12
I VAN DER WAALS NIXING RULES FOR CUBIC EQUATIONS O F STATE (Applications for Supercritical Fluid Extraction Nodeling and Phase Equilibrium Calculations) T. Y. Kwak. E. H. Benmekki and C. A. Ransoori Department of Chemical Engineering University o f Illinois BOX 4348 Chicago, I1 inois 60680 Introduction Ther e has been extensive progress made in recent years in research towards the development of analytic statistical mechanical equations of state applicable for process design calculations (l ,2 ). However cubi c equa tions of state are still widely useU i n chemical engineering practice for calcu lation and pred iction of properties of fluids and fluid mixture s (3). These equations of state are generally modifications of the van der Waals equation of state (4,5), P which was extension following a- b - Eauat ions RT a v-b V' --- c11 proposed by van der Waals 4) in 1873. according to van der Waals for the of this equation to mixtures, it i s necessary to replace a and b with the composition-dependent expressions : nn Z Z xi xj aij ij n n i j Z x i xj bij t21 C3l [2] and [)I are called the van der Waals mixing rules. In these equa tions and b.., (i-j) are parameters corresponding to pure component i) while and b ; . (i#j) are called the unlike-interaction parameters. It is customary .elate ihe unl ke-interaction para meters t o the pure-component param eter s by the following expression : C41 C51 I n E q . [ 4] kij i s a fit tin g parame ter whi ch is known as the cou pli ng par ameter. Wi th E q . [ 5 ] rep lac ed in E q . [ 3 ] , th e expres si on for b will reduce t o the fo ll owing one-summation form: n i b 0 Z i bii The Redlich-Kwong equation o f state (6). RT a p--- v - b T4 v(v-b) 119 c3. I

Van Der Waals Mixing Rules

Embed Size (px)

Citation preview

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 1/11

I

VAN DER WAALS NIXING RULES

FOR

CUBIC EQUATIONS OF STATE

(Applications for Supercritical Fluid Extraction Nodeling

and Phase Equilibrium Calculations)

T. Y . Kwak.

E.

H. Benmekki and C. A. Ransoori

Department of Chemical Engineering

University

of

Illinois

BOX

4348

Chicago,

I 1

inois

60680

Introduction

There has been extensive progress made in recent years in research towards the

development of analytic statistical mechanical equations of state applicable for

process design calculations (l,2). However cubic equations of state are still

widely useU in chemical engineering practice for calculation and prediction of

properties of fluids and fluid mixtures

(3).

These equations of state are generally

modifications of the van der Waals equation of state (4 ,5) ,

P -

which was

extension

following

a -

b -

Eauat ions

RT a

v - b V'

- - -

c11

proposed by van der Waals 4) in 1873. according to van der Waals for the

of this equation to mixtures, it is necessary to replace a and b with the

composition-dependent expressions :

n n

Z

Z

xi xj aij

i j

n n

i j

Z xi xj bij

t21

C3l

[2] and

[)I

are called the van der Waals mixing rules. In these equations

and b.., (i-j) are parameters corresponding to pure component i) while

and b; .

(i#j)

are called the unlike-interaction parameters. It is customary

.elate ihe unl ke-interaction parameters to the pure-component parameters by the

following expression :

C41

C51

In Eq.[4] kij is a fitting parameter which is known as the coupling parameter.

With Eq.[5] replaced in Eq.[3], the expression for b will reduce to the following

one-summation form:

n

i

b

0

Z

i

bii

The Redlich-Kwong equation o f state ( 6 ) .

RT a

p - - -

v - b T4 v(v-b)

119

c3 . I

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 2/11

and the Peng-Robinson equation of

State (7),

RT a TI

PI--

v-b v (v+b) +b (v-b)

a(T)

a(Tc)

=

0 . 4 5 7 2 4 R

T

/ Pc

K = 0.37464 + 1.54226~ - 0 . 2 6 9 9 2 ~ '

b

=

0.0778

RTc/Pc

a(Tc)

( 1

~ 1 T$

) I

are widely used for thermodynamic property calculations.

The Theory of the Van Der Waals Hixinq Rules

Leland and Co-workers (8-10)

have been able to re-derive the van der Waals mixing

rules with the use of statiscal mechanical theory of radial distribution functions.

According to these investigators for a fluid mixture with a pair intermolecular

potential energy function ,

uij r) = c ' .f (r/uij)

I J

the following mixing rules will be derived

:

In these equations, cij is the interaction energy parameter between molecule and

j while

u

is the intermolecular interaction distance between the two molecules.

Knowing tt%t coefficients (a) and (b) of the van der Waals equation of state are

proportional to c and u according

to

the following expressions :

a = 1.1250 RT,V,

= N,

€03

b = 0.3333 vc =

No v3

[I41

C151

We can see that Eq.[IZ] and Eq.1131 are identical with Eqs.[2] and

[31

respectively. Statistical mechanical arguments which are used in deriving Eq.[lZ]

and Eq.[13] dictate the following guidelines in using the van der Waals mixing rules

1 ) The van der Waals mixing rules are

for

constants of an equation of state.

(2) Equation [I21 is a mixing rule for the molecular volume, and Eq.[13] is a

mixing rule for (molecular volume). (molecular energy). It happens that b and a

of

the van der Waals equation of state are proportional to (molecular volume)

and (molecular volume). (molecular energy), respectively, and as a result, these

mixing rules are used in the form which was proposed by van der Waals.

(3) Knowing that u.. (for # j), the unlike-interaction diameters, for

spherical molecules

I

equal to

120

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 3/11

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 4/11

where c

=

a(Tc) (1 + I

and

d

= acrz/RTc

This form

of

the Peng-Robinson equation of s t a t e s u gg es ts t h a t t h e r e e x i s t t h r e e

independent co ns ta nt s which are b. C and d. Now, fo l l ow in g the pre scr ibe d

g u i de l i ne s f o r t h e f o r

the van der Waals m ix in g ru les , m ix in g ru les f o r b . c . and d

of the Peng-Robinson eq uat ion o f s t at e

w i l l

be

w i t h t h e f o l l o w i n g i n t e r a c t i o n p ar am et er s :

C231

E241

A p p l i c a t i o n s

for

S u p e r c r i t i c a l

l ui d

E x t r a c t i o n h o d e li n q

A

s e ri o us t e s t o f m i x t u r e eq ua ti on s o f s t a t e i s shown t o be t h e i r a p p l i c a t i o n f o r

p r e d i ct i o n o f s o l u b i l i t y o f s ol ut es i n s u p e rc r i t i c a l f l u i d s 1 1 ) . I n the present

re p or t, we ap pl y t h e van der Waals

,

t h e Redlich-Kwong and th e Peng-Robinson

e qu at io ns o f s t a t e for s u p e rc r i t i c a l f l u i d e x t r a ct i o n

of

s o l i d s and t h e e f f e c t o f

c ho os in g d i f f e r e n t m i x i n g r u l e s o n p r e d i c t i o n of s o l u b i l i t y o f s o l i d s i n

supercr

i

i c a l f l u i d s

.

Thermodvnami

c nodel

S o l u b i l i t y o f

a

condensed phase, y2 i n a vapor phase a t su pe rc r i t i ca l

cond i t ion s (12) can be de f in e as :

P

psat

~2 (Pqat/P) (I/+)

@qa t

Exp{

I

(vSo d/RT)dPl C281

where i s t he f u g a c i t y c o e f f i c i e n t a t p r es s ur e P. Provided

we

assume

v,sol id i s independent o f pressure and fo r smal l val ue s o f of P z s a t the above

expression w i l l be conver ted t o the fo l lo w in g form:

y2' (Pzsat/P1 ( l/ d2) Exp { vzSo1d (P-Pzsat) /RTl

1291

I n order t o ca lc ul at e s o l u b i l i t y f rom Eq.[29] we need t o choose an expression fo r

t h e f u g a c i t y c o e f f i c i e n t . G en er al ly f o r c a l c u l a t i o n o f f u g a c i t y c o e f f i c i e n t an

equat ion of s ta te w i t h app rop ri a te m ix i ng ru l e s i s used (12)

i n

t h e f o l l o w i n g

expression :

[Sol

OD

RT I n @i=

[

(aP/ani)T,V,n

-

(RT/V)] dV

-

RTlnZ

V j

S o l u b i l i t y C a l c ul a t i on s

I n F igu re 1 s o l u b i l i t y o f

2.3

dimethyl naphtalene (DHN) i n s u p e r c r i t i c a l carbon

d i o x i d e i s r e p o r t e d v e rs u s p re ss ur e a t 308 k e l v i n a l on g w i t h p r e d i c t i on s u s in g t he

122

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 5/11

I

van der Waals equat ion o f s ta te . Accord ing t o t h is f i gu re pr ed ic t ion s by the van der

Waals equa tion of sta te

w i l l

improve when Eq.[3], along w i t h combining r u l e i n

Eq.[17], i s used as the mi x in g r u l e f o r b instead o f Eq.[3.1] which i s cust omar i ly

used. This comparaison and ot he r s i mi l a r comparaisons which ar e re po rt ed elsewhere

1 1 ) f o r o ther so lu te - so l ven t sys tems es tab l i sh t he su pe r i o r i t y o f double-summation

mi xi ng ru le s, Eq.[3], f o r b ove r si n g l e summatiom expressio n, Eq.[3.1].

I n F igu re 2 t he same expe r im en ta l so lu b i l i t y da ta as i n F igu r e

1

are compared

w i th p red i c t i ons us ing t he Redl ich-Kw ong equa t i on o f s ta te . A ccording t o t h i s f i g u r e

the corected van der Waals mi x i ng ru le s fo r the Redlich-Kwong equ at io n o f s ta te,

Eqs.[3] and Eq.[20], a re c le a r l y super io r to the m ix ing ru le s th a t a r e cus tomar i l y

used,Eq.[2] and Eq.[) .I ], f o r t h i s eq uat ion o f sta te. Si mi la r obs erv at i on s ar e made

f or p r e d i c t io n o f s o l u b i l i t i e s o f o th er s o l id s i n s u p e r c r i t i c a l f l u i d s which

w i l l

not be repor ted here.

The Peng-Robinson equation

o f

s ta te w i th i t s cus tomary m ix i ng ru les , Eqs.[2] and

c3.11, i s wi d el y used f o r p r e d i c t i o n o f s o l u b i l i t y o f heavy s o l u t e s i n s u p e r c r i t i c a l

gases and fo r pe t ro leum res er vo i r f l u i d phase eq u i l ib r iu m ca lcu la t io ns (13-15) . I n

F igu re

3

the same exper imenta l so l u b i l i t y da ta as

i n

Figures

1

and

2

are compared

w i t h p r e d i c t i o n s u si n g th e Peng-Robinson e q u at io n o f s t a t e w i t h i t s o r i g i n a l m i x i n g

ru le s w i t h t he co r rec ted m ix i ng ru l es . A ccording t o F igu re 3 co rr ec te d van der Waals

mix in g ru le s o f the Peng-Robinson equat ion of s t at e appa rent ly do not improve

s o l u b i l i t y p r e d i c t io n s o v er t h e o r i g i n a l m i x in g r u l e s . However, v a r i a t i o n o f

s o l u b i l i t y versus p ressure f o r t he new m ix i ng ru l e s i s more cons i s ten t w i t h t he

exper imenta l da ta than the o l d m ix ing ru les . A l so cons ider in g the fa c t tha t new

mix ing ru les fo r the Peng-Robinson equat ion o f s ta te co nt a in th ree adustable

parameters (k.. , l i j and m i j ) w h i l e t h e o l d m i x in g r u l e s c o n t a i n o n l y one

adju stab le paibmeter (k i . ) ,

i t

makes the new mix in g ru le s more a t t ra c t i ve . To

demonstrate the su pe r i or i i y o f the new mix in g ru le s fo r the Peng-Robinson equat ion

o f s t at e

we

have repor ted here Figures 4 t o

9 .

According t o these f ig ur es when the

u n l i k e - i n t e r a c t i o n a d us ta b le p ar am et er s o f t h e m i x in g r u l e s a r e f i t t e d t o t he

experimental data, the Peng-Robinson equ at io n o f s ta te w i t h the corr ecte d van der

Waals m ix i ng ru l e s can p r ed i c t so lu b i l i t y o f heavy so l i ds

i n

s u p e r c r i t i c a l f l u i d

more accu ra te l y t han w i t h t he o r i g i n a l m i x i ng ru l e s ove r d i f f e r e n t r anges o f

tempera ture and pressure and f o r d i f f e re n t so lu tes and sup er cr i t i c a l so i -ents .

A pD l i ca t i ons

for

C o r r e l a t i o n s

o

V apor -L i qu id E qu i l i b r i a

When app l ie d to both vapor and l i q u i d phases , cub ic equat ions o f s ta te can be

used t o generate thermodynamical l y cons is ten t da ta , p a r t i c u l a r l y equ i l ib r iu m data .

Good cor re la t ion s o f vapor - l i q u i d e qu i l i b r ia depend on the equat ion o f s ta te used

and, fo r mult icomponent systems, on the mix ing rul es .

Thermodynamic

I n t h e e q u i l i b r i u m s t a t e , t h e i n t e n s i v e p r o p e r t i e s

-

temperature , pre ssu re and

chemical po te nt ia ls of each component - are cons tant i n the ov er a l l sys tem.Since the

fug ac i t i es are func t ion o f temperature ,pressure and compos it ions , the equ i l ib r iu m

condi t on

can be expressed by

The exp ress ion f o r t he f u ga c i t y co e f f i c i en t 4i depends on the equat ion of s tat e

th at i s used and i s th e same f o r the vapor and l i q u i d phases

123

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 6/11

In calculations of mixture properties with the Peng-Robinson equation of state we

used the following combining rules:

C341

C351

C361

A three parameter search routine using a finite difference Levenberg

-

Harquardt

algorithm was used to evaluate the interaction parameters which minimize the

objective f nct on

H P (exp) -P (cal)

C371

i=l P (exp)

O F = Z C l i

where H is the number of experimental points considered.

The average pressure deviation is expressed as

AF'/P - (OF/H) E381

Phase Equilibrium Calculations

Attention will be given to complex binary systems such as water-acetone. In

order to apply the Peng-Robinson equation of state to such polar compounds

,

some

modifications must be incorporated ( 1 6 ) . These modifications concern the values of

the pure-component parameters.

The relationship (2 (Tr,w) for water must be changed to

CY

= 1.008568

+

0.8215(1 - Tr%)

this correlation is good for Tr*

<

0.85

Figures 10,ll and 1 2 show both the prediction by the Peng-Robinson equation of

state with classical mixing rules and one parameter

,

k , ? . fitted to bubble point

data, and the net improvment provided by the proposed mixlng rules with three fitted

paramaters. Figure 13 shows the Peng-Robinson prediction with new mixing rules and

binary interaction parameters set to zero. It should be noted that

no

prediction is

observed by the Peng-Robinson equation of state with classical mixing rules and

binary interaction parameter, k l . 2 , equal to zero.

124

I

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 7/11

Nomenclature

a. b,

c ,

d

f

k . I, m

n

OF

P

T

NO

U

X

Y

2

0

c

W

K

SUbscriDts

C

:equation of state parameters

:fugacity

:binary interaction paramet ers

:number of components

:Avogadro number

:objection f unctio n t o be minimized

:pressure

:temperature

:intermolecular potential function

:molar volume

:mole fraction

:mole frac tion in the vapor phase

:compressibility factor

:fugacity coefficient

:intermolecular distance parameter

:interaction energy parameter

:acentric factor

:a function of t he acentri c factor

:critical property

:component identification

:sol Ut e

REFERENCES

A1m.A.

H. and Hansoori,C. A., AICHE

J.,30.468

(1984)

Nauman.K.

H..

and Le1and.T.

W .

Fluid Phase Equilbria.

Ren0n.H.. (Ed.) ."Fluid Properties and Phase Equilibrium

for Chemical Process Design".Procedings of the 3rd

international Conference , Callaway Gardens, GA.,

April 10-15 Fluid Phase Equilibria,l3.(1983).

Van der Waa1s.J.D.. Phd Thesis, Leiden.1873.

Row1inson.J.

5 .

and swinton.F.L.."Liquid and Liquid

hi xt ur e~ 'l .3 ~~ d.Butterworths, Wolborn. Hass.1982

Redlich.0. and Kw0ng.J. N. S..Chem.Rev..44.233 (1949)

Peng,D.

Y .

and R0binson.D. B..Ind.Eng.Chem.Fund.,

Le1and.T. W . and Chapp1ear.P. S..lnd.Eng.Chem.,

60.15

(19681

18.1 (1984).

5.59.

(1976)

. -

. _

.

Le1and.T. W. , Rowlinson,J. S.. and Sather,G. A..

Trans. Faraday SOC ., ~~ .

447

(1968)

(10). Leland ,. W.,Rowlinson,J. S.. Sather.C. A.. and

Watson, . D..Trans.Faraday Soc.,65,2034 (1969)

11). 8ansoor'i.C. A. and E1y.J. F . . J . C hun . Phys . . 82 , Jan . ( 1985 )

(12). Prausnitz.J. H.,"8olecular The rmodynamics

of

Fluid

(13). Kurnik.R. T.,Holla,S. J. and Reid.R. C..J.Chem.Eng.

(14). Katz.0. L. and Firoozabadi,A.,J.Petrol .Tech.,Nov,

1649(1978)

(15). Firo0zabadi.A.. H e k i m . Y . and Katz,D. L . . , Canadian J.

(16).

Robins0n.D. B..Peng,D. Y . and Chung.S.

Y.

K.,"Develop-

Phase €qui i br a".Prent ice-Hal

1 ,

Englewood Cl iff s.NJ. 1969

Data, 26. 47

(1981)

Chem.Eng.,56.

610

(1978)

ment of the Peng-Robinson Equation of state and its

Application to a System Containing Hethanol".

(17). Criswold,J. and W0ng.S.

Y . .

Chem.Eng.Progr.Sympos.

Series.48. No 3,

18

(1952)

1 8 ) . 0hgaki.K.. Katayama, T., J.Chem.Eng.Data.21.53 (1976)

125

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 8/11

  i

I

I

I 1

I

126

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 9/11

n I I I

1

127

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 10/11

- '

O L

r L

' 5

- . _

*

i

c a.

..

- Y .

. C

.I

L

c .-

.4

- -

Y

I C

..

;a =

D

u-

a .

*

..

.

..D

0 - &

.-

- 1

- o *

> . *

- 0 -

0 -

D

-

I

I

128

8/15/2019 Van Der Waals Mixing Rules

http://slidepdf.com/reader/full/van-der-waals-mixing-rules 11/11

ACETONE (1) . WATER

(21

7

ACETONE (11 WATER

(21

, , I

0 .

,. I

o *

0 1 a *

0 1 ' 0

XI11 .

V I 0

ACETONE (1).

WATER

11

*

ll

1

L

I

a

f i g u r e s 10.

11 ,

1 2

:

Phase behavior of acetone-water Systems. The s o l i d s l i n e s ar e

the Peng-Robinson predict ion

the co r rec ted m ix ing

r u l e s .

The

dashed l i ne s are f o r Peng-Robinson pr ed ic t i on w i t h one f i t f e d parameter

and the c l as si ca l mi x i ng ru1es.The dots and

circles are

exper imental da ta

( 1 7 ) .

w i t h t h r ee f i t t e d p ar am et er s and

f i g u r e

13 :

* ' t h

t h e proposed mixing

rules

and the b i na ry in te ra c t io n parameters

( k , , * ,

I ~ ,,2

1 equal

to

zero.

Acetone-water system pr ed ic te d by th e Peng-Robinson equat ion

o f

s t a t e

129