalam air

    Mangan dalam air berada dalam 2 bentuk, yaitu

    - Mn2+ yang larut dalam air (air tidak berwarna)

    - Mn4+ yang tidak larut dalam air (MnO2) yang dapat menyebabkan kekeruhan dalam

  • 5/21/2018 Uji Kualitas Air

    33/62

    air

    Umumnya dalam air tanah Mangan berada dalam bentuk Mn2+ dan dipermukaan

    berbentuk MnO2

    Tingginya kandungan Mangan menyebabkan :

    1. Noda pada pakaian, kertas dan peralatan (> 0,5 ppm)

    2. Rasa logam pada air

    3. Bau amis/anyir

    4. Konsentrasi yang lebih tinggi bersifat racun

    2.3.6.2 METODE PENELITIAN :

    Metode kolorimetri dengan menggunakan tabung nessler.

    2.3.6.3 Prinsip Pengerjaan :

    Mn2+ dalam sampel air dioksida dengan persulfat dalam suasana asam membentuk

    KMnO4 yang berwarna merah ungu. Warna yang terjadi dibandingkan dengan warnastandar KMnO4 yang diukur menggunakan tabung nessler, mg Mn dalam standar =

    mg Mn dalam sampel.

    2.3.6.4 Pereaksi :

    1. Asam Nitrat 8 M

    50 ml HNO3 pekat diencerkan dengan 50 ml aquadest.

    2. Larutan Perak Nitrat 5%

    5 g AgNO3 dilarutkan dalam 100 ml aquadest dan disimpan dalam botol berwarna

    coklat/ gelap.

    3. K2S2O8

    Penambahan asam nitrat dan AgNO3 untuk mengendapkan Cl- yang terdapat dalam

    sampel agar tidak mengganggu pada saat penetapan Mn karena apabila terdapat Cl-

    maka akan mengkonsumsi MnO4- sehingga mek MnO4- tidak ekuivalen dengan mek

    MnO2.Setelah Cl- mengendap, saring. Baru tambahkan Kalium persulfat.

    Fungsi penambahan kalium persufat sebagai oksidator untuk mengoksidasi Mn2+

    menjadi Mn4+ agar bisa diamati warnanya dengan standar MnO4- yang telah dibuat.

    2.3.6.5 Cara kerja :

    1. Ambil 100 mL contoh2. Ditambahkan 1 mL HNO3 8N dan larutkan AgNO3 5 % sedikit berlebih

    3. Dipanaskan sampai mendidih. Kemudian ditambahkan 200 mg K2S2O8

    Dan dididihkan lagi selama 5 menit.

    4. Warna ungu merah yang terbentuk dibandingkan dengan standar

    PENETAPAN KLORIDA (Cl-)

    2.3.7.1 TEORI DASAR :

  • 5/21/2018 Uji Kualitas Air

    34/62

    Bermacam-macam zat kimia seperti ozon (O3), Klor (Cl2), klordioksida (ClO2), dan

    proses fisik seperti penyinaran dengan ultra-violet, pemanasan dan lain-lain,

    digunakan untuk desinfeksi air. Dari bermacam-macam zat kimia yang disebutkan di

    atas, klor adalah zat kimia yang sering dipakai karena harganya murah dan masih

    mempunyai daya desinfeksi sampai beberapa jam setelah pembubuhannya (residu

    klor).

    Selain dapat membasmi bakteri dan mikroorganisme seperti amoeba, ganggang dan

    lain-lain, klor dapat mengoksidasi ion-ion logam seperti Fe2+, Mn2+, dan memecah

    molekul organis seperti warna. Selama proses tersebut, klor sendiri direduksi sampai

    menjadi klorida (Cl-) yang tidak mempunyai daya desinfeksi. Di samping ini klor juga

    bereaksi dengan amoniak.

    Klor berasal dari gas klor(Cl2), NaOCl, Ca(OCl)2, atau larutan HOCl (asam hipoklorit).

    Breakpoint chlorination (klorinasi titik retak) adalah jumlah klor yang dibutuhkan,sehingga:

    Semua zat yang dapat dioksidasi teroksidasi

    Amoniak hilang sebagai gas N2

    Masih ada residu klor aktif terlarut yang konsentrasinya dianggap perlu untuk

    pembasmi kuman-kuman.

    Klorida sering terdapat dalam air dalam bentuk terikat maupun bebas. Kandungan

    klorida dalam tiap air alam selalu berbeda. Penentuan klorida sangant penting sebagai

    awal dari penentuan kadar zat organik. Selain itu juga kadar klorida yang terlalu tinggi

    akan mengganggu indra rasa karena menyebabkan rasa asin dan juga dapat

    menyebabkan endapan dalam alat masak / ketel uap di industri.

    2.3.7.2 Metode Pengerjaan :

    Metode titrimetri/titrasi Argentometri

    2.3.7.3 Prinsip pengerjaan :

    Prinsip :

    Senyawa klorida dalam contoh uji air dapat dititrasi dengan larutan perak nitrat dalam

    suasana netral atau sedikit basa (pH 7 sampai dengan pH 10), menggunakan larutan

    indikator kalium kromat. Perak klorida diendapkan secara kuantitatif sebelumterjadinya titik akhir titrasi, yang ditandai dengan mulai terbentuknya endapan perak

    kromat yang berwarna

    merah kecoklatan.

    SNI 06-6989.19-2004

    2.3.7.4 Pereaksi

    1. Larutan standar AgNO3 1/35,5 N atau 0,0282 N ( 1 mL = 1,0 mg Cl)

  • 5/21/2018 Uji Kualitas Air

    35/62

    Larutkan 4,7995 g AgNO3 pa. Dalam aquadest hingga 1 liter. Kemudian simpan dalam

    botol gelap.

    2. HNO3 8 N

    50 ml HNO3 pekat diencerkan dengan 50 ml aquadest..

    3. Serbuk MgO (Magnesium Oksida)

    4. Larutan Kalium Kromat 10 %

    10 g K2CrO4 dilarutkan dalam air suling hingga 100 ml.

    2.3.7.5 Cara Kerja :

    1. 100 mL samprl dimasukkan ke dalam erlenmeyer 250 mL

    2. Ditambahkan HNO3 8N sampai bereaksi asam, lalu ditambahkan 0,5 mL

    K2CrO4 10 %

    3. Serbuk Mg ditambahkan jika sampai cairan berubah warnanya dari kuning

    jingga menjadi kuning jelas.4. Dititrasi dengan AgNO3 standar sampai berwarna merah jingga.

    A N A L I S I S S E N Y A W A N I T R O G E N

    Bentuk persenyawaaan nitrogen dalam air

    Penetapan NH4+ :

    1. TEORI DASAR :

    Keberadaan Gas Nitrogen (N2) Dalam Air

    Gas N2 dalam air berasal dari udara, digunakan oleh ganggang dan beberapa jenis

    bakteri untuk pertumbuhannyaGas N2 tidak reaktif

    N2 mudah keluar dalam air tingkat kejenuhannya rendah

    Keberadaan dalam air tidak berbahaya

    Keberadaan Amoniak (NH3) Dalam Air

    Ammoniak, pada pH rendah NH4+ (amonium), pH tinggi NH3 (amoniak)

    Dalam air permukaan berasal dari :

  • 5/21/2018 Uji Kualitas Air

    36/62

    - Kotoran manusia (air seni dan tinja)

    - Dekomposisi zat organik secara mikrobiologi

    C,H,O,N,S + O2 CO2 + H2O + NH3

    - Pencemaran dari penggunaan pupuk dalam pertanian

    Kandungan ammoniak dalam air permukaan (30 mg/L) lebih besar dibanding air

    tanah

    Kandungan ammoniak yang tinggi dalam air menunjukkan pencemaran yang tinggi

    (bau dan rasa)

    Syarat air minum NH3 harus 0 ppm, dalam air sungai yang baik 0,5 ppm

    Penghilangan melalui proses aerasi dan klorinasi

    Penentuan Konsentrasi Amoniak (NH3) Dalam Air

    Ditetapkan sebagai :

    - NH4+ (amonium), yang terlarut dalam air- NH4+-Protein, senyawa nitrogen dalam bentuk protein

    Metode penentuan kolorimetri ketinggian tetap, menggunakan tabung nessler dan

    comparator

    Gangguan Pada proses analisis :

    1. Sulfida yang tinggi

    tambahkan Zn(CH3COO)2, filtrat dilanjutkan

    2. Ca2+ dan Mg2+ yang tinggi

    tambahkan larutan caustic soda, filtrat dilanjut

    3. Kekeruhan

    tambahkan koagulan (tawas Al), filtrat dilanjut

    Penentuan Konsentrasi Amonium (NH4+) Dalam Air

    Metode penentuan kolorimetri ketinggian tetap, menggunakan tabung nessler dan

    comparator

    Pereaksi pembentuk warna pereaksi Nessler

    Gangguan Pada proses analisis :

    1. Sulfida yang tinggi

    tambahkan Zn(CH3COO)2, filtrat dilanjutkan2. Ca2+ dan Mg2+ yang tinggi

    tambahkan larutan caustic soda, filtrat dilanjut

    3. Kekeruhan

    tambahkan koagulan (tawas Al), filtrat dilanjut

    Metode pengerjaan :

    Metoda kolorimetri menggunakan tabung nessler.

  • 5/21/2018 Uji Kualitas Air

    37/62

    Prinsip Penetapan :

    Penetapan NH4+ bebas

    NH4+ dalam air dengan pereaksi nessler membentuk senyawa yang berwarna kuning-

    coklat, warna yang terbentuk kemudian dibandingkan dengan warna

    larutan standar.

    Penetapan NH4+ Proteid :

    Protein dalam sampel dioksidasi oleh K2S2O8 dalam suasana asam menjadi garam

    NH4+, NH4+ dengan pereaksi nessler membentuk senyawa yang berwarna kuning-

    coklat, warna yang terbentuk kemudian dibandingkan dengan warna larutan standar.

    Pereaksi :

    1. Larutan standar Ammonium ( 1 mL = 0,1 mg NH4+)

    0,2972 g NH4Cl dilarutkan dalam aquadest hingga 1 liter.

    2. Pereaksi Nesslera. 100 g HgI2 dan 70 g NH4Cl dalam 100 mL air bebas NH4+

    b. 160 g NaOH dilarutkan dalam 500 mL aquadest.

    c. Larutan a dan b dicampurkan sambil diaduk kemudian diencerkan dengan aquadest

    hingga 1 liter. Larutan ini disimpan dalam botol pyrex di tempat gelap ( larutan tahan

    1 tahun ).

    3. Larutan Garam Siegnette (Rochelle Salt)

    100 g kalium natrium tartrat dilarutkan dalam 100 mL air. Larutan ini dididihkan

    hingga bebas NH4+ (di test dengan pereaksi Nessler)

    Di tambahkan ke dalam larutan tersebut 200 ml air bebas NH4+

    4. Larutan campuran NaOH dan Na2CO3

    50 g NaOH dan 100 g Na2CO3 dilarutkan dalam 300 mL air. Larutan ini di test

    terhadap NH4+. Bila ada NH4+ , larutan dididihkan hingga bebas NH4+.

    5. Larutan tawas Al

    2 g tawas Al dilarutkan dalam 100 mL air bebas NH4+

    6. Larutan seng asetat

    30 g Zn (CH3COO)2 dilarutkan dalam 100 mL air bebas NH4+

    Pereaksi1. Kalium Persulfat bebas NH4+

    10 g K2S2O8 dilarutkan dalam 100 mL air, sambil dipanaskan hingga mendidih.

    Ditambah 1 g KOH, dididihkan lagi sampai amoniaknya hilang.

    Didinginkan dan garam yang mengkristal diambil sebagai K2S2O8 yang bebas NH4+.

    2. Larutanlarutan yang digunakan dalam penetapan pada penetapan NH4+.

    Prosedur kerja

  • 5/21/2018 Uji Kualitas Air

    38/62

    Tahapan Penentuan Konsentrasi NH4+ Dalam Air (bebas)

    a) Pembuatan larutan induk NH4+ 100 ppm dari NH4Cl

    b) Pembuatan standar pengukuran 0,1 0,5 ppm dalam tabung nessler

    c) Preparasi sampel :

    Masukkan 100 mL sampel (dengan gelas ukur) kedalam tabung nessler

    (Jika ada gangguan harus dihilangkan sebelum diukur)

    d) Tambahkan 1 mL larutan Siegnette kocok dan 1 mL Pereaksi Nessler, kocok ke

    dalam sampel dan standar

    e) Biarkan 15 menit, dan bandingkan warna yang terjadi

    Penentuan Amonium-Protein (NH4+-Protein) Dalam Air

    Metode penentuan kolorimetri ketinggian tetap

    Pereaksi pembentuk warna pereaksi Nessler

    Tahapan Penentuan Konsentrasi NH4+ Dalam Air

    - Pembuatan standar pengukuran 0,1 0,5 ppm dalam tabung nessler dari larutan

    induk 100 ppm.

    - Preparasi sampel :

    Masukkan 100 mL sampel kedalam labu erlenmeyer

    Tambahkan H2SO4 4 N (kertas kongo merah)

    Tambahkan 0,1g K2S2O8, panaskan 15 di penangas air

    - Dinginkan lalu masukkan ke tabung nessler tambahkan1 mL larutan Siegnette kocok

    dan 1 mL pereaksi Nessler, kocok ke dalam sampel dan standar.

    - Biarkan 15 menit, dan bandingkan warna yang terjadi.

    Perhitungan :

    Perhitungan NH4+ dalam mg/L

    Metode kolorimetri ketinggian tetap (Metode Nessler) Intensitas warna yang sama

    menunjukkan konsentrasi yang sama

    Menurut Hukum Lambert-BeerA1 = A2

    e1.b1.c1 = e2.b2.c2

    b1= b2 ; e1 = e2

    c1 = c2

  • 5/21/2018 Uji Kualitas Air

    39/62

    Perhitungan NH4+ dalam mg/L

    Metode kolorimetri ketinggian berubah

    Intensitas warna yang sama menunjukkan konsentrasi yang sama

    Menurut Hukum Lambert-Beer

    A1 = A2

    e1.b1.c1 = e2.b2.c2

    e1= e2 , maka :

    b1.c1 = b2.c2

    Jika : 1 standar, 2 sampel, maka :

    Perhitungan NH4+-Protein dalam mg/L

    Metode kolorimetri ketinggian berubah Intensitas warna yang sama menunjukkan konsentrasi yang sama

    Menurut Hukum Lambert-Beer

    A1 = A2

    e1.b1.c1 = e2.b2.c2

    e1= e2 , maka :

    b1.c1 = b2.c2

    Jika : 1 standar, 2 sampel, maka :

    Perhitungan NH4+-Protein dalam mg/L

    Saat oksidasi, nitrogen dalam protein diubah menjadi garam NH4+ maka NH4+

    yang larut bertambah dari hasil oksidasi ini.

    Jadi untuk menghitung konsentrasi NH4+-Protein dalam air harus dikoreksi terhadap

    NH4+ bebas yang larut dalam air.

    NH4+-Protein = ppm NH4+(jumlah) ppm NH4+(bebas)

    Penetapan Nitrit (NO2-):

    1. TEORI DASAR :Keberadaan Nitrit (NO2-) Dalam Air

    Nitrit bersifat tidak stabil (tidak bertahan lama) keadaan sementara dari proses

    oksidasi NH4+ menjadi NO3- (nitrifikasi)

    2NH4+ + 3 O2 2NO2- + 4H+ +2H2O + energi

    2NO2- + O2 2 NO3- + energi

    Nitrit dalam air berasal dari bahan inhibitor korosi yang banyak dipakai di pabrik

  • 5/21/2018 Uji Kualitas Air

    40/62

    Senyawa nitrogen dalam bentuk nitrit inilah yang berbahaya bagi tubuh manusia :

    1. Bereaksi dengan hemoglobin dalam darah,

    sehingga darah tidak dapat mengangkut oksigen

    2. membentuk nitrosin (RRN-NO) karsinogenik

    Penentuan Nitrit (NO2-) Dalam Air

    Metode penentuan kolorimetri ketinggian tetap

    Pereaksi pembentuk warna Griez-Romyn

    2. Metode Pengujian :

    Metode Kolorimetri dengan menggunakan tabung nessler.

    3. Prinsip Pengerjaan :

    Nitrit dalam sampel dengan pereaksi Griez-Romyn membentuk senyawa yang

    berwarna merah, warna yang terbentuk kemudian dibandingkan dengan warna larutan

    standar.5. Pereaksi :

    Pereaksi Nitrit dari Griez-Romyn

    1 bagian naphtylamin

    10 bagian asam sulfonil

    89 bagian asam tartrat

    Ketiga zat digerus dalam lumpang sampai halus dan tercampur dengan baik

    (homogen).

    Larutan standar nitrit ( 1 mL = 0,05 mg NO2-)

    0,2463 NaNO2 tak berair dilarutkan dengan air bebas nitrit hingga 1 liter, kemudian

    ditambahkan 1 mL kloroform atau toluol.

    Larutan standar nitrit ( 1 mL = 0,01 mg NO2-)

    20 mL larutan standar nitrit di atas (no.2) diencerkan dengan air hingga 100 mL dan

    ditambahkan 2 tetes kloroform.

    5. Prosedur Pengerjaan :

    Tahapan Penentuan Nitrit (NO2-) Dalam Air

    - Pembuatan standar pengukuran 0,01 0,05 ppm dalam tabung nessler dari larutan

    induk 50 ppm.- Preparasi sampel :

    Masukkan 100 mL sampel kedalam tabung nessler. Tambahkan 100 mg Pereaksi nitrit

    (Griez-Romyn), kocok. Biarkan selama 10 dilakukan bersamaan antarasampel dan

    standar.

    - Bandingkan warna yang terjadi, sebelum 30 menit

    6. Perhitungan Nitrit :

  • 5/21/2018 Uji Kualitas Air

    41/62

    Perhitungan Nitrit dalam mg/L

    Metode kolorimetri ketinggian berubah

    Intensitas warna yang sama menunjukkan konsentrasi yang sama

    Menurut Hukum Lambert-Beer

    A1 = A2

    e1.b1.c1 = e2.b2.c2

    e1= e2 , maka :

    b1.c1 = b2.c2

    Jika : 1 standar, 2 sampel, maka :

    Penetapan Nitrat :

    1. Teori dasar :Keberadaan Nitrat (NO3-) Dalam Air

    Nitrat senyawa nitrogen yang bersifat stabil

    Dalam air berasal dari :

    - Buangan industri bahan peledak, pupuk, cat, dll

    - Penggunaan pupuk dalam pertanian

    Kadar nitrat dalam air tidak boleh melebihi 10 ppm

    Tingginya kandungan nitrat bisa menyebabkan :

    - Stimulasi pertumbuhan ganggang dan tanaman air yang tak terbatas DO level

    rendah hewan air mati

    - Penyakit metamoglobinemia (cynose/penyakit biru pada bayi). Nitrat direduksi oleh

    bakteri asam susu dalam ASI menjadi nitrit. Nitrit berikatan dengan hemoglobin dalam

    darah.

    Penentuan Nitrat (NO3-) Dalam Air

    Metode penentuan kolorimetri ketinggian tetap

    Pereaksi pembentuk warna Nessler

    2.Metode Pengerjaan :

    Metode Kolorimetri menggunakan tabung nessler3.Prinsip pengerjaan :

    Nitrat dan Nitrit dalam sampel direduksi oleh H2 dari Al dan larutan NaOH menjadi

    NH4+, NH4+ dengan pereaksi nessler membentuk senyawa yang berwarna kuning-

    coklat, warna yang terbentuk kemudian dibandingkan dengan

    warna larutan standar.

    4.Pereaksi :

  • 5/21/2018 Uji Kualitas Air

    42/62

    1. Larutan NaOH 25%

    250 g NaOH dilarutkan dalam 1250 mL air, di tambahkan beberapa lembar Al-foil dan

    biarkan 1 malam. Kemudian larutan tersebut diuapkan sampai didapat volume 1000

    mL.

    2. Lembaran Alumunium foil (Al-foil)

    Lembaran Al itu dipotong dengan ukuran p = 10 mm ; l = 6 mm ; t = 0,3 mm.

    3. Pereaksi lainnya sama dengan pereaksi pada penetapan ammonium.

    5.Prosedur Pengerjaan :

    Tahapan Penentuan NO3- (Nitrat) Dalam Air

    1. Pembuatan standar pengukuran NH4+ 0,1 0,5 ppm dalam tabung nessler dari

    larutan induk 100 ppm.

    2. Preparasi sampel :

    Masukkan 100 mL sampel kedalam labu erlenmeyerTambahkan lar. NaOH 25% dan logam Al, biarkan 1 malam

    Saring dan filtratnya dilanjutkan

    3. Masukkan ke tabung nessler tambahkan1 mL larutan Siegnette kocok dan 1 mL

    pereaksi Nessler, kocok ke dalam sampel dan standar.

    4. Biarkan 15 menit, dan bandingkan warna yang terjadi

    6. Perhitungan :

    Perhitungan Nitrat dalam mg/L

    Metode kolorimetri ketinggian berubah

    Intensitas warna yang sama menunjukkan konsentrasi yang sama

    Menurut Hukum Lambert-Beer

    A1 = A2

    e1.b1.c1 = e2.b2.c2

    e1= e2 , maka :

    b1.c1 = b2.c2

    Jika : 1 standar, 2 sampel, maka :

    Perhitungan Nitrat dalam mg/L

    Saat reduksi terjadi nitrat dan nitrit dalam sampel diubah menjadi NH4+ makaNH4+ yang terukur merupakan amonium total dari nitrit, nitrat dan amonium bebas.

    Jadi untuk menghitung konsentrasi Nitrat dalam air harus dikoreksi terhadap NH4+

    bebas dan nitrit.

    NH4+ dari NO3- = NH4+(total) NH4+ dari NO2- NH4+(bebas)

    ppm NH4+dari NO2- = Mr. NH4+ x ppm NO2-

    Mr. NO2-

  • 5/21/2018 Uji Kualitas Air

    43/62

    ppm NO3- = Mr. NO3- x ppm NH4+ dari NO3-

    Mr. NH4+

    III. 1 . METODE SAMPLING

    Mengumpulkan Sejumlah Volume air secara teliti, dengan jumlah sekecil mungkin

    tetapi masih mewakili (Representatif)

    Dari ketiga cara penyamplingan ini kami dapat mengambil sample air yang akan kami

    analisis dengan cara yang baik dan benar. Karena sample air kami adalah sample air

    yang keluar dari air tanah yang berada di masjid al-hikmah adi penyamplingan yang

    tepat adalah cara Sampling Campuran (Composite Sampling).

    SAMPLING

    Waktu dan Tempat Penyamplingan

    Waktu : 11maret 2008 Jam 09.30 WIB

    Tempat : SMKN 13 BANDUNG.

    Jl.soekarno hatta km.10 Telp./fax +62-22-7318960 BANDUNG 40286

    III. 2 . PARAMETER FISIKA

    III. 2.1 BAU DAN WARNA

    ANALISIS BAU : Analisa bau pada sampel yang kami tidak berbau

    ANALISA WARNA : Analisa Warna pada sampel yang kami bening tak berwarna agak

    keruh.

  • 5/21/2018 Uji Kualitas Air

    44/62

    Pembahasan :

    1. Pengamatan bau dan warna harus langsung dari tempat penyamplingan karena

    pengamatan warna menggunakan indra (penciuman & pengelihatan) langsung.

    2. Pengamatan bau dan warna tidak mutlak benar karena setiap orang memiliki

    parameternya masing-masing sehingga ketika pengamatan setidaknya harus ada lebih

    dari satu orang sehingga kesalahan pengamatan dapat dikurangi.

    3. Pengamatan bau dan warna tidak dapat diamati oleh orang yang sedang mengalami

    gangguan kesehatan pada indra penciuman dan pengelihatannya.

    III. 2.2 pH

    Reaksi : Reaksi

    H2O H+ + OH-

    pH = -log [H+]

    Data Pengamatan :Hasil yang didapat:

    pH air berdasarkan pengukuran secara potensiometri dengan menggunakan

    potensiometer yaitu 7,66.

    Pembahasan :

    1. Pengamatan pH menggunakan alat pH meter, sehingga alat tersebut harus

    dikalibrasi terlebih dahulu agar didapatkan hasil pengukuran yang benar.

    2. Cara mengkalibrasi pH meter adalah dengan memasukkan elektroda ke dalam

    larutan asam yang sudah diketahui pHnya (misalkan pH 4) kemudian set pada pH 4,

    lalu bilas elektroda dengan aqudest dan keringkan dengan tissue, lalu lakukan hal

    yang sama pada larutan basa (misalkan pH 10) lalu set pada pH 10. Alat pH meter

    sudah siap digunakan dan jangan dimatikan bila sudah mengukur sampel karena bila

    dimatikan alat harus dikalibrasi ulang.

    III.2.3 SUHU

    Data Pengamatan :

    Suhu yang di baca pada termometer yaitu :280C

    III.2.4 Daya Hantar Listrik ( DHL )

    Reaksi :H2O H+ + OH-

    Data Pengamatan

    DHL sample yang diperoleh berdasarkan pengukuran secara konduktometri dengan

    menggunakan alat Konduktometer yaitu 443 mho / cm.

    DHL 443 mho/cm

    TDS 212mg/L

  • 5/21/2018 Uji Kualitas Air

    45/62

    PEMBAHASAN :

    1. Pengamatan DHL menggunakan alat konduktometer, sehingga alat tersebut harus

    dikalibrasi terlebih dahulu agar didapatkan hasil pengukuran yang benar.

    2. Cara mengkalibrasi konduktometer adalah dengan memasukkan elektroda ke dalam

    larutan KCl 0,0100 M dan set pada 1413 Mikro mho/cm pada suhu 250C.

    III.1.5 Analisis Padatan

    a) Total Padatan / Total Solid ( TS )

    Data Pengamatan

    Tabel penimbangan pinggan kosong

    Penimbangan ke 1 2 3

    Berat pinggan 49,0827 gram 49,0818 gram 49,0819 gram

    Berat rata rata 49,08185 gram

    Tabel penimbangan pinggan + residu

    Penimbangan ke- 1 2 3

    Berat pinggan + residu 49,1145 gram 49,1153 gram 49,1154 gram

    Berat rata rata 49,11535 gram

    Berat pinggan + residu = 49,11535 gram(a)

    Berat pinggan kosong = 49,08185 gram(b)

    Total Solid = ( b a ) x

    = [ ( 49,11535 49,08185 ) x

    = 335 mg / L

    b) Zat Tersuspensi / Suspended Solid

    Data Pengamatan

    Tabel penimbangan kaca masir kosong

    Penimbangan ke - 2 3 4

    Berat kaca masir 31,0979 gram 31,0973 gram 31,0973 gram

    Berat rata rata 31,0973 gram

    Tabel penimbangan pinggan + residu

    Penimbangan ke- 1 2 3Berat kaca masir + residu 31,1037 gram 31,1031 gram 31,1033 gram

    Berat rata rata 31,1032 gram

    Berat kaca masir + residu = 31,1032 gram( a )

    Berat kaca masir kosong = 31,0973 gram( b )

    Perhitungan

    TSS ( mg/L) = ( b a ) x

  • 5/21/2018 Uji Kualitas Air

    46/62

    =

    = 59 mg/L

    c) Penetapan Residu Terlarut / Total Dissolved Solid

    Data Pengamatan

    TDS ( mg/L ) = TS TSS

    = 335 mg/L 59 mg/L = 276 mg/L

    III1.6 Kekeruhan

    Data Pengamatan

    Turbiditas sample = 45,5 NTU

    III.2.Analisis Kimia

    III.2.1 Asiditas/Alkalinitas

    Data Pengamatan :

    Reaksi :TAHAP I : H+ + OH- H2O

    CO2 + OH- HCO3- ..................... p mL

    TAHAP II : HCO3- + H+ H2CO3 ..................... q mL

    Kemungkinan perbandingan saat titrasi :

    p > q : yang ada dalam larutan H+, CO2

    p < q : CO2, HCO3-

    p = q : CO2

    p = 0, q 0 : HCO3-

    p 0, q = 0 : H+

    Tabel pengamatan

    Ppt metil jingga

    Volume akhir (mL) 0,14 0,15 4,18 4,20

    Volume awal (mL) 0,00 0,00 0,00 0,00

    Vol. pemakaian (mL) 0,14 0,15 4,18 4,20

    Perhitungan

    p < q, asiditas disebabkan oleh CO2 & HCO3-

    CO2 (mg/L) = (p x NNaOH ) x 44HCO3- (mg/L) = [(q x NHCl) - (p x NNaOH)] x 61

    Diketahui : [HCl] = 0,1011 N [NaOH] = 0,1009 N

    I. mek NaOH = V x N

    = 0,14 mL x 0,1009 N

    = 0,014126 mek

    mek HCl = V x N

  • 5/21/2018 Uji Kualitas Air

    47/62

    = 4,18 mL x 0,1011N

    = 0,422598 mek

    CO2 (mg/L) = (0,14 x 0,1009) x 44

    = 6,22 mg/L

    HCO3- (mg/L) = [(q x NHCl) - (p x NNaOH)] x 61

    = [ (4,18x 0,1011) (0,14x0,1009)] x 61

    = 249,17mg/L

    II. mek NaOH = V x N

    = 0,15 mL x 0,1009 N

    = 0,015135 mek

    mek HCl = V x N

    = 4,20 mL x 0,1011 N

    = 0,42462 mekCO2 (mg/L) = (0,15x 0,1009) x 44

    = 6,66mg/L

    HCO3- (mg/L) = [(q x NHCl) - (p x NNaOH)] x 61

    = [ (4,20 x 0,1011) (0,15 x 0,1009)] x 61

    = 249,17mg/L

    Pembahasan :

    a. Untuk penentuan asiditas/alkalinitas, pada percobaan kali ini yang dilakukan adalah

    penetapan asiditas, karena pada saat ditambahkan indikator Fenolphtalein 10 tetes ke

    dalam sampel (10 mL) warna sampel tidak berubah menjadi rose pucat

    b. Karena Volume HCl > NaOH maka kemungkinan reaksi yang terjadi pada asiditas

    adalah menghasilkan CO2 dan HCO3- maka pada perhitungan digunakan mek CO2

    dan HCO3- untuk menentukan asiditasnya

    III.2.2 Penetapan Kesadahan

    Kesadahan Total

    Data Pengamatan

    Reaksi

    Ca2+ + HIn2- CaIn- + H+Mg2+ + HIn2- MgIn- + H+

    Ca2+ + H2Y2- CaY2- + 2H+

    Mg2+ + H2Y2- MgY2- +