17
Vertices of the vector mesons with the strange charmed mesons in QCD R. Khosravi 1, * and M. Janbazi 2,1 Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran 2 Physics Department, Shiraz University, Shiraz 71454, Iran (Received 12 August 2012; published 3 January 2013) We investigate the strong form factors and coupling constants of vertices containing the strange charmed mesons D s0 , D s , D s , and D s1 with the vector mesons 0 and J=c in the framework of the three point QCD sum rules. Taking into account the nonperturbative part contributions of the correlation functions, the condensate terms of dimension 3, 4 and 5 related to the contributions of the quark-quark, gluon-gluon, and quark-gluon condensate, respectively, are evaluated. The present work can give considerable information about the hadronic processes involving the strange charmed mesons. DOI: 10.1103/PhysRevD.87.016003 PACS numbers: 11.55.Hx, 12.38.Lg, 13.75.Lb, 14.40.Lb I. INTRODUCTION The strong form factors and coupling constants associ- ated with vertices involving mesons are important for the explanation of hadronic processes in the strong interaction. They have received wide attention for the new research of the nature of the charmed pseudoscalar and axial vector mesons. The strong coupling constants among the charmed meson such as g D D P , g D DP , g DDV , and g D D V , where P and V stand for pseudoscalar and vector mesons, respec- tively, play an important role in understanding the final state interactions in QCD [1]. The QCD sum rules have been successfully applied to a wide variety of problems in hadron physics [2] (for details about this method, see Refs. [3,4]). Some possible vertices involving charmed mesons such as D D% [5,6], DD& [7], D D & [8], DDJ=c [9], D DJ= c [10], D D s K, D s DK, D 0 D s K, D s0 DK [11], D D P, D DV, DDV [12], D D % [13], D D J=c [14], D s D K, D s DK [15], and DD! [16] have been studied in the framework of the QCD sum rules. It is very important to know the precise functional form of the form factors in these vertices and even to know how this form changes when one or the other (or both) mesons are off shell [8]. In this work, we consider vertices of vector mesons with the strange charmed mesons via the three point QCD sum rules (3PSR); i.e., we calculate the strong form factors and coupling constants associated with the VD s0 D s0 , VD s D s , VD s D s , and VD s1 D s1 vertices, where V can be 0 or J=c . In the 3PSR theory, the calculation begins with a three point correlation function. The correlation function is investigated in two phenomenological and theoretical sides. The strong form factors are estimated by equating two sides and applying the double Borel transformations with respect to the momentum of the initial and final states to suppress the contribution of the higher states and con- tinuum. Calculating the theoretical part of the correlation function consists of two perturbative and nonperturbative contributions. The nonperturbative part of the correlation function is called the condensate contribution. The con- densate term of dimension 3 is related to the contribution of the quark-quark condensate, and dimension 4 and 5 are connected to the gluon-gluon and gluon-quark condensate, respectively. The main points in the present work are the calculation of the quark-quark, gluon-gluon, and gluon- quark corrections; these are the most important corrections of the nonperturbative part of the correlation function in the 3PSR method. This paper includes four sections. The calculation of the sum rules for the strong form factors of the 0D s0 D s0 , 0D s D s , 0D s D s , and 0D s1 D s1 vertices are presented in Sec. II. With the necessary changes in the expressions derived for the strong form factors of the vertices involving the 0 meson, such as variations in the type of quarks, we can easily apply the same calculations for the J=c D s0 D s0 , J=c D s D s , J=c D s D s , and J=c D s1 D s1 vertices. In Sec. III, the calculations of the quark-quark, gluon-quark, and gluon-gluon condensate contributions in the Borel transform scheme are presented. In this section the strong form factors are derived. Section IV presents our numerical analysis of the strong form factors as well as the coupling constants. II. THE THREE POINT QCD SUM RULES METHOD We start with the correlation function in 3PSR to calcu- late the strong form factors associated with the 0D s0 D s0 , 0D s D s , 0D s D s , and 0D s1 D s1 meson vertices when both strange charmed and 0 mesons can be off shell, in 3PSR we start with the correlation function. For off-shell charmed mesons, these correlation functions are given by D 0 # ðp; p 0 Þ ¼ i 2 Z d 4 xd 4 ye iðp 0 xpyÞ h0jT fj D 0 ðxÞj D 0 y ð0Þj 0 # ðyÞgj0i; (1) * [email protected] [email protected] PHYSICAL REVIEW D 87, 016003 (2013) 1550-7998= 2013=87(1)=016003(17) 016003-1 Ó 2013 American Physical Society

Vertices of the vector mesons with the strange charmed mesons in QCD

  • Upload
    m

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Vertices of the vector mesons with the strange charmed mesons in QCD

Vertices of the vector mesons with the strange charmed mesons in QCD

R. Khosravi1,* and M. Janbazi2,†

1Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran2Physics Department, Shiraz University, Shiraz 71454, Iran

(Received 12 August 2012; published 3 January 2013)

We investigate the strong form factors and coupling constants of vertices containing the strange

charmed mesons D�s0, Ds, D

�s , and Ds1 with the vector mesons � and J=c in the framework of the three

point QCD sum rules. Taking into account the nonperturbative part contributions of the correlation

functions, the condensate terms of dimension 3, 4 and 5 related to the contributions of the quark-quark,

gluon-gluon, and quark-gluon condensate, respectively, are evaluated. The present work can give

considerable information about the hadronic processes involving the strange charmed mesons.

DOI: 10.1103/PhysRevD.87.016003 PACS numbers: 11.55.Hx, 12.38.Lg, 13.75.Lb, 14.40.Lb

I. INTRODUCTION

The strong form factors and coupling constants associ-ated with vertices involving mesons are important for theexplanation of hadronic processes in the strong interaction.They have received wide attention for the new research ofthe nature of the charmed pseudoscalar and axial vectormesons. The strong coupling constants among the charmedmeson such as gD�D�P, gD�DP, gDDV , and gD�D�V , where Pand V stand for pseudoscalar and vector mesons, respec-tively, play an important role in understanding the finalstate interactions in QCD [1].

The QCD sum rules have been successfully applied to awide variety of problems in hadron physics [2] (for detailsabout this method, see Refs. [3,4]). Some possible verticesinvolving charmed mesons such as D�D� [5,6], DD� [7],D�D�� [8], DDJ=c [9], D�DJ=c [10], D�DsK, D

�sDK,

D0DsK, Ds0DK [11], D�D�P, D�DV, DDV [12], D�D��[13], D�D�J=c [14], DsD

�K, D�sDK [15], and DD! [16]

have been studied in the framework of the QCD sum rules.It is very important to know the precise functional form ofthe form factors in these vertices and even to know how thisform changes when one or the other (or both) mesons areoff shell [8].

In this work, we consider vertices of vector mesons withthe strange charmed mesons via the three point QCD sumrules (3PSR); i.e., we calculate the strong form factors andcoupling constants associated with the VD�

s0D�s0, VDsDs,

VD�sD

�s , and VDs1Ds1 vertices, where V can be � or J=c .

In the 3PSR theory, the calculation begins with a threepoint correlation function. The correlation function isinvestigated in two phenomenological and theoreticalsides. The strong form factors are estimated by equatingtwo sides and applying the double Borel transformationswith respect to the momentum of the initial and final statesto suppress the contribution of the higher states and con-tinuum. Calculating the theoretical part of the correlation

function consists of two perturbative and nonperturbativecontributions. The nonperturbative part of the correlationfunction is called the condensate contribution. The con-densate term of dimension 3 is related to the contributionof the quark-quark condensate, and dimension 4 and 5 areconnected to the gluon-gluon and gluon-quark condensate,respectively. The main points in the present work are thecalculation of the quark-quark, gluon-gluon, and gluon-quark corrections; these are the most important correctionsof the nonperturbative part of the correlation function inthe 3PSR method.This paper includes four sections. The calculation of the

sum rules for the strong form factors of the �D�s0D

�s0,

�DsDs, �D�sD

�s , and �Ds1Ds1 vertices are presented in

Sec. II. With the necessary changes in the expressionsderived for the strong form factors of the vertices involvingthe � meson, such as variations in the type of quarks, wecan easily apply the same calculations for the J=cD�

s0D�s0,

J=cDsDs, J=cD�sD

�s , and J=cDs1Ds1 vertices. In

Sec. III, the calculations of the quark-quark, gluon-quark,and gluon-gluon condensate contributions in the Boreltransform scheme are presented. In this section the strongform factors are derived. Section IV presents our numericalanalysis of the strong form factors as well as the couplingconstants.

II. THE THREE POINT QCD SUM RULESMETHOD

We start with the correlation function in 3PSR to calcu-late the strong form factors associated with the �D�

s0D�s0,

�DsDs, �D�sD

�s , and �Ds1Ds1 meson vertices when both

strange charmed and � mesons can be off shell, in 3PSRwe start with the correlation function. For off-shellcharmed mesons, these correlation functions are given by

�D0� ðp; p0Þ¼ i2

Zd4xd4yeiðp0x�pyÞh0jT fjD0 ðxÞjD0yð0Þj�� ðyÞgj0i;

(1)*[email protected][email protected]

PHYSICAL REVIEW D 87, 016003 (2013)

1550-7998=2013=87(1)=016003(17) 016003-1 � 2013 American Physical Society

Page 2: Vertices of the vector mesons with the strange charmed mesons in QCD

�D00���ðp; p0Þ¼ i2

Zd4xd4yeiðp0x�pyÞh0jT fjD00

� ðxÞjD00y� ð0Þj��ðyÞgj0i;

(2)

where D0 stands for the scalar or pseudoscalar charmedmesons (D�

s0, Ds), and D00 stands for the vector or axial

vector charmed mesons (D�s , Ds1). For the off-shell �

meson, these quantities are

��� ðp;p0Þ¼ i2

Zd4xd4yeiðp0x�pyÞh0jT fjD0 ðxÞj�� ð0ÞjD0yðyÞgj0i; (3)

�����ðp; p0Þ¼ i2

Zd4xd4yeiðp0x�pyÞh0jT fjD00

� ðxÞj��ð0ÞjD00y� ðyÞgj0i;

(4)

where jD�s0 ¼ �sUc, jDs ¼ �s�5c, jD

�s

� ¼ �s��c, jDs1� ¼

�s���5c, and j�� ¼ �s��s are interpolating currents of D�s0,

Ds, D�s , Ds1, and � mesons, respectively, and have

the same quantum numbers of the associative mesons.Also, T is the time ordering product, p and p0 are the

four-momentum of the initial and final mesons, respec-tively (see Fig. 1).Equations (1)–(4) can be calculated in two different

ways: In the physical or phenomenological part, the rep-resentation is in terms of hadronic degrees of freedomwhich is responsible for the introduction of the form fac-tors, decay constants, and masses. In QCD or theoreticalrepresentation, we evaluate the correlation function inquark-gluon language and in terms of QCD degrees offreedom like quark-quark condensate, gluon-gluon con-densate, etc., with the help of the Wilson operator productexpansion (OPE).In order to calculate the phenomenological parts of the

correlation functions in Eqs. (1)–(4), three complete sets ofintermediate states with the same quantum number should

be inserted in these equations. For��� and��

���, we have

��� ¼ h0jjD0 jD0ðpÞih0jjD0 jD0ðp0ÞihD0ðpÞD0ðp0Þj�ðq; �00Þih�ðq; �00Þjj�� j0i

ðp2 �m2D0 Þðp02 �m2

D0 Þðq2 �m2�Þ

þ higher and continuum states; (5)

����� ¼ h0jjD00

� jD00ðp; �Þih0jjD00� jD00ðp0; �0ÞihD00ðp; �ÞD00ðp0; �0Þj�ðq; �00Þih�ðq; �00Þjj�� j0iðp2 �m2

D00 Þðp02 �m2D00 Þðq2 �m2

�Þþ higher and continuum states:

(6)

The same process can be easily used for�D0� and�D00

���. The following matrix elements are defined in the standard way

in terms of strong form factors as well as leptonic decay constants of the charmed and � mesons as

hD0ðpÞD0ðp0Þj�ðq; �00Þi ¼ �g��D0D0 ðq2Þðp� þ p0

�Þ�00�ðqÞ;hD00ðp; �ÞD00ðp0; �0Þj�ðq; �00Þi ¼ �ig�

�D00D00 ðq2Þ½ðp0 � pÞ�g�� � ðqþ p0Þ�g�� þ ðqþ pÞ�g����00�� ðqÞ�0�D00 ðp0Þ��D00 ðpÞ;h0jjD0 jD0ðpÞi ¼ CðD0ÞmD0fD0 ;

h0jjD00� jD00ðp; �ÞÞi ¼ mD00fD00��ðpÞ;

h0jj��j�ðq; �00Þi ¼ m�f��00�ðqÞ; (7)

where q ¼ p0 � p, gD�D0D0 ðq2Þ, and gV�D00D00 ðq2Þ are the strong form factors,mi and fi, i ¼ D0,D00 and� are the masses and

decay constants of mesons, �, �0 and �00 are the polarization vector of the vector mesons. Also, CðD�s0Þ ¼ 1 and CðDsÞ ¼

mDs

ðmsþmcÞ .Using Eq. (7) in Eqs. (5) and (6), and after some calculations, we obtain

s s

c

s

s

c

Φ

Φ

D’ (D’’)D’ (D’’) D’ (D’’)

D’ (D’’)

(a) (b)

p p’

q q

p’p

FIG. 1. Perturbative diagrams for the off-shell � (a) and theoff-shell D0ðD00Þ (b).

R. KHOSRAVI AND M. JANBAZI PHYSICAL REVIEW D 87, 016003 (2013)

016003-2

Page 3: Vertices of the vector mesons with the strange charmed mesons in QCD

��� ¼ �g�

�D0D0 ðq2Þ ½CðD0Þ�2m�m2D0f�f

2D0

ðp2 �m2D0 Þðp02 �m2

D0 Þðq2 �m2�Þ

ðp� þ other structuresÞ þ higher and continuum states; (8)

����� ¼ �g�

�D00D00 ðq2Þ m�f�f2D00 ð4m2

D00 � q2Þ2ðp2 �m2

D00 Þðp02 �m2D00 Þðq2 �m2

�Þðg��q� þ other structuresÞ þ higher and continuum states;

(9)

�D0� ¼�gD

0�D0D0 ðq2Þ

½CðD0Þ�2m2D0f�f

2D0 ðm2

D0 þm2� � q2Þ

m�ðp2 �m2�Þðp02 �m2

D0 Þðq2 �m2D0 Þ ðp� þ other structuresÞ þ higher and continuum states; (10)

�D00��� ¼ �gD

00�D00D00 ðq2Þ

m�f�f2D00 ð3m2

D00 þm2� � q2Þ

2ðp2 �m2�Þðp02 �m2

D00 Þðq2 �m2D00 Þ ðg��q� þ other structuresÞ þ higher and continuum states:

(11)

With the help of the OPE in the Euclidean region, where p2, p02 ! �1, we calculate the QCD side of the correlationfunctions containing perturbative and nonperturbative parts. For this aim, the correlation functions for the D0D0� and theD00D00� vertices are written, respectively, as follows:

�D0ð�Þ� ðp2; p02; q2Þ ¼ ð�D0ð�Þ

per þ�D0ð�ÞnonperÞp� þ � � � ; �D00ð�Þ

��� ðp2; p02; q2Þ ¼ ð�D00ð�Þper þ�D00ð�Þ

nonperÞg��q� þ � � � ; (12)

where � � � denotes other structures and higher states.First, we calculate the perturbative part whose diagrams are shown in Fig. 1.Using the double dispersion relation for each coefficient of the Lorentz structures p� and g��q� appearing in the

correlation functions [Eq. (12)], we get

�Mperðp2; p02; q2Þ ¼ � 1

4�2

Zds

Zds0

�Mðs; s0; q2Þðs� p2Þðs0 � p02Þ þ subtraction terms; (13)

where �Mðs; s0; q2Þ is the spectral density, and M stands for off-shell mesons D0, D00, and �. We calculate the spectraldensities in terms of the usual Feynman integrals with the help of the Cutkosky rules, where the quark propagators arereplaced by Dirac delta functions 1

p2�m2 ! ð�2�iÞðp2 �m2Þ.

(i) For the p� structure related to the D0D0� vertex:

�D0�D0D0 ¼ Nc½�2�0I0 � 2I0msðms þ mcÞ þ 2B1ð4msmc þ ð4m2

s þ u� 2�0ÞÞ�;���D0D0 ¼ Nc½�2�0I0 þ 4I0mcðms þ mcÞ þ 2B1ð4msmc þ 2ðm2

c þm2s � uÞÞ�;

where ¼ 1 for D0 ¼ D�s0 and ¼ �1 for D0 ¼ Ds

(ii) For the g��q� structure related to the D00D00� vertex:

�D00�D00D00 ¼ �Nc½4A� 8ðC1 � C2Þ � 2ðB1 � B2Þ�þ I0ð�þ �0Þ � 2m2

sðB1 � B2Þþ 2I0msmc þ 2ðB1 � B2 � I0Þm2

s þ uðB1 � B2Þ�;���D00D00 ¼ �Nc½4A� 8ðC1 � C2Þ � 2ðB1 � B2Þ�þ I0ð�þ �0Þ � 2m2

sðB1 � B2Þþ 4I0msmc þ 2ðB1 � B2 � 2I0Þm2

c þ uðB1 � B2Þ�;

where ¼ 1 forD00 ¼ D�s and ¼ �1 forD00 ¼ Ds1. The explicit expressions of the coefficients in the spectral densities

entering the sum rules are given as

VERTICES OF THE VECTOR MESONS WITH THE . . . PHYSICAL REVIEW D 87, 016003 (2013)

016003-3

Page 4: Vertices of the vector mesons with the strange charmed mesons in QCD

I0ðs; s0; q2Þ ¼ 1

4�12ðs; s0; q2Þ ; �ða; b; cÞ ¼ a2 þ b2 þ c2 � 2ac� 2bc� 2ac; � ¼ ðsþm2

3 �m21Þ;

�0 ¼ ðs0 þm23 �m2

2Þ; u ¼ sþ s0 � q2;

B1 ¼ I0�ðs; s0; q2Þ ½2s

0�� �0u�; B2 ¼ I0�ðs; s0; q2Þ ½2s�

0 � �u�;

A ¼ � I02�ðs; s0; q2Þ ½4ss

0m23 � s�02 � s0�2 � u2m2

3 þ u��0�;

C1 ¼ I02�2ðs; s0; q2Þ ½8s

02m23�s� 2s0m2

3�u2 � 4um2

3�0ss0 þ u3m2

3�0 � 2s02�3 þ 3s0u�2�0

� 2�02�ss0 ��02�u2 þ us�3�;C2 ¼ I0

2�2ðs; s0; q2Þ ½8s2m2

3�0s0 � 2s2�03 � 4um2

3�ss0 � 2�2�0ss0 þ 3us�02�� 2sm2

3�u2

þ s0u�3 þ u3m23�� �2�0u2�;

where Nc ¼ 3 is the color factor. It should be noted that in

these coefficients, m1 ¼ m2 ¼ ms, m3 ¼ mc for ���D0D0 ,

���D00D00 , and m1 ¼ m3 ¼ ms, m2 ¼ mc for �

D0�D0D0 , �D00

�D00D00

(see Fig. 1).

III. CONDENSATE CONTRIBUTIONS

In this section, the nonperturbative part contributions ofthe correlation function are discussed [Eq. (12)]. In QCD,the three point correlation function can be evaluated by theOPE in the deep Euclidean region. For this aim, we expandthe time ordered products of currents contained in the threepoint correlation function in terms of a series of localoperators with increasing dimension. Taking into accountthe vacuum expectation value of OPE, the expansion of thecorrelation function in terms of local operators is written asfollows:

�perðp2; p02; q2Þ ¼ C0;

�nonperðp2; p02; q2Þ ¼ C3h �qqi þ C4hGa��G

a��iþ C5h �q ��T

aGa��qiþ C6h �q�q �q�0qi þ � � � ; (14)

where Ci are the Wilson coefficients,Ga�� is the gluon field

strength tensor, and � and �0 are the matrices appearing inthe calculations. In Eq. (14), C0 is related to the contribu-tion of the perturbative part of the correlation function, andthe rest of the terms are related to the nonperturbativecontributions of it. The perturbative part contribution ofthe correlation function was discussed before. For thecalculation of the nonperturbative contributions (conden-sate terms), we consider these points:

(a) The condensate terms of dimension 3, 4, and 5 arerelated to the contributions of the quark-quark,gluon-gluon, and quark-gluon condensate, respec-tively, and are more important than the other termsin OPE.

(b) In 3PSR, when the light quark is a spectator, thegluon-gluon condensate contributions can be easilyignored (see Fig. 2) [17].

(c) When the heavy quark is a spectator, the quark-quark condensate contributions are suppressed bythe inverse of the heavy quark mass and can besafely omitted (see Fig. 3) [17].

(d) The quark condensate contributions of the lightquark, which is a nonspectator, are zero after apply-ing the double Borel transformation with respect toboth variables p2 and p02, because only one variableappears in the denominator.

Therefore, only three important diagrams of dimension3 and 5 remain from the nonperturbative part contributionswhen the charmed mesons are off shell. These diagramsnamed quark-quark and quark-gluon condensate are

ss

s s s ss

c cc

s

s

FIG. 2. Nonperturbative diagrams for the off-shell charmedmesons in the�D�

s0D�s0, �DsDs, �D�

sD�s , and �Ds1Ds1 vertices.

c c

cc

ss

s ss

c

c

s s ss

ss s

FIG. 3. Nonperturbative diagrams for the off-shell � meson inconsidering vertices.

R. KHOSRAVI AND M. JANBAZI PHYSICAL REVIEW D 87, 016003 (2013)

016003-4

Page 5: Vertices of the vector mesons with the strange charmed mesons in QCD

shown in Fig. 2. When � is an off-shell meson, the impor-tant diagrams are the six diagrams of dimension 3. Figure 3shows these diagrams related to gluon-gluon condensate.

After some straightforward calculations and applyingthe double Borel transformations with respect to thep2ðp2 ! M2

1Þ and p02ðp02 ! M21Þ as

Bp2ðM21Þ�

1

p2 �m2s

�m ¼ ð�1Þm

�ðmÞe�m2

s

M21

ðM21Þm

;

Bp02ðM22Þ�

1

p02 �m2c

�n ¼ ð�1Þn

�ðnÞe�m2

c

M22

ðM22Þn

;

(15)

where M21 and M2

2 are the Borel parameters, respectively,the following results are obtained for the quark-quark andquark-gluon contributions (Fig. 2):

�D0ðD00Þnonper ¼ hs�si

ðM21M

22Þ2

CD0ðD00Þ

12: (16)

The explicit expressions for CD0�D0D0 and CD00

�D00D00 associated

with the �D0D0 and �D00D00 vertices are given inAppendix A.

To obtain the gluon condensate contributions (Fig. 3),we will follow the same procedure as stated in Ref. [18].The calculations of the gluon condensate diagrams areperformed in the Fock-Schwinger fixed-point gaugex�Aa

� ¼ 0, where Aa� is the gluon field. In the calculation

of these diagrams, the following type of integrals appears:

I�1�2...�nða;b;cÞ

¼Z d4k

ð2�Þ4k�1�2...�n

½k2�m2c�a½ðpþkÞ2�m2

s�b½ðp0 þkÞ2�m2s�c

;

(17)

where k is the momentum of the spectator quark c. Theseintegrals can be calculated using the Schwinger represen-tation for the Euclidean propagator, i.e.,

1

½p2 þm2� ¼ 1

�ð�ÞZ 1

0d��n�1e��ðp2þm2Þ: (18)

After the Borel transformation using

Bp2ðM2Þe��p2 ¼ ð1=M2 � �Þ; (19)

we obtain

I0ða; b; cÞ ¼ ð�1Þaþbþc

16�2�ðaÞ�ðbÞ�ðcÞ ðM21Þ2�a�bðM2

2Þ2�a�cU0ðaþ bþ c� 4; 1� c� bÞ;

I�ða; b; cÞ ¼ I1ða; b; cÞp� þ I2ða; b; cÞp0�;

I��ða; b; cÞ ¼ I3ða; b; cÞp�p� þ I4ða; b; cÞðp�p0� þ p0

�p�Þ þ I5ða; b; cÞp0�p

0� þ I6ða; b; cÞg��;

I���ðp; p0Þ ¼ I7ða; b; cÞðg��p� þ g��p� þ g��p�Þ þ I8ða; b; cÞðg��p0� þ g��p

0� þ g��p

0�Þ þ � � � ;

(20)

where I�1�2...�nin the above equations represents the double Borel transformed form of integrals as

Bp2ðM21ÞBp02ðM2

2Þ½p2�m½p02�nI�1�2...�n¼ ½M2

1�m½M22�n

dm

dðM21Þm

dn

dðM22Þn

½M21�m½M2

2�nI�1�2...�n;

also Il (l ¼ 1; . . . ; 8) are defined as

I kða; b; cÞ ¼ ið�1Þaþbþcþ1

16�2�ðaÞ�ðbÞ�ðcÞ ðM21Þ1�a�bþkðM2

2Þ4�a�c�kU0ðaþ bþ c� 5; 1� c� bÞ;

Imða; b; cÞ ¼ ið�1Þaþbþcþ1

16�2�ðaÞ�ðbÞ�ðcÞ ðM21Þ�a�b�1þmðM2

2Þ7�a�c�mU0ðaþ bþ c� 5; 1� c� bÞ;

I6ða; b; cÞ ¼ ið�1Þaþbþcþ1

32�2�ðaÞ�ðbÞ�ðcÞ ðM21Þ3�a�bðM2

2Þ3�a�cU0ðaþ bþ c� 6; 2� c� bÞ;

Inða; b; cÞ ¼ ið�1Þaþbþc

32�2�ðaÞ�ðbÞ�ðcÞ ðM21Þ�4�a�bþnðM2

2Þ11�a�c�nU0ðaþ bþ c� 7; 2� c� bÞ;

where k ¼ 1, 2, m ¼ 3, 4, 5 and n ¼ 7, 8. We can define the function U0ð�;�Þ as

VERTICES OF THE VECTOR MESONS WITH THE . . . PHYSICAL REVIEW D 87, 016003 (2013)

016003-5

Page 6: Vertices of the vector mesons with the strange charmed mesons in QCD

U0ða;bÞ¼Z 1

0dyðyþM2

1þM22Þaybexp

��B�1

y�B0�B1y

�;

(21)

where

B�1 ¼ 1

M22M

21

ðm2sðM2

1 þM22Þ2 �M2

2M21Q

2Þ;

B0 ¼ 1

M21M

22

ðm2s þm2

cÞðM21 þM2

2Þ; B1 ¼ m2c

M21M

22

:

(22)

After straightforward but lengthy calculations, weget the following results for the gluon condensatecontributions:

��nonper ¼ i

��s

�G2

�C�

6; (23)

where the explicit expressions for C��D0D0 and C�

�D00D00 are

given in Appendix B.The QCD sum rules for the strong form factors are

obtained by equating two representations of the correlationfunction and applying the Borel transformations withrespect to the p2ðp2 ! M2

1Þ and p02ðp02 ! M21Þ on the

phenomenological as well as the perturbative and non-perturbative parts of the correlation function in order tosuppress the contributions of the higher states and contin-uum.We obtain the equations for the strong form factors asfollows:

gD0

�D0D0 ðq2Þ ¼ � m�ðq2 �m2D0 Þ

CðD0Þm2D0f�f

2D0 ðm2

D0 þm2� � q2Þ e

m2�

M21e

m2

D0M22

��� 1

4�2

Z sD0

0

ðmcþmsÞ2ds0

Z s�0

2m2s

ds�D0�D0D0 ðs; s0; q2Þe

� s

M21e

� s0M22 þ hs�si

M21M

22

CD0�D0D0

12

�; (24)

gD00

�D00D00 ðq2Þ ¼ � 2ðq2 �m2D00 Þ

m�f�f2D00 ð3m2

D00 þm2� � q2Þ e

m2�

M21e

m2

D00M22

��� 1

4�2

Z sD00

0

ðmcþmsÞ2ds0

Z s�0

2m2s

ds�D00�D00D00 ðs; s0; q2Þe

� s

M21e

� s0M22 þ hs�si

M21M

22

CD00�D00D00

12

�; (25)

g��D0D0 ðq2Þ ¼ � ðq2 �m2

�ÞCðD0Þm�m

2D0f�f

2D0e

m2

D0M21 e

m2

D0M22

��� 1

4�2

Z sD0

0

ðmcþmsÞ2ds0

Z sD0

0

ðmcþmsÞ2ds��

�D0D0 ðs; s0; q2Þe� s

M21e

� s0M22 � iM2

1M22

��s

�G2

�C��D0D0

6

�; (26)

g��D00D00 ðq2Þ ¼ � 2ðq2 �m2�Þ

m�f�f2D00 ð4m2

D00 � q2Þ em2

D00M21 e

m2

D00M22

��� 1

4�2

Z sD00

0

ðmcþmsÞ2ds0

Z sD00

0

ðmcþmsÞ2ds��

�D00D00 ðs; s0; q2Þe� s

M21e

� s0M22 � iM2

1M22

��s

�G2

�C��D00D00

6

�; (27)

where s�0 and sD0ðD00Þ

0 are the continuum thresholds in the�and D0ðD00Þ mesons, respectively.

IV. NUMERICAL ANALYSIS

In this section, we analyze the strong form factorsand coupling constants for the VD�

s0D�s0, VDsDs, VD

�sD

�s ,

andVDs1Ds1, (V ¼ �, J=c ) vertices.We choose the valuesof meson masses as m� ¼ 1:680 GeV, mJ=c¼3:097GeV,

mD�s0¼ 2:317 GeV, mDs

¼ 1:968 GeV, mD�s¼ 2:112 GeV,

mDs1¼ 2:459 GeV [19], hs�si ¼ ð0:8� 0:2Þhu �ui, and

hu �ui ¼ hd �di ¼ �ð0:240� 0:010 GeVÞ3 for which wechoose the value of the condensates at a fixed renormaliza-tion scale of about 1 GeV [20]. Also, the leptonic decayconstants used in the calculation of the QCD sum rule forthese vertices are presented in Table I. For a comprehensiveanalysis of the strong form factors and coupling constants,we use the following values of the quark masses mc and ms

in three sets presented in Table II.The expressions for the strong form factors in

Eqs. (24)–(27) contain also four auxiliary parameters:Borel mass parameters M1 and M2, and continuum

R. KHOSRAVI AND M. JANBAZI PHYSICAL REVIEW D 87, 016003 (2013)

016003-6

Page 7: Vertices of the vector mesons with the strange charmed mesons in QCD

thresholds s�0 and sD0ðD00Þ

0 . These are mathematical objects,

so the physical quantities, i.e., strong form factors andcoupling constants, should be independent of them. Thevalues of the continuum thresholds are taken to be

s�0 ¼ ðm� þ �Þ2 and sD0ðD00Þ

0 ¼ ðmD0ðD00Þ þ�Þ2. We use

0:4 GeV � � � 1:0 GeV, where Q2 ¼ �q2 [25]. Theworking regions for M2

1 and M22 are determined by requir-

ing that the contributions of the higher states and contin-uum be effectively suppressed, and therefore it guaranteesthat the contributions of higher dimensional operators aresmall. In this work, we use the following relation betweenthe Borel masses M1 and M2 [8,9]:

M21

M22

¼ m2i

m2o

; (28)

where mi and mo are the masses of the incoming andoutgoing meson, respectively. According to this relationbetween the M1 and M2 [Eq. (28)], we will have only oneindependent Borel mass parameter M. We found goodstability of the sum rule in the interval 14 GeV2 � M2 �22 GeV2 for all vertices. The dependence of the strongform factors g�D�

s0D�

s0, g�DsDs

, g�D�sD

�s, and g�Ds1Ds1

on

Borel mass parameters M2 in Q2 ¼ 1 GeV2 consideringset II and � ¼ 0:8 GeV is shown in Fig. 4.

We calculated theQ2 dependence of the strong couplingform factors in the region where the sum rule is valid. Soto extend our results to the full region, we look for

parametrization of the form factors in such a way that inthe validity region of 3PSR, this parametrization coincideswith the sum rules prediction. For off-shell charmed me-sons, our numerical calculations show that the sufficientparametrization of the form factors with respect to Q2 is(monopole fit function)

gðQ2Þ ¼ A

Q2 þ B; (29)

and for the off-shell � meson the strong form factors canbe fitted by the exponential fit function as given (Gaussianfit function)

gðQ2Þ ¼ Ae�Q2=B: (30)

For different values of the three sets (Table II) and �(0:4 GeV � � � 1:0 GeV), we analyze the parameters Aand B for the �D�

s0D�s0, �DsDs, �D�

sD�s , and �Ds1Ds1

vertices. The values of the parameters A and B are given inTable III. As Table III shows, the values of the parametersA and B in set II are increased by increasing the � value.Therefore, the dependence of the strong form factors onQ2

are changed. For example, Fig. 5 shows the variation ofthe strong form factors g�D�

s0D�

s0for different amounts of�.

Our calculations show that the left and right diagrams inFig. 5 nearly cross each other at one point for differentvalues of�, which means that the strong coupling constantcan be defined. In the next figure, we clearly show theintersection point of two diagrams of the strong formfactors in � ¼ 0:8. With regard to the values of set IIand set III, the dependence of the strong form factors onQ2 for the �D�

s0D�s0, �DsDs, �D�

sD�s , and �Ds1Ds1 ver-

tices is shown in Fig. 6. In this figure, the small circles andboxes correspond to the form factors via the 3PSR calcu-lations. As it is seen, the form factors and their fit functionscoincide well together.

TABLE I. The leptonic decay constants in MeV.

fJ=c f� fD�s0

fDsfD�

sfDs1

405� 10 [14] 234� 10 [21] 225� 25 [22] 274� 13 [23] 266� 32 [22] 240� 25 [24]

TABLE II. Different values of the quark masses in GeV inthree sets.

Set I Set II Set III

mc 1.30 should [14] 1.26 [25] 1.47 [25]

ms 0:142ð� ¼ 1 GeVÞ [26] 0.104 [19] 0.104 [19]

14 15 16 17 18 19 20 21 22

5

10

15

20

25

M2(GeV2)

gφφ

D’ D

’(φ D

’’ D

’’) (

Q2 =

1GeV

2 )

φ off−shell

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

φDs0* D

s0*

φDsD

s

φDs*D

s*

φDs1

Ds1

14 15 16 17 18 19 20 21 22

5

10

15

20

M2(GeV2)

gD’(D

’’)φ

D’ D

’ ( φ

D’’

D’’) (

Q2 =

1GeV

2 )

charm off−shell

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

φDs0* D

s0*

φDsD

s

φDs*D

s*

φDs1

Ds1

FIG. 4. The strong form factors g�D0D0ð�D00D00Þ as functions of the Borel mass parameterM2 with the values of set II for the� off shellmeson (left) and the charmed off shell mesons (right).

VERTICES OF THE VECTOR MESONS WITH THE . . . PHYSICAL REVIEW D 87, 016003 (2013)

016003-7

Page 8: Vertices of the vector mesons with the strange charmed mesons in QCD

We define the coupling constant as the value of the strongcoupling form factor at Q2 ¼ �m2

m in Eqs. (24)–(27),where mm is the mass of the off-shell meson. Consideringthe uncertainties in the values of the other input parameters,we obtain the values of the strong coupling constants indifferent values of the three sets shown in Table IV.

Now, we will provide the same results for theJ=cD�

s0D�s0, J=cDsDs, J=cD�

sD�s , and J=cDs1Ds1 ver-

tices. With little change in the expressions presented inSecs. II and III, such as the change in the quark permuta-tions, we can easily find similar results in Eqs. (24)–(27)for strong form factors of the new vertices as

gD0

J=cD0D0 ðq2Þ ¼ mJ=c ðq2 �m2D0 Þ

CðD0Þm2D0fj=c f

2D0 ðm2

D0 þm2J=c � q2Þ e

m2J=c

M21 e

m2

D0M22

�� 1

4�2

Z sD0

0

ðmcþmsÞ2ds0

�Z sJ=c

0

2m2c

ds�D0J=cD0D0 ðs; s0; q2Þe

� s

M21

� s0M22 � iM2

1M22

��s

�G2

�CJ=cJ=cD0D0

6

�; (31)

where �D0J=cD0D0 ¼ �D0

�D0D0 js$c andCD0J=cD0D0 ¼ C�

�D0D0 js$c. sJ=c0 is the continuum threshold in the J=c meson, and its value

is ðmJ=c þ �Þ2 where 0:4 GeV � � � 1:0 GeV,

gD00

J=cD00D00 ðq2Þ ¼ 2ðq2 �m2D00 Þ

mJ=c fj=c f2D00 ð3m2

D00 þm2J=c � q2Þ e

m2J=c

M21 e

m2

D00M22

�� 1

4�2

Z sD00

0

ðmcþmsÞ2ds0

�Z sJ=c

0

2m2c

ds�D00J=cD00D00 ðs; s0; q2Þe

� s

M21

� s0M22 � iM2

1M22

��s

�G2

�CJ=cJ=cD00D00

6

�; (32)

TABLE III. Parameters appearing in the fit functions for the �D�s0D

�s0, �DsDs, �D�

sD�s , and �Ds1Ds1 vertices for various mc, ms,

and �, where �1 ¼ 0:5 GeV, �2 ¼ 0:6 GeV, �3 ¼ 0:8 GeV, and �4 ¼ 1:0 GeV.

Set I Set II Set III

Form factor Að�1Þ Bð�1Þ Að�2Þ Bð�2Þ Að�3Þ Bð�3Þ Að�4Þ Bð�4Þ Að�3Þ Bð�3Þg��D�

s0D�

s03.11 2.98 4.74 4.93 5.89 6.03 7.13 6.92 4.26 5.23

gD�

s0

�D�s0D�

s0129.77 21.53 147.73 22.59 202.12 25.98 265.42 29.78 213.26 35.38

g��DsDs1.47 2.72 2.76 4.82 3.14 5.28 3.87 6.68 2.83 5.02

gDs

�DsDs67.11 19.69 87.48 21.67 117.56 24.7 152.17 28.13 166.62 35.94

g��D�sD

�s

4.89 125.45 6.02 127.39 7.38 171.69 8.66 225.45 7.54 234.78

gD�

s

�D�sD

�s

90.20 21.39 132.178 23.23 202.75 31.39 290.73 36.72 162.15 25.45

g��Ds1Ds112.83 315.78 13.08 317.13 13.82 478.09 14.94 641.45 14.31 868.31

gDs1

�Ds1Ds1237.70 24.35 295.22 28.12 896.13 69.03 741.61 51.19 522.89 42.01

−6 −4 −2 0 2 4 6 80

2

4

6

8

10

12

14

16

Q2(GeV

2)

D* s0

D* s0

(Q

2)

φ off−shell ms=0.104GeV

mc=1.26GeV ∆=0.4GeV

∆=0.6GeV

∆=0.8GeV

∆=1GeV

−10 −8 −6 −4 −2 0 2 4 6 8 102

4

6

8

10

12

14

Q2(GeV

2)

Ds0*

Ds0*

(Q

2)

Ds0

* off−shell m

s=0.104GeV

mc=1.26GeV ∆=0.4GeV

∆=0.6GeV

∆=0.8GeV

∆=1GeV

FIG. 5. The strong form factor g�D�s0D�

s0on Q2 for different values of � for the � off shell (left) and the D�

s0 off shell (right).

R. KHOSRAVI AND M. JANBAZI PHYSICAL REVIEW D 87, 016003 (2013)

016003-8

Page 9: Vertices of the vector mesons with the strange charmed mesons in QCD

−4 −2 0 2 4 6 8 100

2

4

6

8

10

12

Q2(GeV

2)

Ds0*

D s0* (

Q2

)φ off−shell Exponential fit

Ds0

* off−shell− − −Monopolar fit

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

−4 −2 0 2 4 6 8 10 12

1

2

3

4

5

6

7

8

9

10

Q2(GeV

2)

gφ D

s0*D

s0* (

Q2

)

φ off−shell Exponential fit

Ds0

* off−shell− − −Monopolar fit

mc=1.47GeV

ms=0.104GeV

∆=0.8GeV

−6 −4 −2 0 2 4 6 8 10 120

1

2

3

4

5

6

7

8

9

Q2(GeV

2)

gφ D

sD s

(Q

2)

φ off−shell Exponential fit

Ds off−shell− − −Monopolar fit

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

−6 −4 −2 0 2 4 6 8 100

1

2

3

4

5

6

7

8

Q2(GeV

2)

D sD s

(Q

2)

φ off−shell Exponential fit

Ds off−shell− − −Monopolar fit

mc=1.47GeV

ms=0.104GeV

∆=0.8GeV

−8 −6 −4 −2 0 2 4 6 8 10 12

5

6

7

8

9

10

Q2(GeV

2)

D* sD

* s

(Q

2)

φ off−shell Exponential fit

D*

s off−shell − − − Monopolar fit

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

−8 −6 −4 −2 0 2 4 6 8 10 124

5

6

7

8

9

10

Q2(GeV

2)

D* sD

* s

(Q

2)

φ off−shell Exponential fit

D*

s off−shell − − − Monopolar fit

mc=1.47GeV

ms=0.104GeV

∆=0.8GeV

−5 0 5 10 15

8

10

12

14

16

18

Q2(GeV

2)

D s1D s1

(Q

2)

φ off−shell Exponential fit

Ds1

off−shell− − −Monopolar fit

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

−10 −5 0 5 10 159

10

11

12

13

14

15

16

17

18

Q2(GeV

2)

D s1D s1

(Q

2)

φ off−shell Exponential fit

Ds1

off−shell− − −Monopolar fit

mc=1.47GeV

ms=0.104GeV

∆=0.8GeV

FIG. 6. The strong form factors g�D0D0 and g�D00D00 on Q2 for different values of the mc and � ¼ 0:8 for the � off shell and thecharmed off shell mesons. The small circles and boxes correspond to the form factors via the 3PSR calculations.

VERTICES OF THE VECTOR MESONS WITH THE . . . PHYSICAL REVIEW D 87, 016003 (2013)

016003-9

Page 10: Vertices of the vector mesons with the strange charmed mesons in QCD

where �D00J=cD00D00 ¼ �D00

�D00D00 js$c and CD00J=cD00D00 ¼ C�

�D00D00 js$c,

gJ=cJ=cD0D0 ðq2Þ ¼

ðq2 �m2J=c Þ

CðD0ÞmJ=cm2D0fJ=c f

2D0e

m2

D0M21 e

m2

D0M22

�� 1

4�2

Z sD0

0

ðmcþmsÞ2ds0

�Z sD

00

ðmcþmsÞ2ds�J=c

J=cD0D0 ðs; s0; q2Þe� s

M21

� s0M22 þ hs�si

M21M

22

CJ=cJ=cD0D0

12

�; (33)

where �J=cJ=cD0D0 ¼ ��

�D0D0 js$c and CJ=cJ=cD0D0 ¼ CD0

�D0D0 js$c,

TABLE IV. The strong coupling constants g�D0D0 and g�D00D00 in GeV�1 for various mc and ms.

Set I Set II Set III

Coupling constant ch-off-sh �-off-sh ch-off-sh �-off-sh ch-off-sh �-off-sh

g�D�s0D�

s08:03� 1:30 8:10� 1:20 9:20� 1:67 9:00� 1:72 7:11� 1:29 7:31� 1:40

g�DsDs4:25� 0:92 4:15� 0:88 5:17� 1:34 5:06� 1:83 5:20� 1:35 4:97� 1:80

g�D�sD

�s

5:33� 0:21 4:89� 0:74 7:28� 1:74 6:78� 1:63 7:72� 1:86 7:64� 1:84g�Ds1Ds1

12:99� 0:64 12:95� 0:81 14:18� 2:25 13:41� 1:88 14:54� 2:31 14:35� 2:01

12 13 14 15 16 17 18 19 200

2

4

6

8

10

12

14

16

18

M2(GeV2)

gJ/ψ

J/ψ

D’D

’(J/ψ

D’’D

’’) (

Q2 =

1GeV

2 )

J/ψ off−shell

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

J/ψDs0* D

s0*

J/ψDsD

s

J/ψDs*D

s*

J/ψDs1

Ds1

12 13 14 15 16 17 18 19 202

4

6

8

10

12

14

16

18

20

22

M2(GeV2)

gD’(D

’’)J/

ψ D

’ D’ (

J/ ψ

D’’

D’’) (

Q2 =

1GeV

2 )

charm off−shell

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

J/ψDs0* D

s0*

J/ψDsD

s

J/ψDs*D

s*

J/ψDs1

Ds1

FIG. 7. The strong form factors gJ=cD0D0ðJ=cD00D00Þ as functions of the Borel mass parameter M2 with the values of set II for the J=coff shell (left) and the charmed off shell mesons (right).

TABLE V. Parameters appearing in the fit functions for the gJ=cD0D0ðJ=cD00D00Þ form factors for various mc, ms, and �, where �1 ¼0:5 GeV, �2 ¼ 0:6 GeV, �3 ¼ 0:8 GeV, and �4 ¼ 1:0 GeV.

Set I Set II Set III

Form factor Að�1Þ Bð�1Þ Að�2Þ Bð�2Þ Að�3Þ Bð�3Þ Að�4Þ Bð�4Þ Að�3Þ Bð�3ÞgJ=cJ=cD�

s0D�

s03.73 14.31 5.62 31.07 7.20 48.83 8.02 46.03 4.64 46.73

gD�

s0

J=cD�s0D�

s0174.95 29.88 179.92 30.10 221.17 30.94 254.72 32.16 129.89 29.18

gJ=cJ=cDsDs1.73 253.20 1.96 187.02 2.34 242.44 2.96 251.02 1.86 194.32

gDs

J=cDsDs160.21 89.05 176.22 92.22 211.61 89.91 284.62 89.32 186.54 101.63

gJ=cJ=cD�sD

�s

2.14 23.59 2.79 25.54 3.67 27.76 4.48 31.72 2.87 26.91

gD�

s

J=cD�sD

�s

499.86 166.02 847.23 199.97 1452.91 282.26 2341.12 403.88 868.24 254.32

gJ=cJ=cDs1Ds15.98 29.48 7.46 32.88 8.66 46.79 9.58 60.37 6.93 38.69

gDs1

J=cDs1Ds1538.94 70.62 724.31 83.10 1033.08 107.17 1489.78 138.33 658.84 86.47

R. KHOSRAVI AND M. JANBAZI PHYSICAL REVIEW D 87, 016003 (2013)

016003-10

Page 11: Vertices of the vector mesons with the strange charmed mesons in QCD

−2 0 2 4 6 8 105.5

6

6.5

7

7.5

8

8.5

Q2(GeV

2)

gJ/

’ψ D

s0*D

s0* (

Q2)

J/ψ off−shell Exponential fit

Ds0

* off−shell− − −Monopolar fit

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

−5 0 5 103

3.5

4

4.5

5

5.5

6

Q2(GeV

2)

gJ/

ψ D

s0

*D

s0* (

Q2

)

J/ψ off−shell Exponential fit

Ds0

* off−shell− − −Monopolar fit

mc=1.47GeV

ms=0.104GeV

∆=0.8GeV

−2 0 2 4 6 8 10 122.15

2.2

2.25

2.3

2.35

2.4

2.45

Q2(GeV

2)

gJ/

ψ D

sD s

(Q

2)

J/ψ off−shell Exponential fit

Ds off−shell− − −Monopolar fit

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

−6 −4 −2 0 2 4 6 8 10 12

1.7

1.75

1.8

1.85

1.9

1.95

2

Q2(GeV

2)

gJ/

ψ D

sD s

(Q

2)

J/ψ off−shell Exponential fit

Ds off−shell− − −Monopolar fit

mc=1.47GeV

ms=0.104GeV

∆=0.8GeV

−15 −10 −5 0 5 10 152

3

4

5

6

7

Q2(GeV

2)

gJ/

ψ D

* sD

* s

(Q

2)

J/ψ off−shell Exponential fit

D*

s off−shell − − − Monopolar fit

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

−10 −5 0 5 10 151.5

2

2.5

3

3.5

4

4.5

Q2(GeV

2)

gJ/

ψ D

* sD* s

(Q

2)

J/ψ off−shell Exponential fit

D*

s off−shell − − − Monopolar fit

mc=1.47GeV

ms=0.104GeV

∆=0.8GeV

−10 −5 0 5 106

7

8

9

10

11

12

13

Q2(GeV

2)

gJ/

ψ D

s1D s1

(Q

2)

J/ψ off−shell Exponential fit

Ds1

off−shell − − − Monopolar fit

mc=1.26GeV

ms=0.104GeV

∆=0.8GeV

−15 −10 −5 0 5 10 15

5

6

7

8

9

10

11

Q2(GeV

2)

gJ/

ψ D

s1D s1

(Q

2)

J/ψ off−shell Exponential fit

Ds1

off−shell − − − Monopolar fit

mc=1.47GeV

ms=0.104GeV

∆=0.8GeV

FIG. 8. The strong form factors gJ=cD0D0 and gJ=cD00D00 onQ2 for different values of themc and � ¼ 0:8 for the J=c off shell and thecharmed off shell mesons. The small circles and boxes correspond to the form factors via the 3PSR calculations.

VERTICES OF THE VECTOR MESONS WITH THE . . . PHYSICAL REVIEW D 87, 016003 (2013)

016003-11

Page 12: Vertices of the vector mesons with the strange charmed mesons in QCD

gJ=cJ=cD00D00 ðq2Þ ¼2ðq2 �m2

J=c ÞmJ=c fJ=c f

2D00 ð4m2

D00 � q2Þ em2

D00M21 e

m2

D00M22

�� 1

4�2

Z sD00

0

ðmcþmsÞ2ds0

�Z sD

000

ðmcþmsÞ2ds�J=c

J=cD00D00 ðs; s0; q2Þe� s

M21

� s0M22 þ hs�si

M21M

22

CJ=cJ=cD00D00

12

�; (34)

where �J=cJ=cD00D00 ¼ ��

�D00D00 js$c and CJ=cJ=cD00D00 ¼

CD00�D00D00 js$c.

The dependence of the strong form factors gJ=cD�s0D�

s0,

gJ=cDsDs, gJ=cD�

sD�s, and gJ=cDs1Ds1

on the Borel mass pa-

rameters M2 for the values of set II, � ¼ 0:8 GeV andQ2 ¼ 1 GeV2 are shown in Fig. 7.

For all these vertices, good stability occurs in the inter-val 12 GeV2 � M2 � 20 GeV2.

The dependence of the above strong coupling formfactors in Eqs. (31)–(34) on Q2 to the full physical regionis estimated using Eqs. (29) and (30) for the off-shellcharmed mesons and the off-shell J=c , respectively. Thevalues of the parameters A and B for the gJ=cD�

s0D�

s0,

gJ=cDsDs, gJ=cD�

sD�s, and gJ=cDs1Ds1

form factors in different

amounts of the mc, ms, and � are given in Table V. Thedependence of the strong form factors on Q2 for the valuesof set I and set II and � ¼ 0:8 is shown in Fig. 8. As beforein these figures, the small circles and boxes correspond tothe form factors via 3PSR calculations.Considering the errors of the input parameters,

the strong coupling constant values of the J=cD0D0ðJ=cD00D00Þ vertices for three sets are shown in Table VI.Our numerical analysis shows that the contribution of

the nonperturbative part containing the quark-quarkand quark-gluon diagrams is about 17%, the gluon-gluoncontribution is about 6% of the total, and the main con-tribution comes from the perturbative part of the strongform factors.The errors are estimated by the variation of the Borel

parameter M2, the variation of the continuum thresholds

s�0 , sJ=c0 , and sD

0ðD00Þ0 , the leptonic decay constants, and

uncertainties in the values of the other input parameters.The main uncertainty comes from the continuum thresh-olds and the decay constants, which is�25% of the central

TABLE VI. The strong coupling constants gJ=cD0D0 and gJ=cD00D00 in GeV�1 for various mc and ms.

Set I Set II Set III

Coupling constant ch-off-sh J=c -off-sh ch-off-sh J=c -off-sh ch-off-sh J=c -off-sh

gJ=cD�s0D�

s07:14� 1:50 7:32� 1:20 7:82� 1:97 8:13� 1:93 5:45� 1:37 5:70� 1:35

gJ=cDsDs1:88� 0:73 1:80� 0:65 2:33� 1:01 2:26� 0:81 1:91� 0:83 1:95� 0:70

gJ=cD�sD

�s

3:09� 0:52 3:21� 0:61 4:69� 1:34 4:59� 1:58 3:47� 0:99 4:09� 1:41gJ=cDs1Ds1

8:35� 0:91 8:29� 0:97 9:91� 1:35 10:19� 1:30 8:19� 1:12 8:89� 1:14

TABLE VII. Parameters appearing in the fit functions for the�D0D0ð�D00D00Þ and J=cD0D0ðJ=cD00D00Þ form factors inSUfð3Þ symmetry with mc ¼ 1:26 GeV and � ¼ 0:8 GeV.

Form factor A B Form factor A B

g��D�s0D�

s06.15 5.67 gJ=cJ=cD�

s0D�

s07.39 54.43

gD�

s0

�D�s0D�

s0214.64 26.40 g

D�s0

J=cD�s0D�

s0237.60 31.73

g��DsDs2.13 4.63 gJ=cJ=cDsDs

2.01 213.63

gDs

�DsDs118.08 32.74 g

Ds

J=cDsDs204.69 103.05

g��D�sD

�s

7.19 254.34 gJ=cJ=cD�sD

�s

3.47 29.19

gD�s

�D�sD

�s

191.06 29.08 gD�s

J=cD�sD

�s

2570.27 522.58

g��Ds1Ds115.14 370.05 gJ=cJ=cDs1Ds1

9.13 43.75

gDs1

�Ds1Ds1650.85 48.39 g

Ds1

J=cDs1Ds11149.21 113.47

TABLE VIII. The strong coupling constants g�D0D0 , g�D00D00 , gJ=cD0D0 , and gJ=cD00D00 in GeV�1 in SUfð3Þ symmetry with mc ¼1:26 GeV.

Coupling constant ch-off-sh �-off-sh Coupling constant ch-off-sh J=c -off-sh

g�D�s0D�

s010:21� 1:81 10:12� 1:79 gJ=cD�

s0D�

s09:02� 2:15 8:81� 2:01

g�DsDs4:09� 1:15 3:91� 1:03 gJ=cDsDs

2:07� 0:91 2:10� 0:92g�D�

sD�s

7:76� 1:79 7:27� 1:61 gJ=cD�sD

�s

4:96� 1:42 4:82� 1:38g�Ds1Ds1

15:37� 2:51 15:26� 2:47 gJ=cDs1Ds110:70� 2:42 11:37� 2:55

R. KHOSRAVI AND M. JANBAZI PHYSICAL REVIEW D 87, 016003 (2013)

016003-12

Page 13: Vertices of the vector mesons with the strange charmed mesons in QCD

value, while the other uncertainties are small, constitutinga few percent.

So far, the strong coupling constant values were inves-tigated via the SUfð3Þ symmetry breaking, and the mass of

the s quark was considered in the expressions of thecondensate terms and spectral densities. Now, we want toanalyze the strong coupling constants considering theSUfð3Þ symmetry. For the stated purpose, the mass of the

s quark is ignored in all equations, i.e., ms ! mu ’ 0 GeVand hs�si ! hu �ui.

In view of the SUfð3Þ symmetry, the values of the

parameters A and B for the �D0D0ð�D00D00Þ andJ=cD0D0ðJ=cD00D00Þ vertices inmc ¼ 1:26 GeV and� ¼0:8 GeV are given in Table VII. Also considering theSUfð3Þ symmetry, we obtain the values of the strong cou-

pling constants in mc ¼ 1:26 GeV shown in Table VIII.Finally, we would like to compare our results with the

values predicted by other methods. It should be remindedthat with the SUfð3Þ symmetry consideration, it is possible

to compare the coupling constant value of gJ=cD�sD

�swith

gJ=cD�D� . Taking an average of the two values of the strong

form factor gJ=cD�sD

�sfor the off-shell D�

s and the off-shell

J=c , we obtain

gj=cD�sD

�s¼ 4:89� 1:40 GeV�1: (35)

We compare our result for gJ=cD�sD

�sin Eq. (35) with those

of other calculations for gJ=cD�D� in Table IX. Our value is

smaller than the values obtained using all the approachessuch as 3PSR [14,28], the quark model (QM) [27], thevector meson dominance approach (VMD) [29], and theconstituent quark-meson model (CQM) [30], but it is ingood agreement with the QM calculation.

In summary, considering the contributions of the quark-

quark, quark-gluon, and gluon-gluon condensate correc-

tions, we estimate the strong form factors for the �D0D0,�D00D00, J=cD0D0, and J=cD00D00 (D0 ¼ D�

s0, Ds and

D00 ¼ D�s , Ds1) vertices within 3PSR. The dependence of

the strong form factors on the transferred momentum

square Q2 was plotted. We also evaluated the coupling

constants of these vertices. Detection of these strong

form factors and the coupling constants and their compari-

son with the phenomenological models like QCD sum

rules could give useful information about strong interac-

tions of the strange charmed mesons.

ACKNOWLEDGMENTS

Partial support of the Isfahan University of TechnologyResearch Council is appreciated.

APPENDIX A

In this Appendix, the explicit expressions of the coefficients of the quark-quark and quark-gluon condensate of thestrong form factors for the vertices �D0D0 and �D00D00 with application of the double Borel transformations are given.

CD�

s0

�D�s0D�

s0¼

��3msm

2cM

21 � 3m2

smcM21 þ 2m2

0msM21 þ 3msq

2M22 � 3m2

smcM22 � 3msm

20M

22 þm2

0mcM22 � 3msm

2cM

22

� 3m3

sm2cM

21

M22

� 3

2

m20m

3cM

21

M22

þ 3

2

m20msm

2cM

21

M22

þ 3m3

cm2sM

21

M22

� 3m5

sM22

M21

� 7

4

m20m

2smcM

22

M21

þ 3m4

smcM22

M21

þ 7

4

m20m

3sM

22

M21

� 3m5s � 3m2

0m2smc � 3m3

sm2c þ 3m3

sq2 þ 3m3

cm2s �m2

0msq2 þ 2m2

0mcq2 � 3mcq

2m2s

þ 3m4smc þm2

0m3s � 2m2

0m3c

�� e

�m2s

M21e

�m2c

M22 ;

CDs

�DsDs¼��3m2

0mcM21þ3m3

sM21�

7

2m2

0msM21þ3m2

smcM21þ3msm

2cM

21�3msq

2M22þ3msm

2cM

22þ6m3

sM22�

5

2m2

0mcM22

�3

2

m20msm

2cM

21

M22

þ3m3

sm2cM

21

M22

þ3m3

cm2sM

21

M22

�3

2

m20m

3cM

21

M22

þ3m5

sM22

M21

þ3m4

smcM22

M21

�3

2

m20m

2smcM

22

M21

�3

2

m20m

3sM

22

M21

þ1

2m2

0mcq2�3

2m2

0m2smcþ3

2m2

0msm2c�1

2m2

0msq2þ1

2m2

0m3s�1

2m2

0m3c

��e

�m2s

M21e

�m2c

M22 ;

TABLE IX. Values of the strong coupling constant using different approaches: 3PSR [14], QM [27], 3PSR [28], VMD [29], andCQM [30].

Coupling constant Ours Reference [14] Reference [27] Reference [28] Reference [29] Reference [30]

gJ=cD�D� 4:89� 1:40 6:2� 0:9 4.9 5:8� 0:8 7.6 8:0� 0:5

VERTICES OF THE VECTOR MESONS WITH THE . . . PHYSICAL REVIEW D 87, 016003 (2013)

016003-13

Page 14: Vertices of the vector mesons with the strange charmed mesons in QCD

CD�

s

�D�sD

�s¼

�3msM

21M

22 � 3m3

sM21 þ 9m2

smcM21 � 6msm

2cM

21 � 2m2

0mcM21 þm2

0msM21 þ 3msq

2M21 þ 3m3

sM22

� 3msm20M

22 � 3m2

smcM22 � 3

m3sm

2cM

21

M22

þ 3

2

m20m

3cM

21

M22

þ 3

2

m20msm

2cM

21

M22

� 3m3

cm2sM

21

M22

� 3m4

smcM22

M21

� 3m5

sM22

M21

þ 3

2

m2smcm

20M

22

M21

þ 3

2

m20m

3sM

22

M21

� 3m5s þ 2m2

0m3s þm2

0m3c þ 3m3

sq2 � 3m3

cm2s � 3m4

smc � 3m3sm

2c

� 2m20msq

2 �m20mcq

2 þ 3m20msm

2c þ 3mcq

2m2s

�� e

�m2s

M21e

�m2c

M22 ;

CDs1

�Ds1Ds1¼

�3msM

21M

22 � 3m3

sM21 � 9m2

smcM21 � 6msm

2cM

21 þ 2m2

0mcM21 þm2

0msM21 þ 3msq

2M21 þ 3m3

sM22

� 3msm20M

22 þ 3m2

smcM22 � 3

m3sm

2cM

21

M22

� 3

2

m20m

3cM

21

M22

þ 3

2

m20msm

2cM

21

M22

þ 3m3

cm2sM

21

M22

þ 3m4

smcM22

M21

� 3m5

sM22

M21

� 3

2

m2smcm

20M

22

M21

þ 3

2

m20m

3sM

22

M21

� 3m5s þ 2m2

0m3s �m2

0m3c þ 3m3

sq2 þ 3m3

cm2s þ 3m4

smc � 3m3sm

2c

� 2m20msq

2 þm20mcq

2 þ 3m20msm

2c � 3mcq

2m2s

�� e

�m2s

M21e

�m2c

M22 :

APPENDIX B

In this Appendix, the coefficients of the gluon condensate contributions of the strong form factors for the �D0D0 and�D00D00 vertices in the Borel transform scheme are presented.

C��D�

s0D�

s0¼ I2ð3; 2; 2Þm6

c � I1ð3; 2; 2Þm6c þ I1ð3; 2; 2Þm4

cm2s � I2ð3; 2; 2Þm4

cm2s � I2ð3; 2; 2Þm3

cm3s

þ I1ð3; 2; 2Þm3cm

3s þ 3I0ð3; 2; 1Þm4

c � I1ð3; 2; 1Þm4c þ 3I0ð2; 2; 2Þm4

c þ I0ð3; 1; 2Þm4c

þ I2ð3; 2; 1Þm4c þ 2I1ð2; 3; 1Þm3

cms � 3I1ð4; 1; 1Þm3cms � 4I0ð2; 3; 1Þm3

cms þ 3I2ð4; 1; 1Þm3cms

� 2I1ð2; 2; 2Þm3cms þ 2I2ð2; 2; 2Þm3

cms þ I½1;0�2 ð3; 2; 2Þm3cms þ I½1;0�1 ð3; 2; 2Þm3

cms

� 2I2ð2; 3; 1Þm3cms þ I2ð3; 2; 1Þm3

cms � I1ð3; 2; 1Þm3cms � I½0;1�1 ð3; 2; 2Þm2

cm2s

� I½0;1�2 ð3; 2; 2Þm2cm

2s þ 3I0ð3; 2; 1Þm2

cm2s � 2I1ð3; 2; 1Þmcm

3s þ 2I2ð3; 2; 1Þmcm

3s

� 2I1ð1; 2; 2Þm2c � 3=2I1ð1; 3; 1Þm2

c � 3I½1;0�0 ð3; 2; 1Þm2c � 3I½0;1�1 ð3; 1; 2Þm2

c � 3I½1;0�1 ð3; 2; 1Þm2c

þ I½0;1�0 ð3; 2; 1Þm2c þ 6I0ð1; 3; 1Þm2

c þ 2I2ð1; 2; 2Þm2c � 3I½0;1�2 ð3; 1; 2Þm2

c � I½0;2�0 ð3; 2; 2Þm2c

� 3I½1;0�2 ð3; 2; 1Þm2c þ 2I0ð1; 2; 2Þm2

c � 3I½0;1�0 ð4; 1; 1Þm2c þ 5I½1;1�2 ð3; 2; 2Þm2

c þ 5I½1;1�1 ð3; 2; 2Þm2c

þ 3=2I2ð1; 3; 1Þm2c � 3I½0;1�2 ð3; 1; 2Þmcms þ I½1;1�2 ð3; 2; 2Þmcms � 2I½1;0�1 ð3; 2; 1Þmcms

þ 4I1ð2; 2; 1Þmcms þ I½1;1�1 ð3; 2; 2Þmcms � 2I½1;0�2 ð3; 2; 1Þmcms � 3I½0;1�1 ð3; 1; 2Þmcms

þ 2I1ð1; 2; 2Þmcms � 4I2ð2; 2; 1Þmcms � 2I2ð1; 2; 2Þmcms � 4I0ð1; 3; 1Þmcms � 2I½0;1�0 ð2; 2; 2Þm2s

þ I0ð1; 2; 2Þm2s þ I½0;2�0 ð3; 2; 2Þm2

s � 2I½0;1�0 ð2; 2; 1Þ þ 2I1ð1; 2; 1Þ þ 2I½1;1�0 ð2; 2; 2Þ � 2I2ð1; 2; 1Þþ 2I1ð2; 1; 1Þ � 2I2ð2; 1; 1Þ þ I½1;1�1 ð2; 2; 2Þ � I½1;0�0 ð2; 2; 1Þþ 3I0ð2; 1; 1Þ � I½0;1�0 ð1; 2; 2Þ þ I½1;1�2 ð2; 2; 2Þ � I½1;2�0 ð3; 2; 2Þ � 6I½0;1�0 ð1; 3; 1Þ � 3I½0;1�0 ð2; 1; 2Þ;

R. KHOSRAVI AND M. JANBAZI PHYSICAL REVIEW D 87, 016003 (2013)

016003-14

Page 15: Vertices of the vector mesons with the strange charmed mesons in QCD

C��DsDs

¼ �I1ð3; 2; 2Þm5cms þ I2ð3; 2; 2Þm5

cms þ I1ð3; 2; 2Þm3cm

3s � I2ð3; 2; 2Þm3

cm3s � I½0;1�1 ð3; 2; 2Þm4

c � 3I0ð3; 2; 1Þm4c

þ 3I1ð4; 1; 1Þm4c þ 3I1ð2; 2; 2Þm4

c � 3I2ð4; 1; 1Þm4c � I2ð3; 2; 1Þm4

c � 3I2ð2; 2; 2Þm4c � I½0;1�2 ð3; 2; 2Þm4

c

� 3I0ð2; 2; 2Þm4c þ I1ð3; 2; 1Þm4

c � I½1;0�0 ð3; 2; 2Þm4c þ 2I2ð2; 2; 2Þm3

cms þ 3I0ð3; 2; 1Þm3cms þ 3I2ð4; 1; 1Þm3

cms

þ I2ð3; 2; 1Þm3cms � 3I1ð4; 1; 1Þm3

cms � 2I1ð2; 2; 2Þm3cms � I1ð3; 2; 1Þm3

cms þ 6I2ð1; 4; 1Þm2cm

2s

þ 2I1ð3; 2; 1Þm2cm

2s � 2I2ð3; 2; 1Þm2

cm2s � 6I1ð1; 4; 1Þm2

cm2s � 3I0ð3; 2; 1Þm2

cm2s � 2I1ð2; 3; 1Þmcm

3s

� I½0;1�1 ð3; 2; 2Þmcm3s � I½0;1�2 ð3; 2; 2Þmcm

3s þ 2I2ð2; 3; 1Þmcm

3s þ I0ð2; 1; 2Þm2

c þ I½0;2�0 ð3; 2; 2Þm2c

þ 2I½0;1�0 ð2; 2; 2Þm2c þ 3I½0;1�1 ð3; 1; 2Þm2

c � 5I½1;1�2 ð3; 2; 2Þm2c þ 3I½1;0�0 ð3; 2; 1Þm2

c � 5I½1;1�1 ð3; 2; 2Þm2c

þ 3I½0;1�2 ð3; 1; 2Þm2c � I0ð3; 1; 1Þm2

c þ I½1;1�2 ð3; 2; 2Þmcms þ 3I1ð1; 3; 1Þmcms � 3I2ð1; 3; 1Þmcms

� 2I½1;0�2 ð2; 3; 1Þmcms � 2I½1;0�1 ð2; 3; 1Þmcms þ I½0;1�0 ð3; 2; 1Þmcms þ 4I1ð2; 2; 1Þmcms � 4I2ð2; 2; 1Þmcms

þ I½1;1�1 ð3; 2; 2Þmcms � I0ð2; 2; 1Þmcms þ I½0;1�1 ð2; 2; 2Þm2s þ I½0;1�2 ð2; 2; 2Þm2

s þ 2I½0;1�0 ð2; 2; 2Þm2s � I1ð2; 2; 1Þm2

s

� I0ð2; 2; 1Þm2s þ I2ð2; 2; 1Þm2

s � 2I½0;2�0 ð3; 1; 2Þ þ I½0;1�0 ð1; 2; 2Þ þ I0ð2; 1; 1Þ � 2I1ð1; 2; 1Þ þ 2I2ð1; 1; 2Þþ I½1;0�0 ð1; 2; 2Þ � 3I½1;1�0 ð3; 2; 1Þ � 2I1ð1; 1; 2Þ þ I½0;1�0 ð2; 1; 2Þ þ 2I2ð1; 2; 1Þ þ I½1;2�0 ð3; 2; 2Þ þ 2I½0;1�0 ð3; 1; 1Þþ I0ð1; 2; 1Þ;

C��D�

sD�s¼ I0ð3; 2; 2Þm6

c � I0ð3; 2; 2Þm5cms þ I2ð3; 2; 2Þm4

cm2s � I1ð3; 2; 2Þm4

cm2s þ I0ð3; 2; 2Þm3

cm3s þ I1ð3; 2; 2Þm2

cm4s

� I2ð3; 2; 2Þm2cm

4s þ 3I0ð4; 1; 1Þm4

c þ 3I0ð2; 2; 2Þm4c þ 2I6ð3; 2; 2Þm4

c þ 2I1ð2; 3; 1Þm3cms þ I½0;1�2 ð3; 2; 2Þm3

cms

� 2I0ð2; 2; 2Þm3cms � I½1;0�0 ð3; 2; 2Þm3

cms � 3I0ð4; 1; 1Þm3cms � 2I2ð2; 2; 2Þm3

cms � 2I2ð2; 3; 1Þm3cms

þ 2I0ð2; 3; 1Þm3cms þ 2I1ð2; 2; 2Þm3

cms � I½0;1�1 ð3; 2; 2Þm3cms � 2I½1;0�1 ð3; 2; 2Þm2

cm2s � 2I6ð3; 2; 2Þm2

cm2s

þ 2I½1;0�2 ð3; 2; 2Þm2cm

2s þ 2I2ð2; 3; 1Þmcm

3s þ I½0;1�0 ð3; 2; 2Þmcm

3s þ 6I0ð1; 4; 1Þmcm

3s � I0ð2; 2; 2Þmcm

3s

� 2I1ð2; 3; 1Þmcm3s � I1ð2; 2; 2Þm4

s þ I½0;1�2 ð3; 2; 2Þm4s � I½0;1�1 ð3; 2; 2Þm4

s þ I2ð2; 2; 2Þm4s þ I0ð2; 1; 2Þm2

c

þ 8I8ð3; 1; 2Þm2c � I1ð3; 1; 1Þm2

c � I½1;0�0 ð2; 2; 2Þm2c þ 2I½0;1�6 ð3; 2; 2Þm2

c þ 4I½1;0�8 ð3; 2; 2Þm2c � 4I6ð3; 2; 1Þm2

c

þ 4I8ð2; 2; 2Þm2c þ 2I½1;0�6 ð3; 2; 2Þm2

c þ I2ð3; 1; 1Þm2c � 8I7ð3; 1; 2Þm2

c � 4I7ð2; 2; 2Þm2c � 4I½1;0�7 ð3; 2; 2Þm2

c

þ 6I6ð4; 1; 1Þm2c þ 6I6ð3; 1; 2Þm2

c þ 8I6ð2; 3; 1Þmcms � 2I0ð1; 2; 2Þmcms þ I½0;1�1 ð2; 2; 2Þmcms

þ 2I1ð1; 2; 2Þmcms þ I½0;1�0 ð2; 2; 2Þmcms þ I½1;1�2 ð3; 2; 2Þmcms � I2ð2; 2; 1Þmcms � 2I½0;1�0 ð2; 3; 1Þmcms

� 2I2ð1; 2; 2Þmcms � I½0;1�2 ð2; 2; 2Þmcms þ I1ð2; 2; 1Þmcms � I½1;1�1 ð3; 2; 2Þmcms þ 9=2I1ð1; 3; 1Þm2s

þ I½1;1�0 ð3; 2; 2Þm2s � 12I6ð1; 4; 1Þm2

s þ 24I7ð1; 4; 1Þm2s � 6I½1;0�1 ð1; 4; 1Þm2

s � 2I½1;0�0 ð3; 2; 1Þm2s

þ 6I½1;0�2 ð1; 4; 1Þm2s � I½0;1�0 ð2; 2; 2Þm2

s � 9=2I2ð1; 3; 1Þm2s þ 4I6ð3; 2; 1Þm2

s � 2I½0;1�6 ð3; 2; 2Þm2s þ 2I6ð2; 2; 2Þm2

s

� 4I7ð3; 2; 1Þm2s þ 2I½1;0�1 ð2; 2; 2Þm2

s þ I0ð3; 1; 1Þm2s � 24I8ð1; 4; 1Þm2

s � 2I½1;0�2 ð2; 2; 2Þm2s þ 4I8ð3; 2; 1Þm2

s

þ I½2;1�2 ð3; 2; 2Þ � 4I½1;0�8 ð2; 2; 2Þ � 2I½1;0�6 ð2; 2; 2Þ � I½2;0�1 ð3; 2; 1Þ � 2I½1;0�2 ð1; 2; 2Þ � 4I½1;0�6 ð3; 2; 1Þ� I½2;1�1 ð3; 2; 2Þ þ 4I½1;0�7 ð2; 2; 2Þ þ 2I½1;1�0 ð2; 2; 2Þ þ 2I½1;1�6 ð3; 2; 2Þ þ 8I7ð2; 2; 1Þ þ 4I½1;1�8 ð3; 2; 2Þ þ I½0;2�0 ð3; 1; 2Þ� 8I8ð2; 2; 1Þ þ 3I6ð1; 3; 1Þ þ I½2;0�2 ð3; 2; 1Þ þ 4I6ð2; 2; 1Þ � 8I6ð2; 1; 2Þ þ 12I7ð3; 1; 1Þ � 2I½0;1�0 ð1; 2; 2Þ� 3I½1;0�0 ð2; 2; 1Þ þ I½1;0�0 ð2; 1; 2Þ � 2I½0;1�6 ð2; 2; 2Þ � 6I7ð1; 3; 1Þ þ 6I8ð1; 3; 1Þ � 4I½1;1�7 ð3; 2; 2Þ � 4I6ð3; 1; 1Þþ 4I½0;1�7 ð2; 2; 2Þ � 4I½0;1�8 ð2; 2; 2Þ � 2I½0;1�0 ð2; 2; 1Þ þ 2I½1;0�1 ð1; 2; 2Þ � 12I8ð3; 1; 1Þ � 2I½0;1�6 ð3; 1; 2Þ;

VERTICES OF THE VECTOR MESONS WITH THE . . . PHYSICAL REVIEW D 87, 016003 (2013)

016003-15

Page 16: Vertices of the vector mesons with the strange charmed mesons in QCD

C��Ds1Ds1

¼ I2ð3; 2; 2Þm5cms � I1ð3; 2; 2Þm5

cms þ I½1;0�1 ð3; 2; 2Þm4c þ 4I8ð3; 2; 2Þm4

c þ 2I6ð3; 2; 2Þm4c � 4I7ð3; 2; 2Þm4

c

þ 3I0ð4; 1; 1Þm4c � I½1;0�2 ð3; 2; 2Þm4

c � 2I0ð3; 2; 1Þm3cms þ I½1;0�0 ð3; 2; 2Þm3

cms þ 3I0ð4; 1; 1Þm3cms

þ 2I0ð2; 2; 2Þm3cms þ 2I2ð3; 2; 1Þm2

cm2s � 3I1ð4; 1; 1Þm2

cm2s þ I2ð2; 2; 2Þm2

cm2s � I1ð2; 2; 2Þm2

cm2s

� 2I1ð3; 2; 1Þm2cm

2s � 2I6ð3; 2; 2Þm2

cm2s þ 3I2ð4; 1; 1Þm2

cm2s þ I2ð3; 2; 1Þmcm

3s � I1ð3; 2; 1Þmcm

3s

� I½0;1�0 ð3; 2; 2Þmcm3s � 6I0ð1; 4; 1Þmcm

3s � I½0;1�1 ð3; 2; 2Þmcm

3s þ I½0;1�2 ð3; 2; 2Þmcm

3s þ I½0;1�2 ð3; 2; 2Þm4

s

þ I0ð3; 2; 1Þm4s � I½0;1�1 ð3; 2; 2Þm4

s � I1ð3; 2; 1Þm4s � 3I0ð1; 4; 1Þm4

s þ I2ð3; 2; 1Þm4s þ 8I8ð3; 2; 1Þm2

c

� I½2;0�2 ð3; 2; 2Þm2c þ 8I8ð3; 1; 2Þm2

c � I½0;1�0 ð2; 2; 2Þm2c þ 4I½0;1�8 ð3; 2; 2Þm2

c � 4I½0;1�7 ð3; 2; 2Þm2c

þ 2I½1;0�6 ð3; 2; 2Þm2c � 4I6ð3; 2; 1Þm2

c þ I½2;0�1 ð3; 2; 2Þm2c � 8I7ð3; 2; 1Þm2

c þ 6I6ð4; 1; 1Þm2c þ 2I½0;1�6 ð3; 2; 2Þm2

c

þ 4I0ð1; 2; 2Þm2c þ 6I6ð3; 1; 2Þm2

c � 8I7ð3; 1; 2Þm2c þ I1ð1; 3; 1Þmcms � I0ð2; 1; 2Þmcms � I2ð1; 3; 1Þmcms

þ I1ð2; 1; 2Þmcms � I½1;0�2 ð2; 2; 2Þmcms þ 2I½1;0�2 ð2; 3; 1Þmcms � 2I½0;1�0 ð3; 1; 2Þmcms � 2I½1;0�1 ð2; 3; 1Þmcms

þ I0ð1; 3; 1Þmcms � 8I6ð2; 3; 1Þmcms � I½1;1�2 ð3; 2; 2Þmcms þ I½1;0�1 ð2; 2; 2Þmcms þ I½1;1�1 ð3; 2; 2Þmcms

� I2ð2; 1; 2Þmcms � 12I6ð1; 4; 1Þm2s þ 6I½1;0�2 ð1; 4; 1Þm2

s þ 4I8ð3; 2; 1Þm2s þ I1ð3; 1; 1Þm2

s � 6I½1;0�1 ð1; 4; 1Þm2s

� 4I½0;1�8 ð3; 2; 2Þm2s � I1ð1; 2; 2Þm2

s þ I½1;1�0 ð3; 2; 2Þm2s � 2I½0;1�6 ð3; 2; 2Þm2

s þ I0ð3; 1; 1Þm2s þ I2ð1; 2; 2Þm2

s

þ 3I½0;1�0 ð1; 4; 1Þm2s þ 4I6ð3; 2; 1Þm2

s � I½0;1�0 ð2; 2; 2Þm2s þ 4I½0;1�7 ð3; 2; 2Þm2

s � I2ð3; 1; 1Þm2s þ 2I6ð2; 2; 2Þm2

s

þ 3I½1;0�0 ð1; 4; 1Þm2s � 4I7ð3; 2; 1Þm2

s � 2I½0;1�0 ð2; 2; 1Þ � 12I8ð3; 1; 1Þ þ 4I½0;1�7 ð2; 2; 2Þ � 4I½0;1�8 ð2; 2; 2Þ� I½1;0�0 ð3; 1; 1Þ � 2I½0;1�6 ð3; 1; 2Þ � 4I½1;1�7 ð3; 2; 2Þ þ 4I½1;1�8 ð3; 2; 2Þ � 2I½0;1�6 ð2; 2; 2Þ þ 8I7ð2; 1; 2Þ � 8I6ð2; 1; 2Þþ 4I½1;0�7 ð2; 2; 2Þ þ 2I1ð2; 1; 1Þ � I½1;1�2 ð2; 2; 2Þ þ I½1;1�1 ð2; 2; 2Þ � 2I2ð2; 1; 1Þ þ 8I7ð2; 2; 1Þ � 8I8ð2; 2; 1Þ� 4I6ð3; 1; 1Þ � 4I½1;0�8 ð2; 2; 2Þ þ 4I6ð2; 2; 1Þ � 3I0ð2; 1; 1Þ � 4I½1;0�6 ð3; 2; 1Þ þ 12I7ð3; 1; 1Þ � 2I½1;0�6 ð2; 2; 2Þþ 2I½1;1�6 ð3; 2; 2Þ þ 3I½0;1�1 ð2; 1; 2Þ � 3I½0;1�2 ð2; 1; 2Þ � 8I8ð2; 1; 2Þ þ 2I½1;0�1 ð2; 2; 1Þ � 2I½1;0�2 ð2; 2; 1Þ� I½0;1�0 ð3; 1; 1Þ þ 3I6ð1; 3; 1Þ � 2I½0;1�0 ð1; 2; 2Þ þ 2I½1;1�0 ð2; 2; 2Þ;

where

I ½m;n�l ða; b; cÞ ¼ ½M2

1�m½M22�n

dm

dðM21Þm

dn

dðM22Þn

½M21�m½M2

2�nIlða; b; cÞ:

[1] Z. G. Wang, Nucl. Phys. A796, 61 (2007).[2] E. Bagan, H. G. Dosch, P. Gosdzinsky, S. Narison, and

J.M. Richard, Z. Phys. C 64, 57 (1994).[3] M.A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.

Phys. B147, 385 (1979).[4] P. Colangelo, A. Khodjamirian, in At the Frontier of

Particle Physics/Handbook of QCD, edited by M.Shifman (World Scientific, Singapore, 2001), Vol. 3,p. 1495.

[5] F. S. Navarra, M. Nielsen, M. E. Bracco, M. Chiapparini,and C. L. Schat, Phys. Lett. B 489, 319 (2000).

[6] F. S. Navarra, M. Nielsen, and M. E. Bracco, Phys. Rev. D65, 037502 (2002).

[7] M. E. Bracco, M. Chiapparini, A. Lozea, F. S. Navarra,and M. Nielsen, Phys. Lett. B 521, 1 (2001).

[8] M. E. Bracco, M. Chiapparini, F. S. Navarra, and M.Nielsen, Phys. Lett. B 659, 559 (2008).

[9] R. D. Matheus, F. S. Navarra, M. Nielsen, and R. R. daSilva, Phys. Lett. B 541, 265 (2002).

[10] R. R. da Silva, R. D. Matheus, F. S. Navarra, and M.Nielsen, Braz. J. Phys. 34, 236 (2004).

[11] Z. G. Wang and S. L. Wan, Phys. Rev. D 74, 014017(2006).

[12] Z. G. Wang, Nucl. Phys. A796, 61 (2007).[13] F. Carvalho, F. O. Duraes, F. S. Navarra, and M. Nielsen,

Phys. Rev. C 72, 024902 (2005).

R. KHOSRAVI AND M. JANBAZI PHYSICAL REVIEW D 87, 016003 (2013)

016003-16

Page 17: Vertices of the vector mesons with the strange charmed mesons in QCD

[14] M. E. Bracco, M. Chiapparini, F. S. Navarra, and M.Nielsen, Phys. Lett. B 605, 326 (2005).

[15] M. E. Bracco, A. J. Cerqueira, M. Chiapparini,A. Lozea, and M. Nielsen, Phys. Lett. B 641, 286(2006).

[16] L. B. Holanda, R. S. Marques de Carvalho, and A. Mihara,Phys. Lett. B 644, 232 (2007).

[17] P. Colangelo and A. Khodjamirian, in At the Frontier ofParticle Physics/Handbook of QCD, edited by M. Shifman(World Scientific, Singapore, 2001), Vol. 3, pp. 1495–1576;A.V. Radyushkin, in Proceedings of the 13th Annual HUGSat CEBAF, Hampton, Virginia, 1998, edited by J. L. Goity(World Scientific, Singapore, 2000), pp. 91–150.

[18] V. V. Kiselev, A.K. Likhoded, and A. I. Onishchenko,Nucl. Phys. B569, 473 (2000).

[19] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,075021 (2010).

[20] B. L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006).

[21] I. Bediaga and M. Nielsen, Phys. Rev. D 68, 036001(2003).

[22] P. Colangelo, F. De Fazio, and A. Ozpineci, Phys. Rev. D72, 074004 (2005).

[23] M. Artuso et al. (CLEO Collaboration), Phys. Rev. Lett.99, 071802 (2007).

[24] C. E. Thomas, Phys. Rev. D 73, 054016 (2006).[25] Z. Guo, S. Narison, J.M. Richard, and Q. Zhao, Phys. Rev.

D 85, 114007 (2012).[26] M.-Q. Huang, Phys. Rev. D 69, 114015 (2004).[27] K. L. Haglin and C. Gale, Phys. Rev. C 63, 065201 (2001).[28] R. D. Matheus, F. S. Navarra, M. Nielsen, and R. R. da

Silva, Int. J. Mod. Phys. E 14, 555 (2005).[29] Z. Lin and C.M. Ko, Phys. Rev. C 62, 034903 (2000); Z.

Lin, C.M. Ko, and B. Zhang, Phys. Rev. C 61, 024904(2000).

[30] A. Deandrea, G. Nardulli, and D. Polosa, Phys. Rev. D 68,034002 (2003).

VERTICES OF THE VECTOR MESONS WITH THE . . . PHYSICAL REVIEW D 87, 016003 (2013)

016003-17