Understanding Cable and Antenna Analysis[1]

Embed Size (px)

Citation preview

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    1/49

    Understanding Cable & Antenna Analysis

    AGENDA

    Introduction Common Problems FDR vs TDR Propagation Velocity Return Loss/VSWR Cable Loss

    Distance to Fault (DTF) Test Examples Interpretation Sitemaster Family Summary

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    2/49

    Introduction

    Cable and Antenna system plays a crucialrole of the overall performance of a BaseStation system.

    Degradations and failures in the antennasystem may causepoor voice quality or dropped calls.

    result in loss of revenue. Problematic base stations can be replaced Cable and antenna systems not so easy to

    replace.

    Field technicians troubleshoot the cableand antenna system and ensure theoverall health of the system

    Field technicians today rely on portablecable and antenna analyzers to analyze,troubleshoot, characterize, and maintainthe system.

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    3/49

    Common RF & Microwave Problems

    Installation problemsPoor grounding

    Excessive bendsCrimping, Crushing and

    Deforming

    Routine MaintenanceDamaged/Dented Ground Shield

    Kinks in the cableBroken center conductor

    WeatherExcessive Moisture like snow,

    rainSea waterCorrosion

    Mis-installationPoor center pin contactLow quality connectors

    Poor weather proofingLoose connectors

    WeatherWater ingress

    Corroded connectorsExtreme temperatures plane

    landing/cruising

    Mis-installationShipping damage

    Out of Specification

    Routine MaintenanceStorm damage

    Extreme temperatures

    Cables Connectors Antennas

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    4/49

    Reflection

    ImpedanceMismatch

    Insertion Loss

    System performance problems are typically seen in

    one of two ways:Excessive Reflections More common

    Numerous causes

    Excessive Insertion Loss

    Less common

    Typically due to water in cable

    Common RF & Microwave Problems

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    5/49

    Return Loss/Reflection Coefficient

    Return Loss = - 20Log (reflection coefficient)

    Signal PowerFrom Source = Pi

    Impedance

    Not Matched,Not 50 Ohms

    Reflected Poweris Proportional to

    Impedance Mismatch

    Reflection Coefficient = = Pr / Pi

    Pi

    Pr

    Expressed in Voltage Terms, = Er / Ei

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    6/49

    Standing Waves, SWR

    Signal Voltage

    From Source = Ei

    DUT Input

    ImpedanceNot Matched,Not 50 Ohms

    LowFrequency

    ReflectedSignal Voltage = Er

    MiddleFrequency

    High

    Frequency

    The ratio of maximum to minimum isVSWR.

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    7/49

    Mismatch Equations

    V max V minVSWR = V max / V min = (1 + ) / (1 - )

    Reflection Coefficient = = Er / Ei =VSWR -1

    VSWR +1

    Return Loss = RL = - 20Log ()

    Return Loss = -20LogVSWR -1

    VSWR +1

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    8/49

    Return Loss Display

    Displays ratio of Reflected Power to Reference power in dB. Easier to compare small and large signals on a Logarithmic scale.

    Scale is usually 0 to 60 dB

    0 represents short

    60 represents close to perfect match

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    9/49

    VSWR Display

    VSWR displays the match of the system linearly. Measures the ratio of voltage peaks and valleys.

    The greater this number is, the worse the match is.

    A perfect or ideal match in VSWR terms would be 1:1

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    10/49

    VSWR Vs Return Loss Plot

    The two graphs illustrate the relationship between VSWR and Return Loss.26 dB RL 1.1 VSWR

    1.0

    1.5

    2.0

    2.5

    3.0

    1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200

    Limit : 1.42

    M1 M2M3

    VSWRAntennaVSWR

    Model: MT8212E Serial #: 01007099Date: 09/03/2010 Time: 03:01:16Std: --- Channel: N/AResolution: 259 FlexCAL:ON(COAX) CW: OFF

    VS

    WR

    Frequency (1700.0 - 2200.0 MHz)

    M1: 1.439 @ 1844.161 MHz M2: 1.419 @ 2081.387 MHz M3: 1.104 @ 1913.504 MHz

    -60

    -50

    -40

    -30

    -20

    -10

    0

    1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200

    Limit : -15.0

    M1 M2M3

    Return LossAntenna1

    Model: MT8212E Serial #: 01007099Date: 09/03/2010 Time: 02:59:37Std: --- Channel: N/AResolution: 259 FlexCAL:ON(COAX) CW: OFF

    dB

    Frequency (1700.0 - 2200.0 MHz)

    M1: -15.01 dB @ 1844.161 MHz M2: -15.27 dB @ 2081.387 MHz M3: -25.98 dB @ 1913.504 MHz

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    11/49

    Cable Loss

    Measures the energy absorbed, or lost, by the transmission line in dB/meter

    or dB/ft. Different transmission lines have different losses, and the loss is frequency

    and distance specific.

    The higher the frequency or longer the distance, the greater the loss.

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    12/49

    Distance-To-Fault

    Reveals the precise fault location of components in the transmission line

    system. Helps to identify specific problems in the system

    connector transitionsJumperskinks in the cable or moisture intrusion.

    Passing DTF Plot Failing DTF Plot

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    13/49

    Distance-To-Fault

    Maximum distance range & fault resolution is dependent upon frequency range

    and number of data points.DTF Aid shows how the parameters are related.Horizontal range is increased by reducing frequency span or increasing numberof data points.

    Fault resolution is inversely proportional to frequency rangeFault resolution improved by widening frequency span.

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    14/49

    Air Dielectric

    Constant (er)

    Vc

    r

    =

    c= 3 x 108 m/sec

    Propagation Velocity

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    15/49

    Fault Resolution and Display Resolution

    Fault resolution is the system's ability to separate two closely spaced

    discontinuities. If the fault resolution is 10 feet and there are two faults 5 feetapart, the instrument will not be able to show both faults unless FaultResolution is improved by widening the frequency span.

    Fault Resolution (m) = 1.5 x 108 x vp /F

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    16/49

    Reference Plane

    The reference plane defined for vector

    measurements is the point at whichcalibration standards are applied.

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    17/49

    Low Cost, Phase Stable Cables

    Phase stable Cables reach difficult locationswithout loss of accuracy.

    Open/Short/Load Calibration must

    be performed at the cables end.

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    18/49

    Precision Calibration Components

    Standard N :> 35 dB

    Precision N :> 42 dB

    Precision 7/16:> 45 dB

    Like any analyser, the quality of thecalibration components determines accuracy.

    Terminations

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    19/49

    DC Pulse versus Frequency Sweep

    Sources

    SpectralDensity

    f1 f2

    FDR

    TDR

    Less than 2% of

    TDR source energyis in the RF bands

    FDR

    FDR Versus TDR

    TDR

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    20/49

    M1M2

    Del M1-M2: .00 dB, .0 MHz

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    800 810 820 830 840 850 860 870 880 890 900

    Return Loss800 - 900 MHz (cal on)

    dB

    MHz

    M1: -26.94 dB @ 857.4 MHz M2: -26.94 dB @ 857.4 MHz

    M1 M2

    Del M1-M2: 1.75 dB, 61.63 Feet

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    50 100

    Distance To Fault0 - 150 Feet (cal on)

    ReturnLoss(dB)

    Feet

    M1: -22.38 dB @ 46.51 Feet M2: -20.63 dB @ 108.14 Feet

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    800 810 820 830 840 850 860 870 880 890 900

    Return Loss800 - 900 MHz (cal on)

    dB

    MHz

    M1 M2

    Del M1-M2: 7.07 dB, 61.63 Feet

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    50 100

    Distance To Fault0 - 150 Feet (cal on)

    R

    eturnLoss(dB)

    Feet

    M1: -27.33 dB @ 46.51 Feet M2: -20.26 dB @ 108.14 Feet

    Frequency Domain Reflectometry

    BEFORE AFTER

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    21/49

    Baseline The System

    Record/Store DTF and Return Loss Data

    M1 M2

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    50 100

    Distance to Fault - baseline0 - 140 feet (frequency = 800 - 1200 MHz)

    ReturnLoss(dB)

    Feet

    M1: -36.97 dB @ 30.38 feet M2: -12.54 dB @ 112.86 feet

    M1 M2

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    800 850 900 950 1000 1050 1100 1150 1200

    Return Loss - baseline800 - 1200 MHz (cal on)

    dB

    MHz

    M1: -21.01 dB @ 806.2 MHz M2: -21.01 dB @ 902.3 MHz

    Test Examples

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    22/49

    Loose Connector

    Connector with pin gap problem

    M1 M2

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    50 100

    Distance to Fault0 - 140 feet (frequency = 800 - 1200 MHz)

    ReturnLoss

    (dB)

    Feet

    M1: -26.70 dB @ 30.38 feet M2: -12.56 dB @ 112.86 feet

    M1 M2

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    800 850 900 950 1000 1050 1100 1150 1200

    Return Loss - with pin gap800 - 1200 MHz (cal on)

    dB

    MHz

    M1: -22.62 dB @ 806.2 MHz M2: -18.71 dB @ 902.3 MHz

    baseline data

    problem?

    Negligible Change Here

    FDR finds connector problems before water

    intrusion destroys the cable.

    Test Examples

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    23/49

    M1 M2

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    800 850 900 950 1000 1050 1100 1150 1200

    Return Loss - with dent800 - 1200 MHz (cal on)

    dB

    MHz

    M1: -17.20 dB @ 806.2 MHz M2: -17.86 dB @ 902.3 MHz

    M1 M2

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    50 100

    Distance to Fault0 - 140 feet (frequency = 800 - 1200 MHz)

    ReturnLoss(dB)

    Feet

    M1: -24.77 dB @ 14.1 feet M2: -36.91 dB @ 30.38 feet

    Cable Defect, Dent

    Antenna System with dent in cable

    baseline data

    problem?

    Negligible Change Here

    Test Examples

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    24/49

    M1 M2

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    50 100

    Distance to Fault0 - 140 feet (frequency = 800 - 1200 MHz)

    ReturnLoss(dB)

    Feet

    M1: -37.83 dB @ 30.38 feet M2: -11.30 dB @ 112.86 feet

    M1 M2

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    800 850 900 950 1000 1050 1100 1150 1200

    Return Loss - water in antenna800 - 1200 MHz (cal on)

    dB

    MHz

    M1: -20.92 dB @ 806.2 MHz M2: -17.46 dB @ 902.3 MHz

    Water in Antenna

    Water can be hard to find in some antennas

    Slight Changes Here

    No Changes Here

    Test Examples

    W t i A t

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    25/49

    M1 M2

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    50 100

    Distance to Fault0 - 140 feet (frquency = 806 - 901 MHz)

    ReturnLoss(dB)

    Feet

    M1: -25.35 dB @ 14.1 feet M2: -23.78 dB @ 115.03 feet

    M1 M2

    Del M1-M2: .99 dB, 95.0 MHz

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    810 820 830 840 850 860 870 880 890 900

    Return Loss - water in antenna806 - 901 MHz (cal on)

    dB

    MHz

    M1: -19.33 dB @ 806.0 MHz M2: -18.34 dB @ 901.0 MHz

    Water in Antenna

    Sweep only the antenna bandwidth

    Slight Changes Here

    problem?

    baseline dataproblem?

    Test Examples

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    26/49

    M1 M2

    Del M1-M2: 2.67 dB, 99.2 MHz

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    800 850 900 950 1000 1050 1100 1150 1200

    Return Loss - antenna moved800 - 1200 MHz (cal on)

    dB

    MHz

    M1: -12.62 dB @ 803.1 MHz M2: -15.29 dB @ 902.3 MHz

    M1 M2

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    50 100

    Distance to Fault0 - 140 feet (frequency = 800 - 1200 MHz)

    ReturnLoss(dB)

    Feet

    M1: -24.55 dB @ 14.1 feet M2: -8.09 dB @ 112.86 feet

    Storm Damage

    High winds can mis-position the antenna

    baseline data

    problem?

    Changes Here Also

    Test Examples

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    27/49

    Introduction to Trace Interpretation A Trace is the measurement that results from a Line Sweep.

    A Line Sweep measures the quality of an antenna or coax cable (acable plus antenna is called a system).

    Traces (Line Sweep measurements) must be interpretedto determineif they Pass or Fail.

    Traces are initially stored in the Anritsu Site Master instrument at theantenna site where they are made.

    Later, Traces are transferred to a computer for interpretation.

    Traces may be sent via CDROM, Memory Stick or email.

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    28/49

    Step 1: Check the bottom

    Step 2:

    CheckLeftSide

    Step 3: Check Limit Line & Markers

    Step 4:Check

    theTrace

    There is a 4 step process to interpreting traces:

    6-4

    Trace Interpretation

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    29/49

    Trace Interpretation ChartTypical Measurement Ranges

    Insertion Loss Open or Short

    System/Antenna

    Antenna

    Return Loss ofCable with Load

    30

    40

    0dB

    10

    15

    20

    60dBFreq (MHz) Meters / Feet

    Connectors

    Coax/Load

    0dB

    5

    15

    25

    Freq RL Mode DTF Mode

    Less

    More

    Reflections

    Load after Calibration42

    If your Trace has

    FREQ

    along the bottom,use the left side of

    this chart

    6-6

    If your Trace hasFEET or METERS

    along the bottom,use the right side of

    this chart

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    30/49

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    31/49

    Freq-Return Loss Measurement with a 50 ohm Load

    6-13

    -60

    -50

    -40

    -30

    -20

    -10

    1850 1875 1900 1925 1950 1975 2000 2025 2050

    Limit : -33.5

    Model: MT8212E Serial #: 01007099Date: 09/03/2010 Time: 02:50:16Std: --- Channel: N/AResolution: 259 FlexCAL:ON(COAX) CW: OFF

    dB

    Frequency (1828.0 - 2050.0 MHz)

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    32/49

    Freq-Return Loss measurement with a 50 ohm Load

    6-15

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    33/49

    Freq-Return Loss of a transmission line and antenna

    6-17

    -60

    -50

    -40

    -30

    -20

    -10

    1850 1875 1900 1925 1950 1975 2000 2025 2050

    Limit : -15.0

    Model: MT8212E Serial #: 01007099Date: 09/03/2010 Time: 02:46:53Std: --- Channel: N/AResolution: 259 FlexCAL:ON(COAX) CW: OFF

    dB

    Frequency (1828.0 - 2050.0 MHz)

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    34/49

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    35/49

    Freq-Return Loss of an Antenna

    6-21

    -60

    -50

    -40

    -30

    -20

    -10

    0

    1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200

    Limit : -15.0

    M1 M2M3

    Model: MT8212E Serial #: 01007099Date: 09/03/2010 Time: 02:59:37Std: --- Channel: N/AResolution: 259 FlexCAL:ON(COAX) CW: OFF

    dB

    Frequency (1700.0 - 2200.0 MHz)

    M1: -15.01 dB @ 1844.161 MHz M2: -15.27 dB @ 2081.387 MHz M3: -25.98 dB @ 1913.504 MHz

    Operating Range of Antenna

    Best Operating Frequency

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    36/49

    Antenna Sweep in Freq-SWR Mode

    6-23

    1.00

    1.25

    1.50

    1.75

    2.00

    2.25

    2.50

    2.75

    3.00

    3.25

    1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200

    Limit : 1.42

    M1 M2M3

    Model: MT8212E Serial #: 01007099Date: 09/03/2010 Time: 03:01:16Std: --- Channel: N/AResolution: 259 FlexCAL:ON(COAX) CW: OFF

    VSWR

    Frequency (1700.0 - 2200.0 MHz)

    M1: 1.439 @ 1844.161 MHz M2: 1.419 @ 2081.387 MHz M3: 1.104 @ 1913.504 MHz

    Operating Range of Antenna

    Best Operating Frequency

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    37/49

    Insertion Loss of a transmission line with a short (Freq-RL Mode)

    -9

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1850 1875 1900 1925 1950 1975 2000

    M1 M2

    B-1 TX1RX1/ RTL SHORT

    GSM 1900

    Date: 06/28/2005 Time: 16:50:14

    Resolution: 259 CAL:ON(COAX) CW: OFF

    dB

    Frequency (1840.0 - 2000.0 MHz)

    M1: -6.15 dB @ 1862.90 MHz M2: -7.79 dB @ 1942.90 MHz

    Marker to Peak-6.15dB

    Marker to Valley-7.79dB

    6-25

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    38/49

    Insertion Loss of a transmission line with a short

    Marker to Peak-0.70dB

    Marker to Valley-0.92dB

    6-27

    -4.0

    -3.5

    -3.0

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    800 810 820 830 840 850 860 870 880 890 900

    M1 M2

    Cable LossCABLE1CL

    Date: 09/20/2005 Time: 18:23:16 Avg.CableLoss: -.81 dBResolution: 259 FlexCAL:ON(COAX) CW: OFF

    d

    B

    Frequency (800.0 - 900.0 MHz)

    M1: -.70 dB @ 826.40 MHz M2: -.92 dB @ 842.60 MHz

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    39/49

    Distance to Fault - Return Loss Mode

    6-29

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    40/49

    Distance to Fault - SWR Mode

    6-31

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    41/49

    DTF-SWR of cable system DTF-RL of cable system

    1.000

    1.025

    1.050

    1.075

    1.100

    0 10 20 30 40 50 60 70

    Limit : 1.07

    M1M2M3 M4

    Distance-to-faultSWR Mode Feet

    Model: S332B Serial #: 00937026 Prop.Vel:0.880Date: 03/26/2002 Time: 08:57:55 Ins.Loss:0.013dB/ft

    Resolution: 259 CAL: ON(COAX)

    VSWR

    Distance (0.0 - 70.0 Feet)

    M1: 1.02 @ 56.43 ft M2: 1.04 @ 48.02 ft M3: 1.04 @ 8.41 ft M4: 1.11 @ 28.22 ft

    -50

    -40

    -30

    -20

    -10

    0

    0 10 20 30 40 50 60 70

    Limit : -30.0

    M1M2M3 M4

    Distance-to-faultRL Mode Feet

    Model: S332B Serial #: 00937026 Prop.Vel:0.880Date: Mar/26/200 Time: 08:55:39 Ins.Loss:0.013dB/ft

    Resolution: 259 CAL: ON(COAX)

    dB

    Distance (0.0 - 70.0 Feet)

    M1: -40.92 dB @ 56.43 ft M2: -33.56 dB @ 48.02 ft M3: -33.56 dB @ 8.41 ft M4: -26.02 dB @ 28.22 ft

    6-33

    Trace Interpretation - Basic Measurements

    T I i B i M

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    42/49

    DTF - End of transmission line terminated with an open orshort

    -50

    -40

    -30

    -20

    -10

    0

    0 25 50 75 100 125 150 175 200

    Limit : -30.0

    M1 M2

    Clifton Springs / 300R176ABlue 1 DTF Short

    Resolution: 517 CAL: ON(COAX)

    dB

    Distance (0.0 - 220.0 Feet)

    M1: -30.75 dB @ 0.0 Feet M2: -1.84 dB @ 209.34 Feet

    End of transmission line

    Ripple pattern caused by short(Miller Effect)

    Notice this peak

    6-35

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    43/49

    T I t t ti B i M t

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    44/49

    DTF - End of transmission line terminated with a 50 Ohm load - FAILURE

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    0 10 20 30 40 50 60 70

    Limit : -19.30

    M1

    Distance-to-faultDTF TERM

    Resolution: 130 CAL: ON(COAX) CW On

    ReturnLoss(dB)

    Distance (0.0 - 76.0 Feet)

    M1: -37.077 dB @ 68.341 Feet

    Last connector

    Connectors at main feedand top jumper

    First connector

    Fault in line

    Notice the Marker

    6-39

    Trace Interpretation - Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    45/49

    Trace Interpretation Basic Measurements

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    46/49

    Handheld Software Tools Trace Overlay of DTFtraces before and after setting Vp(Propagation Velocity)

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    0 10 20 30 40 50 60 70

    Limit : 0.00

    M1

    Distance-to-faultDTF OPEN

    Resolution: 130 CAL: ON(COAX) CW On

    ReturnLoss(dB)

    Distance (0.0 - 76.0 Feet)

    M1: -2.418 dB @ 68.341 Feet

    Before Correct Cable Type EnteredEnd of cable shown at 62 feet

    With Correct Cable Type EnteredEnd of cable shown at 68 feet

    6-43

    Trace Interpretation - Basic Measurements

    Master Software Tools

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    47/49

    Cable Analysis Products Overview

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    48/49

    Cable Analysis Products Overview

    1-port 1-port, SPA,2-port transmission1-port,2-port transmission

    S331E2 MHz to 4 GHz

    S361E2 MHz to 6 GHz

    S332E / Op212 MHz - 4 GHz VNA

    100 kHz - 4 GHz SPA

    S362E / Op212 MHz - 6 GHz VNA

    100 kHz - 6 GHz SPA

    S331E / Op212 MHz - 4 GHz

    S361E / Op212 MHz - 6 GHz

    VNA,1/2-port transmission

    MS20X4A/B500 kHz 4 GHz

    MS20X6A/B500 kHz - 6 GHz

    1-port, SPA

    2-port transmissionDemod, backhaul

    MT8212E4 GHz VNA/SPADemod, Backhaul

    Site Master VNA Master Cell/BTS

    Master

  • 8/6/2019 Understanding Cable and Antenna Analysis[1]

    49/49