62
VBA Macro for construction of an EM 3D model of a tyre and part of the vehicle Guillermo Vietti, Gianluca Dassano, Mario Orefice LACE, Politecnico di Torino, Turin, Italy. [email protected] Darmstadt, Germany. 1921 April 2010. 1 Work partially funded by Regione Piemonte in the frame of the contract RIJ09N

VBA Macro for construction of an EM 3D

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: VBA Macro for construction of an EM 3D

VBA Macro for construction of an EM 3D model of a tyre and part of the vehicle

Guillermo Vietti, Gianluca Dassano, Mario OreficeLACE, Politecnico di Torino, Turin, Italy.

[email protected]

Darmstadt, Germany. 19‐21 April 2010. 1

Work partially funded by Regione Piemontein the frame of the contract RIJ09N

Page 2: VBA Macro for construction of an EM 3D

Contents:

1. Goals2. Geometry and main parts of the structure3. Description of the parts of the script4. Main features 5. Some examples of outcomes representation and uses6. Conclusions

Darmstadt, Germany. 19‐21 April 2010. 2

Page 3: VBA Macro for construction of an EM 3D

Goals:Study of the EM propagation channel (from a Sensor Node inside the tyres to the TX / RX device mounted on the vehicle), in two different frequency bands.Analyis of the effects of different:

types of tyre,angular positions of tyre, steering wheel angles,weights of vehicle,air pressure,types of ground.

Estimation of attenuation introduced by all mechanical obstacles between these two radio devices. Evaluation of the multipath effect in the signals received by both devices.Plot of the near/far field pattern in this complex and large structure at different configurations.

Darmstadt, Germany. 19‐21 April 2010. 3

Page 4: VBA Macro for construction of an EM 3D

1.Inner Liner - part of a tyre consisting of one or severalplies of rubberized cord fixed on bead rings. 2.Breaker - inner part of a tyre which consisting ofrubberized plies of steel or textile cord and located betweentread and carcass, designated for load impact softeningwhile driving. 3.Tread - outer rubber part of a tyre with molded pattern, which provides adhesion to the road and prevents carcassdamages. 4.Cap ply (breaker ply) - protective ply located betweensteel breaker and tread, provides breaker protection frommechanical damages and prevents rubber separation. 5.Bead - hard part of a pneumatic tyre case which providesits fixing on a wheel rim. 6.Side wall - outer rubber.

Brief description of main tyre elements(explode animated view)

All metallic elements are simulated with PEC material in order to simplify

the calculation4Darmstadt, Germany. 19‐21 April 2010.

Page 5: VBA Macro for construction of an EM 3D

We have developed a Visual Basic (VBA) script thatcontrols all CST STUDIO SUITETM tools to design allmechanical elements in the space around the tyre in a vehicle in a full parametric way.

5Darmstadt, Germany. 19‐21 April 2010.

Page 6: VBA Macro for construction of an EM 3D

Main script parts1. Definition of all parameters of the geometry (definition of

variables): lengths, widths, thickness, radius, and of all materials like dielectric and magnetic relative constants, losses.

2. Definition of variable/s of iterative cycle (for instance: the angular position of sensor inside of tyre, variable from 0 to 360° to know the EM propagation in each situation).

3. Setting of all units of the project (mm, GHz, s).

4. Setting the background material (Vacuum).

6Darmstadt, Germany. 19‐21 April 2010.

Page 7: VBA Macro for construction of an EM 3D

5. Definition of structure :– Definition of all materials, choosing the dielectric and magnetic

properties given by the tire maker.– Design of the skeleton of the tyre extruding the radial closed curves.

These curves reflect the deformation of the tire due to vehicle weight and the air pressure inside. With a “loft operation” of two consecutive curves a solid shape is created, adding all angular shapes we will create a complete solid object named sidewall.

– Insertion of the tread with the same technique.– Insertion of metallic belts inside the tire rubber. All steel cords in carcass

and breaker are simulated with a continuous metallic cylindrical shape after verifying the similar EM behavior in the work frequency bands.

– Insertion of the fully inner liner inside the tire.– Trim of fully inner liner shape with a vacuum object.– Creation of the rim.– Switch from global coordinates placed in the center of tyre to local

coordinates in the radial location inside the tyre under the belt. – Creation of SN box with the antennas using the local coordinate system.– Reactivation of global coordinate system in the center of tyre.– Design of all radial closed curves that will create the fender shape with

many “loft operations” between two consecutive planar curves. – Design with many cylindrical and angular objects of the shape of a

simplified disc brake.– Design of a very simplified suspension.

7Darmstadt, Germany. 19‐21 April 2010.

Page 8: VBA Macro for construction of an EM 3D

6. Setting of frequency range for the simulation

7. Definition of two discrete ports using two picked point in each antenna extremes of sensor, and setting of input impedance of these port.

8. Definition of the boundary conditions. All boundary planes around the structure are set to “open” to simulate the open space except the ground plane; it will be set like an electric plane (Etan=0) or a conducting wall to take into account the losses of the real ground.

9. Definition of many 3D electric field monitors at each frequency of interest with an iterative cycle.

10. Definition of many electric field probes in all coordinated directions in planned positions.

11. Set all mesh properties, enabling the subgridding tool and fixing a dense local mesh in the main SN, in order to take into account small details of these elements, which with an sparse general mesh can be ignored .

8Darmstadt, Germany. 19‐21 April 2010.

Page 9: VBA Macro for construction of an EM 3D

6. Updating of mesh.

7. Setting the transient solver parameters.

8. Starting of simulation.

9. Reading magnitudes and phases for each defined probe and saving these like .txt file.

10. Reading the electric field monitors for each frequency and saving these tridimensional complex vectors like .txt file.

11. Save the project with a name that identifies the value of cycleparameter .

12. Restarting the parametric cycle routine.

9Darmstadt, Germany. 19‐21 April 2010.

Page 10: VBA Macro for construction of an EM 3D

10Darmstadt, Germany. 19‐21 April 2010.

Page 11: VBA Macro for construction of an EM 3D

Script capable of changing the tyre deformation due to the vehicle weight and internal air pressure changing the value of one variable in the script definition

Perspective view Left view Front view

11Darmstadt, Germany. 19‐21 April 2010.

Page 12: VBA Macro for construction of an EM 3D

It is very easy to change the tire orientation changing the value of the variable defined to control the steering wheel angle in the

script sentence

Bottom view

12Darmstadt, Germany. 19‐21 April 2010.

Perspective view

Page 13: VBA Macro for construction of an EM 3D

In a similar way, it is easy to modify the suspension load changing the value of variable defined in order to control the distance from tyre to fender

Perspective view Front view

13Darmstadt, Germany. 19‐21 April 2010.

Page 14: VBA Macro for construction of an EM 3D

Some examples of the outcomes obtained with this script.Different types of representations

14Darmstadt, Germany. 19‐21 April 2010.

Page 15: VBA Macro for construction of an EM 3D

Example 1: Comparison between the sensor inside the tire and in the free space

Sensor inside the tire Sensor in the free space

Perspective view(Sensor detail)

15Darmstadt, Germany. 19‐21 April 2010.

Page 16: VBA Macro for construction of an EM 3D

|E(x,y,z)| at 4.5 GHz in the main coordinates planes (Sensor in the free space)

16Darmstadt, Germany. 19‐21 April 2010.

Page 17: VBA Macro for construction of an EM 3D

|E(x,y,z)| at 4.5 GHz in the main coordinates planes (Sensor inside the tyre)

17Darmstadt, Germany. 19‐21 April 2010.

Page 18: VBA Macro for construction of an EM 3D

|E(x,y,z)| at 4.5 GHz in the boundary planes (Sensor in the free space)

18Darmstadt, Germany. 19‐21 April 2010.

Page 19: VBA Macro for construction of an EM 3D

|E(x,y,z)| at 4.5 GHz in main coordinates planes (Sensor inside the tyre)

19Darmstadt, Germany. 19‐21 April 2010.

Page 20: VBA Macro for construction of an EM 3D

EM model Size 1Width: 243 mm

High: 649.7 mm

Size 2Width: 291 mm(Scaled 120 %)High: 649.7 mm

Dipole oriented along the axis of rotation

Dipole oriented perpendicular to the axis of rotation

Example 2: Comparison between two widths of the tyre with a dipole inside, two orientations

20Darmstadt, Germany. 19‐21 April 2010.

Page 21: VBA Macro for construction of an EM 3D

E-field average magnitude at 2.4 GHz on y=0 cut plane (clamp to range Min:0 , Max:1000 V/m)

Size 1: Width: 243 mm High: 649.7 mm

Size 2:Width: 291 mm (Scaled 120 %)High: 649.7 mm

Dipole oriented along the axis of rotation

Dipole oriented perpendicular to the axis of rotation

21Darmstadt, Germany. 19‐21 April 2010.

Page 22: VBA Macro for construction of an EM 3D

E-field average magnitude at 2.4 GHz on z=0 cut plane(clamp to range Min:0 , Max:1000 V/m)

Size 1: Width: 243 mm High: 649.7 mm

Size 2:Width: 291 mm (Scaled 120 %)High: 649.7 mm

Dipole oriented along the axis of rotation

Dipole oriented perpendicular to the axis of rotation

22Darmstadt, Germany. 19‐21 April 2010.

Page 23: VBA Macro for construction of an EM 3D

E-field average magnitude at 2.4 GHz on x=131 cut plane(clamp to range Min:0 , Max:100 V/m)

Size 1: Width: 243 mm High: 649.7 mm

Size 2:Width: 291 mm (Scaled 120 %)High: 649.7 mm

Dipole oriented along the axis of rotation

Dipole oriented perpendicular to the axis of rotation

23Darmstadt, Germany. 19‐21 April 2010.

Page 24: VBA Macro for construction of an EM 3D

E-field average magnitude at 2.4 GHz on x=151 cut plane(clamp to range Min:0 , Max:40 V/m)

Size 1: Width: 243 mm High: 649.7 mm

Size 2:Width: 291 mm (Scaled 120 %)High: 649.7 mm

Dipole oriented along the axis of rotation

Dipole oriented perpendicular to the axis of rotation

24Darmstadt, Germany. 19‐21 April 2010.

Page 25: VBA Macro for construction of an EM 3D

Example 3: Study of received signal outside of the tire in different positions for different azimuthal position of the source (SN). Probes situation (orientation along X, Y, Z axis)

Perspective view Left view Front view

θ = -90, -45, 0, 45, 90d=15 cm

θ = -90, -45, 0, 45, 90

25Darmstadt, Germany. 19‐21 April 2010.

Page 26: VBA Macro for construction of an EM 3D

Probe Positions.Numbers.

Front view.

θ = -90, -45, 0, 45, 90

123

4

5

6

7

8

9

10

11

12

13 14 15

SN

26Darmstadt, Germany. 19‐21 April 2010.

Page 27: VBA Macro for construction of an EM 3D

Excitation signal in the port (4.5 GHz carrier)

27Darmstadt, Germany. 19‐21 April 2010.

Page 28: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :1). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

28Darmstadt, Germany. 19‐21 April 2010.

Page 29: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :2). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

29Darmstadt, Germany. 19‐21 April 2010.

Page 30: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :3). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

30Darmstadt, Germany. 19‐21 April 2010.

Page 31: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :4). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

31Darmstadt, Germany. 19‐21 April 2010.

Page 32: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :5). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

32Darmstadt, Germany. 19‐21 April 2010.

Page 33: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :6). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

33Darmstadt, Germany. 19‐21 April 2010.

Page 34: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :7). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

34Darmstadt, Germany. 19‐21 April 2010.

Page 35: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :8). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

35Darmstadt, Germany. 19‐21 April 2010.

Page 36: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :9). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

36Darmstadt, Germany. 19‐21 April 2010.

Page 37: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :10). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

37Darmstadt, Germany. 19‐21 April 2010.

Page 38: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :11). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

38Darmstadt, Germany. 19‐21 April 2010.

Page 39: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :12). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

39Darmstadt, Germany. 19‐21 April 2010.

Page 40: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :13). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

40Darmstadt, Germany. 19‐21 April 2010.

Page 41: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :14). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

41Darmstadt, Germany. 19‐21 April 2010.

Page 42: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 0°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :15). SN angular position: 0 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

42Darmstadt, Germany. 19‐21 April 2010.

Page 43: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :1). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

43Darmstadt, Germany. 19‐21 April 2010.

Page 44: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :2). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

44Darmstadt, Germany. 19‐21 April 2010.

Page 45: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :3). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

45Darmstadt, Germany. 19‐21 April 2010.

Page 46: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :4). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

46Darmstadt, Germany. 19‐21 April 2010.

Page 47: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :5). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

47Darmstadt, Germany. 19‐21 April 2010.

Page 48: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :6). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

48Darmstadt, Germany. 19‐21 April 2010.

Page 49: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :7). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

49Darmstadt, Germany. 19‐21 April 2010.

Page 50: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :8). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

50Darmstadt, Germany. 19‐21 April 2010.

Page 51: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :9). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

51Darmstadt, Germany. 19‐21 April 2010.

Page 52: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :10). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

52Darmstadt, Germany. 19‐21 April 2010.

Page 53: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :11). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

53Darmstadt, Germany. 19‐21 April 2010.

Page 54: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :12). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

54Darmstadt, Germany. 19‐21 April 2010.

Page 55: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :13). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

55Darmstadt, Germany. 19‐21 April 2010.

Page 56: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :14). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

56Darmstadt, Germany. 19‐21 April 2010.

Page 57: VBA Macro for construction of an EM 3D

Probes for SN Angular position θ = 45°, Signals vs. time

0 4 8 12 16 20 24 28 32 36 40-10

-8

-6

-4

-2

0

2

4

6

8

10Probe Signal (Number :15). SN angular position: 45 degrees

time ns

Am

plitu

de

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

X

Y

Z

Sensor Node

Along: X directionAlong: Y directionAlong: Z direction

57Darmstadt, Germany. 19‐21 April 2010.

Page 58: VBA Macro for construction of an EM 3D

Example 4: Electric field magnitude animated pattern at 4.5 GHz in different cut planes

58Darmstadt, Germany. 19‐21 April 2010.

Page 59: VBA Macro for construction of an EM 3D

Example 5: Comparison with a real car model at 2.4 GHz

59Darmstadt, Germany. 19‐21 April 2010.

Page 60: VBA Macro for construction of an EM 3D

Example 6: Comparison with measurementsTotal Field level measured on a plane at 20 cm from tyre side.

With tyre Without tyre

SN SN

Tyre edge Tyre edge

60Darmstadt, Germany. 19‐21 April 2010.

Page 61: VBA Macro for construction of an EM 3D

Conclusions:

61

This program allows to analyze a complex and large structure iteratively eliminating the need to rebuild the geometry for different mechanical and electrical conditions reducing strongly the computing time. The possibilty of automatically saving the main outcomes like text file for each cycle of simulation permits at the end of the overall simulation to elaborate easily these data with other softwares as MatLab, Microsoft Excel, ecc.It is very easy define many field monitors and probes at different locations to find the optimal position of radio devices.This VBA script allows to non expert CST users to change and to optimize the complex structure and save the outcomes in text format.

It is possible to choose the degree of accuracy of the representation of the geometry, in order to minimize the meshing load.

Darmstadt, Germany. 19‐21 April 2010.

Page 62: VBA Macro for construction of an EM 3D

Thank you for you attention.

62Darmstadt, Germany. 19‐21 April 2010.