35
1 Understanding and quantifying the drivers of seed yield in pulses Victor Sadras & Lachlan Lake South Australia Research & Development Institute funded by Grains Research & Development Corporation Australia-India Strategic Research Fund Yitpi Foundation Australian Pulse Conference, 12-14 September 2016, Tamworth

Understanding and quantifying the drivers of seed yield in ... · Understanding and quantifying the drivers of seed yield in pulses ... Patterns of water stress – pea vs chickpea

Embed Size (px)

Citation preview

  • 1

    Understanding and quantifying the

    drivers of seed yield in pulses

    Victor Sadras & Lachlan Lake

    South Australia Research & Development Institute

    funded by

    Grains Research & Development Corporation

    Australia-India Strategic Research Fund

    Yitpi Foundation

    Australian Pulse Conference, 12-14 September 2016, Tamworth

  • http://www.fao.org

    Technological innovation

    new combinations of pre-existing elements

    http://futuristablog.com/technological-trends-in-agriculture/

  • Technological innovation

    new functions Darwinian pre-adaptations

    Kauffman SA (2008) 'Reinventing the Sacred: A New View of Science, Reason, and Religion'

  • yield

    5

    environment E

    actual technology G, M, G x M

    potential technology

    science, practice

    obsolescence

    rate

    adoption

    rate

    innovation

    rate

    farmer; physiology, genetics, soil

  • 6

    short term + low aggregation: environment overrides technology

  • Crop E : GxE : G ratio Source

    field pea in Canada 31.9 : 2.8 : 1 Yang et al. (2005)

    sunflower in Argentina 4.3 : 1.5 : 1 de la Vega et al. (2007)

    wheat in Australia 3.0 : 2.2 : 1 Cooper et al. (1995)

    sugar beet in Europe 27.5 : 1.1 : 1 Hoffmann et al. (2009)

    E is often a large source of variation two exceptions

    Trait: yield

    7

  • 8 Crop Science 2015

    Crop Science 56 (5) 2016

    special issue GxE

    13 papers

    half define E as location/season

  • E : GxE : G 15 : 7 : 2

    Slide ratio

    9

  • 10

    -800 -400 0 400 800

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Wa

    ter

    su

    pp

    ly/d

    em

    an

    d r

    ati

    o

    Thermal time centred at flowering (oCd)

    Step 1

    Thermal time centred at flowering (oCd)

    -800 -400 0 400 800

    Wa

    ter

    su

    pp

    ly/d

    em

    an

    d r

    ati

    o

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0ET1

    ET2

    ET3

    Step 2

    Environment type

    1 2 3

    Actu

    al yie

    ld (

    t/ha)

    0

    2

    4

    Step 3

  • 12

    Sadras et al 2012 Crop and Pasture Science 63, 33

    Spatial, probabilistic pattern of drought types for field pea

  • StressMaster to target specific environment

    Soil

    Climate (on-site sensor)

    Management-to-date

    Irrigation scenarios

    - Sowing

    - Fertilisation

    - Irrigation

    Report by email

    Chenu K, Doherty A, Rebetzke GJ and Chapman SC (2013) StressMaster: a web application for dynamic modelling of the

    environment to assist in crop improvement for drought adaptation. In: Sievnen R, Nikinmaa E, Godin C, Lintunen A and

    Nygren P (eds) 7th International Conference on Functional-Structural Plant Models, Saariselk, Finland, pp 357-359.

    http://ojs.metla.fi/index.php/fspm2013/article/view/872/876

    Chenu K, Doherty A, Brider J, Rebetzke GJ, McDonald G, Mayfield A, Bechaz K, Pattison A, Murfit M, Mayer JE. 2016.

    Using crop modeling to get better field data. International Crop Modelling Symposium (15-17 March, Berlin, Germany). 2pp.

    Chenu et al. (2013) In: Sievnen et al. (eds) 7th International Conference on Functional-Structural Plant Models, Saariselk, Finland,

    pp 357-359. http://ojs.metla.fi/index.php/fspm2013/article/view/872/876

    Chenu et al. (2016) Proceedings of the International Crop Modelling Symposium , Berlin, Germany. 2pp.

    13

    http://ojs.metla.fi/index.php/fspm2013/article/view/872/876http://ojs.metla.fi/index.php/fspm2013/article/view/872/876

  • 14 Sadras et al. 2013 Field Crops Research 150, 63

  • 16

    Terminal drought a misleading concept

    Chenu et al 2013 wheat, Australia

    cognitive structuresinteract with grammarprovide conditions for language use

    Chomsky 1998

  • Patterns of water stress pea vs chickpea

    Pea: Sadras et al 2013 Crop & Pasture Science 63:33

    Chickpea: Lake et al 2016 Crop & Pasture Science 67:204 17

    Thermal time centred at flowering (oCd)

    -1500 -1000 -500 0 500 1000

    field pea

    -1500 -1000 -500 0 500 1000

    Wa

    ter

    su

    pp

    ly/d

    em

    an

    d r

    ati

    o

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    chickpea

  • Abbo et al 2003 Quarterly Review of Biology 78, 435

    The presence of founder crops in the archaeological record of the Levant

    19

    Vernalisation:

    Abbo 2002 New Phytol 54, 695

    Berger et al. 2005 Australian J Agr Res 56, 1191

  • Species

    Temperature (oC)

    onset peak

    Pea

    73.6 82.2

    Chickpea

    80.3 91.3

    Soybean

    85.6 91.1

    Onset and peak temperature for denaturation of seed protein isolates

    Withana-Gamage et al. 2011 J Sci Food Agric 91:1022 20

  • Chickpea Dry Weight (g m-2)

    0 500 1000 1500 2000

    Fie

    ldp

    ea

    Dry

    We

    igh

    t (g

    m-2

    )

    0

    500

    1000

    1500

    2000

    Chickpea dry weight (g m-2)

    0 200 400 600 800 1000

    Fie

    ldpea d

    ry w

    eig

    ht (g

    m-2

    )

    0

    200

    400

    600

    800

    1000

    shoot

    root

    experimental

    modelled

    Lake et al 2016 Crop Pasture Science 67:204 21

    y = x

    y = x

  • Crop growth rate derived from NDVI (g m-2

    oCd

    -1)

    0.0 0.2 0.4 0.6 0.8 1.0

    Yie

    ld (

    t/ha)

    0

    1

    2

    3

    4

    5

    field pea

    0.0 0.5 1.0 1.5 2.0 2.5

    chickpea

    Chickpea: Lake et al 2016 European J Agronomy in press

    Pea: Sadras et al 2013 Field Crops Research 150, 63

    Physiological approach to phenotyping

    20 varieties

    8 environments

    29 varieties

    10 environments

    22

  • Thermal time centered at the beginning of flowering (oCd)

    -1000 -500 0 500 1000

    Tem

    pera

    ture

    (oC

    )

    0

    5

    10

    15

    20

    25

    30

    MAX1 (23%)

    MAX2 (27%)

    MAX3 (50%)

    MIN1 (23%)

    MIN2 (42%)

    MIN3 (35%)

    23 Lake et al 2016 Crop Pasture Science 67:204

    -1000 -500 0 500 1000

    Tem

    pera

    ture

    (oC

    )

    0

    10

    20

    30

    40

    -1000 -500 0 500 1000

    Thermal time centred at flowering (oCd)

    maximum minimum

  • Probabilistic thermal regimes for chickpea in Australia

    ET3

    0 500 km

    20406080100

    ET2

    20406080100

    ET1

    20406080100

    ET3

    0 500 km

    20406080100

    ET2

    20406080100

    ET1

    20406080100

    MAX1

    MAX2

    MAX3

    MIN1

    MIN2

    MIN3

    maximum temperature minimum temperature

    24

  • 25

    1957-2014

    Month

    1 2 3 4 5 6 7 8 9 10 11 12

    Min

    era

    lisati

    on

    (kg

    N h

    a-1

    mo

    nth

    -1)

    0

    10

    20

    30

    40

    erratic summer rainfall

    warm soil

    autumn rainfall break

    mild temp

    wet but cold winter

    end rainfall season

    mild spring temp

    Sadras et al unpublished

  • How reliable are simulation models?

    Growth ****

    Phenology ****

    Water budget ***

    Nitrogen budget **

    Biomass partitioning **

    Extreme events *

    Pests *

    Biological aspects of rotations - 26

  • Plasticity: one genotype producing alternative

    phenotypes in response to environment

    helmeted - stress + stress

    Woltereck 1909 Verhandlungen der Deutschen Zoologischen Gesellschaft 19, 110 27

  • Environment

    Reaction norm is the mathematical function

    phenotype = f (environment)

    slope = plasticity

    Ph

    en

    oty

    pe

    Woltereck 1909 Verhandlungen der Deutschen Zoologischen Gesellschaft 19, 110 28

  • 29

    Methods to quantify plasticity

    Slope of reaction norm Allows for non-linearity

    Difficult to identify main E

    Sadras & Richards 2014 J Exp Bot 65, 1981

    Variance ratio Single value of plasticity

    Applies irrespective of E-driver

    Environmental mean yield

    Yie

    ld o

    f cultiv

    ar

    1 o

    r 2

    cv 1

    cv 2

  • 30 Sadras & Richards 2014 J Exp Bot 65, 1981; Grogan et al. 2016 Crop Sci

    0.6 0.8 1.0 1.2 1.4

    0

    2

    4

    P = 0.34

    0.6 0.8 1.0 1.2 1.4

    0

    2

    4

    6

    8

    P = 0.38

    b = -3.6*** 0.32 t ha-1

    0.4 0.6 0.8 1.0 1.2 1.4Y

    ield

    (t

    ha

    -1)

    0

    1

    2

    3

    4

    5

    Phenotypic plasticiy of grain yield

    0.6 0.9 1.2 1.5

    0

    4

    8

    12

    b = 2.0*** 0.31 t ha-1

    b = -1.7** 0.54 t ha-1

    b = 2.5** 0.75 t ha-1

    b = 1.5*** 0.23 t ha-1

    b = 0.5* 0.05 t ha-1

    field pea in Australia sunflower in Argentina

    wheat in Mexico rye in Finland

    Environment

    potential

    stress

    Yield stability another misleading concept

  • 31 Sadras & Richards 2014 J Exp Bot 65, 1981

    0.6 0.8 1.0 1.2 1.4

    0

    2

    4

    P = 0.34

    0.6 0.8 1.0 1.2 1.4

    0

    2

    4

    6

    8

    P = 0.38

    b = -3.6*** 0.32 t ha-1

    0.4 0.6 0.8 1.0 1.2 1.4Y

    ield

    (t

    ha

    -1)

    0

    1

    2

    3

    4

    5

    Phenotypic plasticiy of grain yield

    0.6 0.9 1.2 1.5

    0

    4

    8

    12

    b = 2.0*** 0.31 t ha-1

    b = -1.7** 0.54 t ha-1

    b = 2.5** 0.75 t ha-1

    b = 1.5*** 0.23 t ha-1

    b = 0.5* 0.05 t ha-1

    field pea in Australia sunflower in Argentina

    wheat in Mexico rye in Finland

    Environment

    potential

    stress

  • 32 Sadras & Richards 2014 J Exp Bot 65, 1981

    0.6 0.8 1.0 1.2 1.4

    0

    2

    4

    P = 0.34

    0.6 0.8 1.0 1.2 1.4

    0

    2

    4

    6

    8

    P = 0.38

    b = -3.6*** 0.32 t ha-1

    0.4 0.6 0.8 1.0 1.2 1.4Y

    ield

    (t

    ha

    -1)

    0

    1

    2

    3

    4

    5

    Phenotypic plasticiy of grain yield

    0.6 0.9 1.2 1.5

    0

    4

    8

    12

    b = 2.0*** 0.31 t ha-1

    b = -1.7** 0.54 t ha-1

    b = 2.5** 0.75 t ha-1

    b = 1.5*** 0.23 t ha-1

    b = 0.5* 0.05 t ha-1

    field pea in Australia sunflower in Argentina

    wheat in Mexico rye in Finland

    Environment

    potential

    stress

  • 33 Sadras & Richards 2014 J Exp Bot 65, 1981

    0.6 0.8 1.0 1.2 1.4

    0

    2

    4

    P = 0.34

    0.6 0.8 1.0 1.2 1.4

    0

    2

    4

    6

    8

    P = 0.38

    b = -3.6*** 0.32 t ha-1

    0.4 0.6 0.8 1.0 1.2 1.4Y

    ield

    (t

    ha

    -1)

    0

    1

    2

    3

    4

    5

    Phenotypic plasticiy of grain yield

    0.6 0.9 1.2 1.5

    0

    4

    8

    12

    b = 2.0*** 0.31 t ha-1

    b = -1.7** 0.54 t ha-1

    b = 2.5** 0.75 t ha-1

    b = 1.5*** 0.23 t ha-1

    b = 0.5* 0.05 t ha-1

    field pea in Australia sunflower in Argentina

    wheat in Mexico rye in Finland

    Environment

    potential

    stress

  • 34 Alvarez Prado et al. 2014 J Exp Bot 65, 4479

  • 35

    Plasticity and GxE have been running in parallel for over a century

    12k plasticity papers 1967-2013

    Milestones

    Richard Woltereck 1909

    Anthony Bradshaw 1965

    Mary Jane West-Eberhard 2003

  • 36

    Plasticity and GxE have been running in parallel for over a century

    Milestones

    Richard Woltereck 1909

    Anthony Bradshaw 1965

    Plasticity is a trait of its own, with

    its own genetic control

    Mary Jane West-Eberhard 2003

  • Plasticity of 13C

    Plasticity of flowering

    Plasticity of N fixation

    Plasticity of N uptake

    Plasticity of seeds per m2

    Plasticity of yield

    Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8

    FS

    T

    Genetic regions associated with trait plasticity in chickpea

    Sadras et al. 2016 J. Exp. Bot. 67, 4339

    37

  • Genetics of crop and plant yield do not match

    Lake et al (2016) Field Crops Research in press

    FS

    T

    Seed yield under relaxed competition

    Seed yield in crop stand

    1 2 3 4 5 6 7 8

    Chromosome

    38

  • 39

    thank you [email protected]

    Ross Ballard

    Jorge Casal

    Karine Chenu

    Liz Farquharson

    Kristy Hobson

    Anthony Leonforte

    Yongle Li

    Larn McMurray

    Richard Richards

    Garry Rosewarne

    Tim Sutton

    Jenny Wood

    funded by

    GRDC

    AISRF

    Yitpi Foundation