Volume Data Analysis and Visualization Stefan Bruckner Department of Informatics University of Bergen

Embed Size (px)

Citation preview

  • Slide 1
  • Volume Data Analysis and Visualization Stefan Bruckner Department of Informatics University of Bergen
  • Slide 2
  • VISUAL KNOWLEDGE DISCOVERY make sense of mountains of data A Data-Driven World EARTH SCIENCES MEDICINEBIOLOGYENGINEERING
  • Slide 3
  • Mission Statement Enable visual knowledge discovery in large spatial data collections 1 3 2
  • Slide 4
  • VOLUME DATA ANALYSIS AND VISUALIZATION Selected Success Stories
  • Slide 5
  • Volume Analysis Identification of features in volumetric data, e.g. seismic volumes, medical imaging data, etc. [1-5] Find regions in parameter space which correspond to distinct spatial structures delineating blood vessels in angiographyremoving artifacts in industrial CT
  • Slide 6
  • Volume Exploration Finding of patterns in large spatial data collections [8-10] Interactive tools for visual exploration, navigation, and analysis Categorization of the output space using spatial similarity measures Applications: fluid simulation, neurobiology, medicine, etc.
  • Slide 7
  • Smart Interaction AngioVis: advanced visualization for improved diagnosis of vascular decease [11-13] Next-generation radiology workstation, in daily clinical use at the Vienna General Hospital LiveSync: synchronized interaction with 2D and 3D images in medical workstations [14-17] Integrated into AFGA HealthCare software, several granted patents
  • Slide 8
  • Illustrative Visualization Interactive presentation of complex 3D datasets in an easily-understandable way based on illustration techniques [18-25] GPU-based methods for generating cutaway views, exploded views, stylized shading, etc. VolumeShop software framework: rapid-prototyping toolkit for volume visualization & remote rendering
  • Slide 9
  • Real-Time Rendering Real-time realistic volume visualization from live 4D ultrasound data [26-28] High-quality rendering with at a fraction of the cost of previous methods Research and technology transfer project with GE Healthcare, available on Voluson US scanners
  • Slide 10
  • References (1) [1] M. Haidacher, S. Bruckner, A. Kanitsar, and M. E. Grller, Information-based transfer functions for multimodal visualization, in Proceedings of Visual Computing for Biomedicine 2008, pp. 101108, 2008. [2] M. Haidacher, D. Patel, S. Bruckner, A. Kanitsar, and M. E. Grller, Volume visualization based on statistical transfer-function spaces, in Proceedings of IEEE Pacific Visualization 2010, pp. 1724, 2010. [3] D. Patel, S. Bruckner, I. Viola, and M. E. Grller, Seismic volume visualization for horizon extraction, in Proceedings of IEEE Pacific Visualization 2010, pp. 7380, 2010. [4] S. Bruckner and T. Mller, Isosurface similarity maps, Computer Graphics Forum, vol. 29, no. 3, pp. 773782, 2010. EUROVIS 2010 BEST PAPER AWARD. [5] M. Haidacher, S. Bruckner, and M. E. Grller, Volume analysis using multimodal surface similarity, IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 6, pp. 19691978, 2011. [6] S. Bruckner, V. oltszov, M. Grller, J. Hladuvka, K. Bhler, J. Y. Yu, and B. J. Dickson, BrainGazer Visual queries for neurobiology research, IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 14971504, 2009. [7] S. Bruckner and M. E. Grller, Instant volume visualization using maximum intensity difference accumulation, Computer Graphics Forum, vol. 28, no. 3, pp. 775782, 2009. [8] S. Bruckner and T. Mller, Result-driven exploration of simulation parameter spaces for visual effects design, IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 14671475, 2010. [9] P. Mindek, S. Bruckner, M. E. Grller, Contextual Snapshots: Enriched Visualization with Interactive Spatial Annotations, in Proceedings of the Spring Conference on Computer Graphics 2013. SCCG 2013 BEST PAPER AWARD. [10] J. Schmidt, M. E. Grller, and S. Bruckner, VAICo: Visual Analysis for Image Comparison, IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 6, pp. 2090-2099, 2013. [11] G. Mistelbauer, H. Bouzari, R. Schernthaner, I. Baclija, A. Kchl, S. Bruckner, M. Sramek, M. E. Grller, Smart Super Views A Knowledge-Assisted Interface for Medical Visualization, in Proceedings of IEEE VAST 2012, pp. 163172, 2012. [12] G. Mistelbauer, A. Morar, A. Varchola, R. Schernthaner, I. Baclija, A. Kchl, A. Kanitsar, S. Bruckner, M. E. Grller, Vessel Visualization using Curvicircular Feature Aggregation, Computer Graphics Forum, vol. 32, no. 3, pp. 231240, 2013. [13] T. Auzinger, G. Mistelbauer, I. Baclija, R. Schernthaner, A. Kchl, M. Wimmer, M. E. Grller, and S. Bruckner, Vessel Visualization using Curved Surface Reformation, IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 6, pp. 28582867, 2013. [14] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Grller, LiveSync: Deformed viewing spheres for knowledge-based navigation, IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 15441551, 2007.
  • Slide 11
  • References (2) [15] S. Bruckner, P. Kohlmann, A. Kanitsar, and M. E. Grller, Integrating volume visualization techniques into medical applications, in Proceedings of the International Symposium on Biomedical Imaging 2008, pp. 820823, 2008. [16] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Grller, LiveSync++: Enhancements of an interaction metaphor, in Proceedings of Graphics Interface 2008, pp. 8188, 2008. [17] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Grller, Contextual picking of volumetric structures, in Proceedings of the IEEE Pacific Visualization 2009, pp. 185192, 2009. [18] S. Bruckner and M. E. Grller, VolumeShop: An interactive system for direct volume illustration, in Proceedings of IEEE Visualization 2005, pp. 671678, 2005. [19] S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Grller, Illustrative context-preserving exploration of volume data, IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 6, pp. 15591569, 2006. [20] S. Bruckner and M. E. Grller, Exploded views for volume data, IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 10771084, 2006. [21] S. Bruckner and M. E. Grller, Style transfer functions for illustrative volume rendering, Computer Graphics Forum, vol. 26, no. 3, pp. 715724, 2007. EUROGRAPHICS 2007 3RD BEST PAPER AWARD. [22] P. Rautek, S. Bruckner, and M. E. Grller, Semantic layers for illustrative volume rendering, IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 13361343, 2007. [23] S. Bruckner and M. E. Grller, Enhancing depth-perception with flexible volumetric halos, IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 13441351, 2007. [24] P. Rautek, S. Bruckner, and M. E. Grller, Interaction-dependent semantics for illustrative volume rendering, Computer Graphics Forum, vol. 27, no. 3, pp. 847854, 2008. [25] S. Bruckner, P. Rautek, I. Viola, M. Roberts, M. C. Sousa, and M. E. Grller, Hybrid visibility compositing and masking for illustrative rendering, Computers & Graphics, vol. 34, no. 4, pp. 361369, 2010. [26] V. oltszov, D. Patel, S. Bruckner, and I. Viola, A multidirectional occlusion shading model for direct volume rendering, Computer Graphics Forum, vol. 29, no. 3, pp. 883891, 2010. [27] T. Ropinski, S. Diepenbrock, S. Bruckner, K. Hinrichs, and M. E. Grller, Unified Boundary-Aware Texturing for Interactive Volume Rendering, IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 11, pp. 19421955, 2012. [28] D. Patel, V. oltszov, J. M. Nordbotten, and S. Bruckner, Instant Convolution Shadows for Volumetric Detail Mapping, ACM Transactions on Graphics, vol. 32, no. 5, pp. 154:1154:18, 2013.