27
VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE, Brian Sung Chul Choi, Member, IEEE, and Mario Gerla, Fellow, IEEE IEEE TRANSACTIONS ON MOBILE COMPUTING 2012

VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Embed Size (px)

Citation preview

Page 1: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

VAPR: Void Aware Pressure Routing for Underwater Sensor

Networks

Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE, Brian Sung Chul Choi, Member, IEEE, and Mario Gerla, Fellow, IEEE

IEEE TRANSACTIONS ON MOBILE COMPUTING 2012

Page 2: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Outline

• Introduction

• Overview

• VAPR

• Simulations

• Conclusions

Page 3: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Introduction

• Underwater acoustic sensor networks have many applications– Environmental monitoring

– Intrusion detection

Page 4: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Introduction

• A large number of mobile sensor nodes are deployed in the region of interest for exploration

• Acoustic transmissions consume far more energy than terrestrial radio communications

Page 5: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Introduction

• Each sensor reports data to any one of the sonobuoys with acoustic multi-hop routing

• Simple greedy pressure routing often fails in sparse underwater networks due to the presence of 3D voids

• Each node is equipped with a variety of sensors (ex : pressure gauges) and a low bandwidth acoustic modem

Page 6: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Goal

• Design an efficient routing protocol for underwater data collection – Addresses several challenges unique to underwater

communications

Page 7: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Overview

• Enhanced beaconing– Sonobuoys broadcast the beacon to sensor nodes

– The direction is set as up when a beacon is received from a shallower depth node

• Opportunistic directional data forwarding

Page 8: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Overview

• Enhanced beaconing– Sonobuoys propagate their reachability information to sensor

nodes

– The direction is set as up when a beacon is received from a shallower depth node

• Opportunistic directional data forwarding– Sensor nodes forwarding the data

Page 9: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

VAPR

• Assume– Sonobuoys on the surface are equipped with GPS, clocks are

synchronized

– Use the same sequence number for periodic beaconing

– DF_dir(node) ← up

– Hop_count(node) ← 0

Page 10: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

VAPR

• Local max node : a node whose depth level is shallower than neighboring node, but deeper than the sonobuoys

• Trapped node : a node in which greedy forwarding eventually leads to a local max node

• Trap area : the area in which trapped nodes reside

• Regular node : the rest of the nodes

Page 11: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

VAPR

• Enhanced beaconing1. broadcast beacon message

→Sender’s depth, DF_dir, SN, Hop_cnt

2. check SN(↑), Hop_cnt(↓)

3. set DF_dir

y

w

x

c

b

az

Sobobuoy’s depthDF_dir : UPSN : 104Hop_cnt : 0

Sonobuoy

a’s depthDF_dir : UPSN : 103Hop_cnt : 1

b’s depthDF_dir : UPSN : 102Hop_cnt : 2

x’s depthDF_dir : DNSN : 101Hop_cnt : 3

y’s depthDF_dir : DNSN : 100Hop_cnt : 4

Local Maximum

Monitoring Center

n

m

l

k

Page 12: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

VAPR

• Enhanced beaconing– Multiple direction from different sonobuoys are received

• Node updates its status based on the higher SN

• SN is the same – Smaller Hop_cnt Monitoring

Center

n

m

l

ky

w

x

c

b

az

Sobobuoy’s depthDF_dir : UPSN : 104Hop_cnt : 0

Sonobuoy

a’s depthDF_dir : UPSN : 103Hop_cnt : 1 x’s depth

DF_dir : DNSN : 101Hop_cnt : 3

Local Maximum z’s depth

DF_dir : DNSN : 99Hop_cnt : 5

MC’s depthDF_dir : UPSN : 104Hop_cnt : 0

n’s depthDF_dir : UPSN : 103Hop_cnt : 1

l’s depthDF_dir : UPSN : 101Hop_cnt : 3

Page 13: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

VAPR

• Opportunistic directional data forwarding– UP-UP, DN-DN, DN-UP, UP-DN

– Based on DF_dir, NDF_dir()

– Choosing the nodes whose DF_dir = NDF_dir of the current node

DN-UP

DN-DN

UP-DN

UP-UP

UP-UP

UP-UP

Sonobuoy

Page 14: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

VAPR

• Higher priority node (based on the distance) transmits a packet – Suppress forwarding to prevent redundant packet transmissions and

collisions

• Finding an optimal set is computationally hard

Page 15: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

VAPR

• Greedy clustering approach• Each node knows 2-hop connectivity and neighboring nodes’ pairwise

distances

• Data are periodically reported to the surface

S

F

A

BC

D

E

F

Can hear each other →no hidden terminals

Group

Page 16: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Simulations

Page 17: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Simulations

• Fraction of nodes reachable to sonobuoys

Page 18: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Simulations

• PDR(1 sonobuoy scenario)

Page 19: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Simulations

• Energy consumption per message(1 sonobuoy scenario)

Page 20: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Simulations

• Average latency(1 sonobuoy scenario)

Page 21: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Simulations

• PDR(64 sonobuoy scenario)

Page 22: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Simulations

• Energy consumption per message(64 sonobuoy scenario)

Page 23: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Simulations

• Greedy forwarding success rate

Page 24: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Simulations

• Average PDR(beacon intervals)

Page 25: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Simulations

• Energy per node per message(beacon intervals)

Page 26: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Conclusions

• This paper proposed a Void Aware Pressure Routing (VAPR) protocol in sparse underwater networks has been the efficient handling of 3D voids

• The simulations showed that VAPR outperforms existing schemes

Page 27: VAPR: Void Aware Pressure Routing for Underwater Sensor Networks Youngtae Noh, Student Member, IEEE, Uichin Lee, Member, IEEE, Paul Wang, Member, IEEE,

Thanks you