16
Uptake of pharmaceuticals in the terrestrial environment Laura Carter, Jim Ryan & Alistair Boxall Pharmaceuticals in the soil environment Route of entry Detection Sewage treatment Pharmaceutical Concentration (mg/kg) Carbamazepine < 0.006 Ciprofloxacin < 0.401 Diphenydramine < 0.0011 Diazepam < 0.004 Ibuprofen < 0.0002 Naproxen < 0.0007 Norfloxacin < 0.328 Tetracycline < 0.198 Triclosan < 0.019 Trimethoprim < 0.0006 Effluent Sludge 2 Livestock

Uptake of pharmaceuticals in the terrestrial

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Uptake of pharmaceuticals in the terrestrial environment

Laura Carter, Jim Ryan & Alistair Boxall

Pharmaceuticals in the soil environment

Route of entry  Detection

Sewage treatment

Pharmaceutical Concentration (mg/kg)

Carbamazepine < 0.006

Ciprofloxacin < 0.401

Diphenydramine < 0.0011

Diazepam < 0.004

Ibuprofen < 0.0002

Naproxen < 0.0007

Norfloxacin < 0.328

Tetracycline < 0.198

Triclosan < 0.019

Trimethoprim < 0.0006

Effluent

Sludge

2

Livestock

Current research

Pharmaceutical research to date has included:Extraction of pharmaceuticals from soils

=> Detection of pharmaceuticals

Uptake of human and veterinary medicines into crops

Fate of pharmaceuticals

in soil

Sorption

Leaching

3

Why study uptake ?

Uptake into plants and organisms Bioaccumulation through the food chain

Uptake into plants, especially crops Potential human risk via consumption

4

Aims and objectives

To explore factors and processes affecting the uptake of pharmaceuticals in the terrestrial environment

Evaluate the relationship between uptake and chemical properties

Study specific aims:

Study the uptake of pharmaceuticals into earthworms

Evaluate existing models for predicting bioconcentration in risk assessment

5

Research approach

ModelUptakeSorption

6

Earthworm Uptake

7

Study compounds

•All pharmaceuticals were 14 C radiolabelled 

Log Kow: 2.25pKa: N/AKd: 4.83

Anti‐hypertensiveNeutral

Log Kow: 4.65pKa: 10.1Kd: 608.42

Anti‐depressantBasic

Log Kow: 4.02pKa: 4.1Kd: 28.65

Anti‐inflammatoryAcidic

Carbamazepine Diclofenac Fluoxetine Orlistat

Log Kow: 8.19pKa: N/A

Kd: 1493.98Weight loss aid

Neutral

*Kd values were determined for the test soil by an adaption of Adsorption – Desorption Batch Equilibrium Method OECD 106 (L/kg)** Log Kow values obtained from KOWWIN v. 1.68 database, USEPA EPI suite 4.1 programme*** pKa  Various literature sources (Serrano et al., 2011) 

8

Study soil

Soil Type *† Clay LoamMoisture content * 17.25 %MWHC * 22.3 g / 100gpH † 6.31OC content † 1.89 %C/N † 11.2Organic material † 3.27 %CEC † 10.3 cmol + / kg

Analysis part completed on site at FERA (*)Remaining determinations sent to INRA soil laboratories (†)

Soil properties

9

Study set ‐ up

Earthworm ‐ Eisenia fetida

Soil spiked at environmentally relevant concentrations

Four compounds

Controlled conditions

Analysis validated methods earthworm recovery > 86 %

Uptake phase21 Days

8 Sampling points3 Earthworm samples

Depuration phase21 Days

7 Sampling points3 Earthworm samples

10

Supplementary studies

Supporting data

Soil levels over time

Pore water levels

Analysis using validated methods soil (recovery > 83 %)

**Various time points throughout uptake study**

11

Earthworm modeling

One compartment first‐order toxicokinetic model • Based on work by Ashauer et al., 2010

OpenModel software1

Used measured pore water concentrations

Bioconcentration factors (BCF) can be calculated from modelled uptake and depuration rates

Model was set to run to equilibrium

12Where Cint is the internal concentration (nmol/kg ww), Cpw is the pore water concentration (nmol/L) and kin and kout the uptake (nmol/kg ww d‐1) and elimination rate constant (d‐1). 1 OpenModel v. 1.2, University of Nottingham, 2008.

Carbamazepine

13

Pore water

Soil

Earthworm

Model fit

Diclofenac

14

Pore water

Soil

Earthworm

Model fit

Fluoxetine

15

Pore water

Soil

Earthworm

Model fit

Orlistat

16

Pore water

Soil

Earthworm

Model fit

Modeling results and bioconcentration

Pharmaceutical Steady state?

Dissipation in test system

Kin(uptake rate) (nmol/kg d‐1)

Kout(depuration rate) (d‐1)

BCFpw

Carbamazepine Yes 30 % 0.2408 0.1393 2.21

Diclofenac No 10 % 0.0363 0.0021 21.46

Fluoxetine Near 20 % 1.1079 0.0471 30.8

Orlistat Near 20 % 0.0708 0.0016 51.53

17

Risk assessment

Current earthworm BCFpw estimation techniques:

1) BCFwater based on QSAR (Belfroid et al., 1993)

log BCF =  1.06 (±0.16) logKow  ‐ 2.36 (±0.20)

2) TGD BCFpw based on QSAR (Jager et al., 1998)

BCFworm = (0.84 + 0.012Kow)/RHOworm

(Where for RHOearthworm is the density of earthworm and by default a value of 1 (kgwwt/L‐1) can be assumed)

18

Bioconcentration factor

19

Summary

Different patterns of uptake into E. fetida for different compounds

Acidic pharmaceutical – continuous uptake, steady state not reached at 21 days

Basic and neutral – near steady state

Highly hydrophobic  ‐ possible cut off for BCF estimation

Current earthworm BCFpw models overestimate uptake by 6 orders of magnitude

20

Future research plan

Analyse worm extracts to check for possible metabolite formation

Repeated test design using different soil types

Changing organic matter content

pH range 5 – 7

Already completed for FLX and CBZ

Different terrestrial invertebrates

Lumbricus terrestris

21

Acknowledgments

Professor Alistair BoxallUniversity of York

Dr Jim RyanGlaxoSmithKline

EcoChemistry team at Fera

22

Soil extraction

Solvent extraction v. ultrasonic extraction

Various solvents and soil solution ratios

Validation: recovery of spiked soilSolvent

Pharmaceutical Solvent Recovery (% ± SD)

Carbamazepine Methanol 100.6 ± 2.12

Diclofenac Ethyl Acetate 82.83 ± 3.29

Fluoxetine Acetonitrile : Water (7:3)

82.94 ± 1.69

Orlistat Acetonitrile 94.38 ± 7.93

Soil

23

Earthworm extraction

Earthworm

Injected 14C compound

Homogenised with solvent into suspension

Shaken

Centrifuged

Supernatant removed for analysis

Pharmaceutical Solvent Recovery (%± SD)

Carbamazepine Methanol 100.85 ±4.74

Diclofenac Ethyl Acetate 108.86 ±3.25

Fluoxetine Acetonitrile : Water (7:3)

86.27 ± 7.72

Orilstat Acetonitrile 88.88 ± 8.52

24

Difference in size

25

Gut purging

26

Bird exposure risk

Pharmaceutical PEC (mg/kg wwt worm‐1)

Daily food consumption (g)a

DD to bird (mg/bird/ day)

Threshold dose for bird (mg/day)b

Number of worms to eat to exceed threshold

Carbamazepine 0.0228 30 6.86 E‐06 1.83 266 225Diclofenac 0.0278 30 8.34 E‐06 0.11 13 699Fluoxetine 0.0339 30 1.02 E‐05 0.09 8 979Orlistat 0.0326 30 9.79 E‐06 0.14 14 007

a Markham et al., 2008 – 30 g wet weight of invertebrates eaten per day for starlingsb Threshold dose for a bird was calculated by extrapolating from a human threshold value, by mass 27

Bird exposure risk

PECoral,predator =Predicted Environmental Conc. in food [mg/kg wwt earthworm‐1]BCFearthworm = bioconcentration factor for earthworms [L/kg wwt earthworm‐1]Cearthworm = concentration in earthworm [mg/kg wwt earthworm ‐1]Cpw = concentration in porewater [mg.L‐1]Csoil = concentration in soil [mg/kg wwt‐1]Wearthworm = weight of earthworm tissue [kg wwt tissue]Wgut = weight of gut contents [kg wwt]

28

BCF calculations

At equilibrium dc/dt = 0Kin – Kout *Cworm = 0Kin = Kout * CwormKin/Kout = CwormSo worm concentration at equilibrium when Cpw is set to 1 is equal to Kin/KoutHence you can calculate BCF with the model instead of using Kin/Kout

29

The UK Fish Tissue Archive and its application to EU priority substances

Monika Jürgens1, Andrew Johnson1, Alan Lawlor1, Dave Hughes2,Aşkın Birgül2, Athanasios Katsoyiannis2, Kevin Jones2

(1CEH,   2Lancaster University)

Hg‐CH3

The UK National Fish Tissue Archive

In 2007, CEH and the UK Environment Agency began to build an archive of fish tissue samples from a selection of English rivers.