15
12/14/11 1 Topic 7 Laterally unrestrained beams Prof Dr Shahrin Mohammad Structural Steel and Timber Design SAB3233 Structural Steel Design Topic 1 Overview Topic 4 – Design of steel structures (BS EN 1993) Topic 3 –AcLons on Structures (BS EN 1991) Topic 5 – CrosssecLon classificaLon Topic 2 Basis of Structural Design (BS EN 1990) Topic 6 – Laterally restrained beams Topic 7 – Laterally unrestrained beams Topic 8 – Columns Topic 9 – Trusses Topic 10 ConnecLons

UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

1

Topic  7  Laterally  unrestrained  beams  

       

Prof  Dr  Shahrin  Mohammad  

Structural  Steel  and  Timber  Design  SAB3233  

Structural  Steel  Design  

Topic  1  -­‐  Overview  

Topic  4  –  Design  of  steel  structures  (BS  EN  1993)  

 Topic  3  –AcLons  on  

Structures      (BS  EN  1991)  

 Topic  5  –  Cross-­‐secLon  

classificaLon  

Topic  2  -­‐  Basis  of  Structural  Design  (BS  EN  1990)  

Topic  6  –  Laterally  restrained  beams  

Topic  7  –  Laterally  unrestrained  beams  

Topic  8  –  Columns  

Topic  9  –  Trusses  

Topic  10  -­‐  ConnecLons  

Page 2: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

2

Beam is a member predominantly subject to bending. A beam is a structural member which is subject to transverse loads, and accordingly must be designed to withstand shear and moment. Generally, it will be bent about its major axis

Lateral-­‐torsional  buckling      

Dead  weight  load  applied  verLcally  

Buckled  posiLon  

Unloaded  posiLon  

Clamp  at  root  

§  In  the  case  of  a  beam  bent  about  its  major  axis,  failure  may  occur  by  a  form  of  buckling  which  involves  both  lateral  deflecLon  and  twisLng.      

§  Slender  structural  elements  loaded  in  a  sLff  plane  tend  to  fail  by  buckling  in  a  more  flexible  plane.    

Page 3: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

3

•  Perfectly  elasLc,  iniLally  straight,  loaded  by  equal  and  opposite  end  moments  about  its  major  axis.  

M   M  

L  

ElevaLon   SecLon  

Plan  

y  

z  x  

u  

f  

§  Unrestrained  along  its  length.  

§  End  Supports  §  TwisLng  and  lateral  deflecLon  prevented.  

§  Free  to  rotate  both  in  the  plane  of  the  web  and  on  plan.  

•  The  compression  flange  is  not  restrained  from  deflect  laterally  and  rotate  about  the  plan  of  the  secLon,  which  is  called  lateral  torsional  buckling  

•  Three  components  of  displacement  i.e.  verLcal,  horizontal  and  torsional  displacement  

Unrestrained  beam  

Page 4: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

4

•  Lateral  restraint  may  be  of  along  the  span  or  at  some  points  along  the  span.  

Front  view  of  the  primary  beam  

P1   P2  

Primary  beam  

Secondary  beams  

A   B   C   D  

Plan  view  

Secondary  beams  

Deform  shape  

Original  shape  

A   B   C   D  

Points  A,  B,  C  and  D  are  restrained  from  deform  laterally  by  the  secondary  beams  and  the  connecAon  at  column  

Examples  :  Unrestrained  Beam  

Steel  slide  

UB  

Timber  floor  

UB  

Crane  railway  

Steel  column  

This  crane  girder  is  not  restrained  laterally  between  two  brackets.    

Bracket  This  beam  only  laterally  restrained  on  both  ends.  

Support  

Water  tank  

Page 5: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

5

Page 6: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

6

Design  factors  which  will  influence  the  lateral  stability  can  be  summarized  as:    •  The  slenderness  of  the  member  between  adequate  

lateral  restraints;  •  the  shape  of  cross-­‐secLon;  •  the  variaLon  of  moment  along  the  beam;  •  the  form  of  end  restraint  provided,  •  the  manner  in  which  the  load  is  applied,  i.e.  to  tension  

or  compression  flange.  

Page 7: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

7

ElasLc  buckling  of  beams  

Includes:  

§  Lateral  flexural  sLffness  EIz  §  Torsional  and  Warping  sLffnesses  GIt  and  Eiw  

Their  relaLve  importance  depends  on  the  type  of  cross-­‐secLon  used.      

⎥⎦

⎤⎢⎣

⎡+=

z2

t2

z

w2z

2

cr EIGIL

II

LEIM

ππ

CriLcal  Buckling  Moment    for  uniform  bending  moment  diagram  is  

Effect  of  Slenderness  

Non-­‐dimensional    moment  resistance  plot  

0

Stocky Slender

pl

cr

1,0

1,0 M M

=

Intermediate

pl

cr M M

pl

M M

LT λ

Non-­‐dimensional  plot  permits  results  from  different  test  series  to  be  compared  

  Intermediate  slenderness  -­‐  adversely  affected  by  inelasLcity  and  geometric  imperfecLons  

  EC3  uses  a  reducLon  factor  χLT  on  plasLc  resistance  moment  to  cover  the  whole  slenderness  range    

  Stocky  beams  (                <  0,4)  unaffected  by  lateral  torsional  buckling  

  Slender  beams  (                >1,2)  resistance  close  to  theoreLcal  elasLc  criLcal  moment  Mcr  

LT λ

LT λ

Page 8: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

8

Design  buckling  resistance  

The  design  buckling  resistance  moment  Mb.Rd  of  a  laterally  unrestrained  beam  is  calculated  as  

which  is  effecLvely  the  plasLc  resistance  of  the  secLon  mulLplied  by  

the  reducLon  factor  cLT    

                                                                                                                       

1Myy.plwLTRd.b /fWM γβχ=

0  

Welded  beams  

Slenderness  

c  

Redu

cLon

 factor  

1.0   2.0  

1.0  

Lateral-­‐torsional  buckling  reducLon  factor  

LT λ

ReducLon  factor  for  LTB  

     

χLTLT =1

ϕLT + ϕLT2 −λLT

2"# $%.0.5

ϕLT = 0.5 1+∝LT (λLT − 0.2)+λLT2#

$%

&

'(

 where  

α LT =  0.21  for  rolled  secLons  

α LT  =  0.49  for  welded  secLons  

and  

                                                                                                                       

0  

Welded  beams  

Slenderness  

Redu

cAon

 factor  

1.0   2.0  

1.0  

Lateral-­‐torsional  buckling  reducLon  factor  

LT λ

Page 9: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

9

Determining  

       

LTλ

The  non-­‐dimensional  slenderness   crRdplLT MM /.=λ

calculated  by  calculaLng  the  plasLc  resistance  moment  Mpl.Rd  and  elasLc  criLcal  moment  Mcr  from  first  principles    

where  

5.0

1 fyE⎥⎦

⎤⎢⎣

⎡=πλ

For  any  plain  I  or  H  secLon  with  equal  flanges,  under  uniform  moment  with  simple  end  restraints  

25.02

f

z

zLT

t/hi/L

2011

i/L

⎥⎥

⎢⎢

⎥⎥⎦

⎢⎢⎣

⎡+

5.0w

1

LTLT β

λλ

λ ⎥⎦

⎤⎢⎣

⎡=or  using  

18

Effect  of  load  paeern  on  LTB  

…    which  is  increased  from  the  basic  (uniform  moment)  case  by  a  factor  C1=4.24/π=1.365    

t

wtzcr GIL

EIGIEIL

M 2

21

ππ+=

The  elasLc  criLcal  moment  for  a  beam  under  uniform  bending  moment    is  

M   M  

t

wtzcr GIL

EIGIEIL

M 2

2124,4 π+=

The  elasLc  criLcal  moment  (mid-­‐span  moment)  for  a  beam  with  a  central  point  load  is    

M  

Page 10: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

10

19

C1  factor  

C1  appears:    

•  as  a  simple  mulLplier  in  expressions  for  Mcr    

•  as  1/  C10.5  in  expressions  for  λLT.  

EC3  expresses  the  elasLc  criLcal  moment  Mcr  for  a  parLcular  loading  case  as  

p  2  1+   EI  w  2  M    =   C   p  

L   EI  GJ  cr   1  L   GJ  Mmax   C1  

M  

M  

M  

FL/4  

FL/8  

FL/4  

1.00  

1.879  

2.752  

1.365  

1.132  

1.046  

Loads   Bending  moment  

M   M  

M  

M   -­‐M  

F  

F  

F  F  =   =   =   =  

t

wtzcr GIL

EIGIEIL

CM 2

2

1 1ππ

+=

20

End support conditions •  Basic case assumes end conditions which prevent

lateral movement and twist but permit rotation on plan.

L

Elevation Section

Plan

Page 11: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

11

21

End support conditions

Choice of k is at the designer’s discretion

§  End conditions which prevent rotation on plan enhance the elastic buckling resistance

§  Can include the effect of different support conditions by redefining the unrestrained length as an effective length

§  Two effective length factors, k and kw. §  Reflect the two possible types of end fixity, lateral bending

restraint and warping restraint. §  Note: it is recommended that kw be taken as 1.0 unless special

provision for warping fixing is made. §  EC3 recommends k values of 0,5 for fully fixed ends, 0,7 for one

free and one fixed end and of course 1,0 for two free ends.

22

Level  of  applicaLon  of  load  

•  Loads  applied  to  top  flange  are  destabilising  

•  Problem  increases  with  depth  of  secLon  and/or  as  span  reduces  

•  EC3  introduces  C2  factor  into  expressions  for  λLT  

F

F

F

10 100 10001

a=d/2

a=0

a=d/2

F

L GIEI2

t

w

Equiv

ale

nt

uniform

mo

me

nt

mo

mentm

om

en

t fa

cto

rm

1,4

1,2

1,0

0,8

0,6

0,4

Effect of load position on buckling resistance

Page 12: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

12

Beams  with  intermediate  lateral  support  

•  If  beams  have  lateral  restraints  at  intervals  along  the  span  the  segments  of  the  beam  between  restraints  must  be  treated  in  isolaLon  

•  beam  design  is  based  on  the  most  criLcal  segment      •  Lengths  of  beams  between  restraints  should  use  an  effecLve  length  factor  k  of  1.0    

 

Design  Procedure  :  

!

Start

Estimate support condition of the steel beam

Estimate all the load subjected onto the beam

Determine the maximum design of shear force, VEd and moment, MEd

Chose steel grade and cross section size that suitable for the design (EN 1993-1-1:2005, Table 3.1)

Classify the cross section of the steel beam (EN 1993-1-1:2005, Sheet 1, 2 and 3)

Determine the maximum shear force of the section, Vc, Rd (EN 1993-1-1:2005, Clause 6.2.6)

VEd ≤ Vc, Rd

Determine the maximum moment resistance, Mc, Rd (EN 1993-1-1:2005, Clause 6.2.5)

MEd ≤ Mc, Rd

No

Yes

B

Is shear buckling resistance checking for web need? (EN 1993-1-1:2005, Clause 6.2.6)

Check for shear buckling resistance of web (EN 1993-1-5, Section 5)

Yes

No

A

Yes

No

Page 13: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

13

Design  Procedure  :  

!

Check for combined bending and shear force resistance (EN 1993-1-1:2005, Clause 6.2.8)

Checking for lateral torsional buckling resistance (EN 1993-1-1:2005, Clause 6.3.2)

B A

Adopt section

End

No

Is the combined bending and shear checking need?

VEd > 0.5Vc, Rd

Yes

No

Determine the allowable deflection (EN 1990:2002, Clause A1.4.3)

Actual deflection ≤ Allowable deflection

Yes

MEd ≤ MV, Rd No

Yes

Determine value of permanent load that gives effect to the beam deflection

MEd ≤ Mb, Rd No

Yes

Design  Procedure  :  

Page 14: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

14

Page 15: UTM OpenCourseware - Structural&Steel&and&Timber ...ocw.utm.my/.../2/Topic_7_-_Laterally_unrestrained_beams.pdfEstimate all the load subjected onto the beam Determine the maximum design

12/14/11

15

Example  1  :  Design  of  an  unrestrained  beam  

Thank You