6
485 HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 485-490 * 305-600 100 * 136-709 5 1 (2003 1 15 , 2003 3 25 ) Influence of Fluorination on Surface and Dielectric Characteristics of Polyimide Thin Film Soo-Jin Park , Ki-Sook Cho and Sung-Hyun Kim* Advanced Materials Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea *Department of Chemical Engineering, Korea University, 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul 136-709, Korea (Received 15 January 2003; accepted 25 March 2003) X-ray photoelectron spectroscopy (XPS) , · thermogravimetric analysis (TGA) . , , . (electron polarization) , . · . Abstract - In this work, the effects of fluorine treatment of polyimide thin film on surface and dielectric characteristics were studied using X-ray photoelectron spectroscopy (XPS) and dielectric constant, respectively. And, their thermal and mechanical properties of the polyimide film were characterized by thermogravimetric analysis (TGA) and tensile strength, respectively. The fluorine content of the polyimide film was increased with increasing the amount of the treatment gas, resulting in decreas- ing the dielectric constant of the film. It was explained that the replacement of fluorine led to the decrease of the local electron polarization of polyimide, or to the increase of the free volume which can be attributed to the relatively large volume of flu- orine. Nevertheless, the fluorination didn’t significantly affect thermal or mechanical properties of the polyimide film under a mild condition in this system. Key words: Polyimide, Fluorination, Dielectric Constant, Thermal Properties, Mechanical Properties 1. -O-, -NH-, -CO- , 300 o C [1-2]. · , , , , . ILD (interlayer dielectric) . ILD , , , (cross-talk) , , / , , , , · 3 , , , [3-4]. , + - moment (polarization) . To whom correspondence should be addressed. E-mail: [email protected]

 · Æw Dielectric Spectrometer (Novocontrol GmbH, Model: CONCEPT 40)- DE F = DÓ ×, . l 89 ×, 2 ) :( ; ü 10 1 HzQ âò à 10 6 Hz / Ñ) $³ô 89

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1:  · Æw Dielectric Spectrometer (Novocontrol GmbH, Model: CONCEPT 40)- DE F = DÓ ×, . l 89 ×, 2 ) :( ; ü 10 1 HzQ âò à 10 6 Hz / Ñ) $³ô 89

HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 485-490

��� ��� ��� �� �� � ����� �� ��

���†� ���� �*

������� �����305-600 �� ��� �� 100

*����� �������136-709 �� ��� ��� 5� 1

(2003� 1 15! "#, 2003� 3 25! $%)

Influence of Fluorination on Surface and Dielectric Characteristics of Polyimide Thin Film

Soo-Jin Park†, Ki-Sook Cho and Sung-Hyun Kim*

Advanced Materials Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea*Department of Chemical Engineering, Korea University, 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul 136-709, Korea

(Received 15 January 2003; accepted 25 March 2003)

� �

� ����� ��� � ��� ��� ���� � � �� � ����� X-ray photoelectron spectroscopy

(XPS)� ��� � � !" #$�%&, '(·)*( ��+ thermogravimetric analysis (TGA)� ,-./0 � �� &

$�%1. � 2345, ��� ��6 ��� � + ��789� :; ��<9 =7�%>?, 45(>@ ��

� 5 AB�� ��� C��%1. D6 45� EFG ��7 ���� �HIJ (electron polarization)� C�

KL&, M ��� NO@ ," H�NO0 =7KP>@Q ��� � � ���� C�KR ST6 ,H@ UV6 W

>@ XYG1. Z6 � 23�� ��� ��� � � '(·)*( ��� M [\� E] ^+ W� #$_ ` ab1.

Abstract − In this work, the effects of fluorine treatment of polyimide thin film on surface and dielectric characteristics were

studied using X-ray photoelectron spectroscopy (XPS) and dielectric constant, respectively. And, their thermal and mechanical

properties of the polyimide film were characterized by thermogravimetric analysis (TGA) and tensile strength, respectively.

The fluorine content of the polyimide film was increased with increasing the amount of the treatment gas, resulting in decreas-

ing the dielectric constant of the film. It was explained that the replacement of fluorine led to the decrease of the local electron

polarization of polyimide, or to the increase of the free volume which can be attributed to the relatively large volume of flu-

orine. Nevertheless, the fluorination didn’t significantly affect thermal or mechanical properties of the polyimide film under a

mild condition in this system.

Key words: Polyimide, Fluorination, Dielectric Constant, Thermal Properties, Mechanical Properties

1. � �

������ �� �� �� � ������ ��� ���

-O-, -NH-, -CO- �� ���� �� �� !"� �#, $%� &

300oC' �(�)* � +,�- ./0 12 34�5 �67� &

12 89:�; /<� �=� >?@ �=[1-2]. �A �� B�

�� CDE ������ 9!·9 F �� GH, I, J�K, L*

MF NO, �PQRF NO, STU ��� �F�� �=.

EA VW�F�X�) YZ [� \] .^$��/� �� L*M

& 9 VW2 N ' �� !_`a �b� c d�- e�f ag

h � �� ILD (interlayer dielectric) B#� i !_' `a� j�

�k�/� �=. ILD B#� ��) 89l� mn �8� op, �

q� r��) st/�' uN, vp, :t st�w (cross-talk) �/,

xp, st�w �/� r�y*' z.� C �q�$/NP$ .,

{p, NP$ �q�$� .|}u & ~ �' �!� �: ., c

�� =�p, 9!·9 F GH��� �Q� � �� ���� r�;

��h � ��0 3�� r��� & �y* J�- h � �� ���

& ��!!, �s��, '���, �� ��F 9 �� �� �F .

�8�=[3-4].

�L��� 89l�� 89M, � Q*M' 9!�C d�- ��

� mn d� ��� �N� ��� ���� � ��@ ��

+ − moment��2 bQ�)  ¡ 9 "' ¢£�$� ¤¥� ¦§

(polarization)̈ =. �©ª bQ 9 "' �$� «w B# Q'†To whom correspondence should be addressed.E-mail: [email protected]

485

Page 2:  · Æw Dielectric Spectrometer (Novocontrol GmbH, Model: CONCEPT 40)- DE F = DÓ ×, . l 89 ×, 2 ) :( ; ü 10 1 HzQ âò à 10 6 Hz / Ñ) $³ô 89

486 ���� ���� �

+ − moment. ¦§�� ,*; 89l�¬� ­®h � �=[5]. �A

89l- U�D� nC2 op, N�$*' �$, vp, 8Q¯

(free volume)' �$, xp, ¦§' ,* (polarizability); [ � �=

[6]. �A �°� !CDE ±Z� ILDB#� �N; ²8³´���

� ��' µ2 ¦§�5 ¶ 8Q¯� Cw 12 89:�; ·

� }�B#� i ��. j� ¸� ��/� �=. df 12 89

l, �� ��¹!"� �#� Cw ILD B#�) �����; �

F �Nº»� i ��. j� �k� ¼=[7-9].

�N� � =½ � ¾ �¢DE ¸= ¶ 9 ¿$*¾ �($

potential- ./� ��0, .� À2 9! Á�*; ./� �� =½

$ÂB5' LÃ�� Ä� ÅD=. �L��� �N�Æ! D�) B#

- Ç�h È �N� � �N¾ º»DÉ �� �m�Â��

conjugated bond� �N� 'w) Ê$¨=. �A �N� =½ �N

¾ �ÂDE �� a��, Ë Ì}�, �� 9!� d�, �ST�,

�� �' d�- ��� Í Î2 �X�) �F��/� �=[10-12].

Ϭ) Ð ���)� �N$ Ç�� ' ����� GH' ­Ñd

�5 c� Ͻ 89l' �$; iÒDÓ=[13-14]. Ð °Ô�) Â�

¨ ��ÕÖV' ���$ ,*; Fourier Transform-IR (FT-IR); �

w iÒDÓ�0, �N$ Ç�� ' GH' ­Ñ & 89d�- XPS

¾ 89l ×,- �w ØCDÓ=. Ù ��·!"� d�2 TGA¾

C�Å* ×,- �DE �ÒDÓ=.

2. � �

2-1. ���� � ���

Ð °Ô� �F¨ dianhydride (3,3',4,4'-benzophenonetetracarboxylic

dianhydride; �D BTDA)¾ diamine (4,4'-oxydianiline; �DODA)2

Aldrich��) ÚV ÛÜM; Ý�Þ$ß�� ,U; DE �FDÓ=.

F� Aldrich�' N-methyl-1-pyrrolidinone (NMP, anhydrous quality);

�FDÓ�0, ÛÜM & FÄ' $% ��à- Fig. 1� ��á=.

�����' �N$ ­ÑÇ� �º� UµDE �FDÓ�0 �N�

F2 .â; �FDÓ=.

�����' 9�MC ��ÕÖV(polyamic acid; PAA) FI- Â�

D! Æw 3� ã¬âä; #N� purging å, NMP� diamine- æ

�� �ç' dianhydride; è9f æE 24³éê+ Lóë Â�DÓ

=. Â�¨ ��ÕÖV FI' �M#Ü�l2 15 wt%� �}DÓ=.

Â�¨ ��ÕÖV FI- substrate� �F¨ 8�ì Æ� applicator

(Sheen Instrument, S220403); �FDE í± îK' ïð. 50µm�

*ñ òâó å FÄ; za³ô! Æw 80oC�) 24³é ê+

prebakingDÓ=. Fig. 2� ��õ (*Û"� ��ÕÖV- ö$³ë

í± ����� îK- U� DÓ�0, ö$ Û"÷ $%��à- Fig. 3

� ��á=.

U�¨ ����� GH ­Ñ� �S �N$ Ç�D! 9� ����

� GH- øùú ^�) ûÁü ýþ!; �Fw ýþ å GH' ÿ

E��- U�D! Æw ���) Dk�: ��³ë) �FDÓ=. �

���� GH- �N$ ­ÑÇ�D! Æw �� #N.â� fluorination

reactor line- purging å <� boat� GH- �� reaction tube� <

� boat; �TDÓ=. <� boat; �- ³ reaction tube� [�.� V

N¾ ��- U�D! Æw =³ #N.â� purging =Á reaction

line- r9Ý���� 10−2 torr/ J!³=. GH- ­ÑÇ�D!

Æw reaction line� �N.â; 0 kPa(�D F0), 5 kPa(F5), 10 kPa(F10),

30 kPa(F30), 50 kPa(F50) ���� � DE �N .âÜ- �}DÓ

�0, :(�) 10� ê+ Ló� å r9Ý���� �� >k��

�- �5³ë 10−2 torr/ J!³=.

Fig. 1. Chemical structures of dianydride, dianiline, and solvent.

Fig. 2. Heating cycles for thermal imidization of polyamic acid.

Fig. 3. Preparation of polyimide via polyamic acid precuror solution.

���� �41� �4� 2003� 8�

Page 3:  · Æw Dielectric Spectrometer (Novocontrol GmbH, Model: CONCEPT 40)- DE F = DÓ ×, . l 89 ×, 2 ) :( ; ü 10 1 HzQ âò à 10 6 Hz / Ñ) $³ô 89

�� �� ������ ��� 487

2-2. �� ��

Ð °Ô�) Â� �����' ���$ ,*; ØCD! Æw �

�ÕÖV FI5 ö$¨ ����� GH- KRS-5 reflection element

. QT¨ Digilab FTS-165 spectrometer; �Fw) wave number

4,000-400 cm−1' FT-IR â����� ��DÓ=.

2-3. �����

U�¨ GH- �N$ Ç�� Ͻ ����� GH' $%� ��2

XPS (ESCALAB MK-II); �DE ��DÓ�0, XPS ×,� �F¨

X-ray source� Mg Kα; �FDÓ�0, chamber' ��2 10−1-10−9

torr� �}DÓ=.

2-4. �� � ��� ��

����� GH' �N$ Ç� 9·å' 8�9�(*' �$� DSC

(Dupont 9,900: model 2,910); �FDE Þ(^* 10oC/min�� :(

�) 400oC/ ×,DÓ�0, �� d�' �$� #N�Æ! D�)

Þ(^* 10oC/min�� :(�) 800oC/ TGA (Dupont 9,900:

model 2,950); �FDE ×,DÓ=.

�N$ Ç�� Ͻ ����� C�Å*� �O� ³Ô!(Universal

Testing Machine, Lloyd LR5K); �FDE ASTM D412� �DE ³

¦- UµDÓ�0, cross head speed� 50 mm/min�� ×,DÓ=. ×

,�2 ��' ³¦� «DE 10r� ×,DE c ���- �FDÓ=.

2-5. �� ��

Ð °Ô�) �N$ Ç� 9·å' ����� GH' 89l �$;

×,D! Æw Dielectric Spectrometer (Novocontrol GmbH, Model:

CONCEPT 40)- �FDE ×,DÓ=. 89l ×, ��2 :(�)

�ü�; 101 HzQ� âò� �à�� 106 Hz/ �$³ôÑ) 89

l- ×,DÓ=.

3. �� �

3-1. �� ��

Fig. 4� �����' ���$ ,*; ØCD! Æw ��ÕÖV5

ö$�,- �� U�¨ ����� GH' FT-IR spectra �5�=. �

L��� ���KV' ���$ ³ =Á5 �2 ï Û"' �,- �

¿=. op, ï ÛÜM; FÄ� æ�Ñ BTDA' ��. ��Ñ) ODA

¾ `»m LÃ� ��� ��ÕÖV FI- Â�DÉ ¨=. vp, ̀

»mÂ� 'w Ú�¨ B� . �� 'w za��, ï ÛÜM� .¢

; �k� �����' �� ���$. ±��� Ý=[15].

�A 5,��Q� ��ÕÖV FI' FT-IR spectra; ��� Fig. 4(a)

; iÒDÑ, c��) ¸� �¾ �� `»LÃ� ' ��ÕÖV F

I' d� ¯äC � !³V' O-H (3,400-2,400 cm−1)¾ Õ"��'

N-H (3,500-3,100 cm−1); ØCh � ��0, dianydride' C=O (1,660,

1,535 cm−1)¾ C6H5' C=C (1,513 cm−1)� ' ¯ä. ��õ #-

ØCh � �á=[6, 16].

LÑ ��ÕÖV FI- 80oC�) 24³éê+ FÄ; za³ô�

prebaking �,- �¿ å 50oC�) 290oC/ Û"÷ ö$�,- �

¿ ����� GH' FT-IR spectra; Fig. 4(b)� ��á=. Ð °Ô

�5, ��ÕÖV�) ��õ O-H (3,400-2,400 cm−1)¾ N-H (3,500-

3,100 cm−1). $ÂLÃ� 'w B� ; Ú�³ô� �� 'w ���

$. Ý%�Ñ) ¯ä. �¬Ý #- ØCh � �á�0, �A 5,

�� Cw Ú�¨ ��� �� (725 cm−1); iÒh � �á=. Ù ,

���' 9P�C d�¯äC C=O (1,780, 1,720 cm−1), C-N (1,370 cm−1)

c�� (OC)2NC (1,100 cm−1)� ' ¯ä. Ú�¨ #- iÒh �

�á�0[6, 16], �A �5�Q� ���$. 100% Ý%�áÁ- Ø

Ch � �á=.

3-2. �����

�N$ Ç�9·å' ����� ­Ñ' i! ��- ýf &'¸

! ÆDE ����� GH' XPS spectra; Fig. 5� ��á=. c

�5 �Ç� �����' ö� �Â�(/ 285 eVQY�) ùN ¯ä,

404 eVQY�) #N¯ä c�� 532 eVQY�) VN ¯ä. ��õ

#- ØCh � �á=. LÑ �N$ Ç� ö� 694 eV QY�) �

N ¯ä. )*É ��+�0, �NÇ� .â��� z.h�ñ, � Ç

� .âÜ� z.h�ñ �����' �N ¯äý!. z.D� #-

iÒh � �á=. �A �����' $%��- Table 1� ���

�5, �N$ Ç�� 'w �����' ùN, #N, VN' ²Ü2 Ç

�.â ��� Ϭ uND� LÑ, �N' ²Ü2 z.D� #- ØC

Fig. 4. FT-IR spectra of polyamic acid and cured polyimide thin film.

Fig. 5. XPS survey scan spectra of polyimide thin film.

Table 1. Chemical composition of polyimide thin film

C1S N1S O1S F1S F1S /C1S

F00F50F10F30F50

69.755.056.049.549.1

10.308.05.74.64.7

20.024.021.716.013.0

013.016.629.933.2

023.629.660.467.6

HWAHAK KONGHAK Vol. 41, No. 4, August, 2003

Page 4:  · Æw Dielectric Spectrometer (Novocontrol GmbH, Model: CONCEPT 40)- DE F = DÓ ×, . l 89 ×, 2 ) :( ; ü 10 1 HzQ âò à 10 6 Hz / Ñ) $³ô 89

488 ���� ���� �

h � �á=.

�L��� �N� � =½ � ¸= ¶ 9 ¿$*¾ �($

potential- ./� ��0, .� À2 9! Á�*; ./� ��,�

=½ $ÂB5' LÃ�� Ä� ÅD=. df F2 .â� LÃ�� -)

.^- ʲ «Q�' $ÂB5 LÃD0, df ùN$ÂB5� Ía

��� LÃD0 LÃ�- aÚ³�=. 5* LÃ�� aÚ�Ñ (*

:Þ�� Cw C-C �Â� �w��� \ äÉ � =� >?@ �

=[10-12]. �, �N�Æ! D�) B#- ­ÑÇ�DÑ B# ­Ñ' �

+, �Â� /�/� LÃ�� À2 ¬01� Ú��� �N¾ º

»DÉ �0, �m�Â�� conjugated bond� �N� 'w) Ê$ ¨

=� >?@ �=[12]. cA,� ����� GH ­Ñ� �N; ²8

µF!; 2 \ :ýf ��D! Æw) XPS carbon 1S core level

scan spectra� ��' !#- �¢ ��DE Fig. 6� ��á=.

Ð °Ô�5, �N$ Ç�D/ 32 ����� GHC Fig. 6(a)' ö�

284.6 eV (C=C), 285.6 eV (C-N), 286.2 eV (C-O-C) c�� 289.2 eV

(C=C)�) �����' 9P�C d�¯ä; ØCh � �á=. �N

$ Ç� ö� �����' �Nº»� 'w Fig. 6(b)¾ (c)�) )

*É 288.7 eV (C-F)¾ 291.1 eV (CF2)' ̄ ä. Ú�¨ #- ØCh � �

á�0, Ù Fig. 6(d)¾ (e)' ö� 288.7 eV¾ 291.1 eV�b� 290.5 eV

(CF2 in trifulorobenzene)�) ¯ä. Ú�¨ #- iÒh � �á=. �

A �5� F2.â; �FDE ����� GH- �N$ Ç� ³ :

!�) 45 �N' Là ø-<65 �� �����¾ �N� '

LÃ�� C-F Ù� CF2 �Â�� ������ º»¨ #- ØCh �

�á=. Ù Fig. 6(d)¾ (e)�) 7 � �ª� �N.â ��� 30 kPa

�:C ö��� ������ º»¨ �N²Ü� äÉ z.DE C=C

¯ä¸= C-F ̄ ä. \ äÉ a8D� �5; ��á�0 �È'

F1S/C1S�. Table 1�) ØCh � �ª� �� 60.4%¾ 67.6%� =

½ GH' ö�� �w ¶ �- ��� #- iÒh � �á=.

3-3. �� � ��� ��

�N$ Ç�� Ͻ �����' DSC9�- Fig. 7� ��á=.

c �5, �� �����' Tg (glass transition temperature). 283.6oC�

Fig. 6. High resolution C1S XPS spectra of polyimide thin film with fluori-nation concentration; (a) F0 (b) F5, (c) F10, (d) F30, and (e) F50.

Table 2. Mechanical properties of polyimide thin film

Tensile strength [MPa] Ultimate elongation [%]

F00F50F10F30F50

116±10.7115±13.5115±11.0118±14.5118±12.3

33±4.334±3.132±2.938±4.537±3.2

���� �41� �4� 2003� 8�

Page 5:  · Æw Dielectric Spectrometer (Novocontrol GmbH, Model: CONCEPT 40)- DE F = DÓ ×, . l 89 ×, 2 ) :( ; ü 10 1 HzQ âò à 10 6 Hz / Ñ) $³ô 89

�� �� ������ ��� 489

��+�0 �N$ Ç� ö� F50' Tg. 282.7oC� uN �5;

ØCh � �á=. �L��� Tg� :�- �º� C �) � Ü, �

mÂM, �,$*, $%� ��, �� �� ��0, �A C [' �

$� Cw �� ' 8Q¯. z.DÑ c :�� 'w Tg. uN

=� >?@ �=[17]. :! XPS �5�) �Ò �¾ ��, ���

��� º»¨ �N� ' Q¯. �N� ùN¸= ä! È;� ��

' 8Q¯; z.³´��� Fig. 7�) ��õ �¾ �� Tg. u

N #�� ìÛ¨=.

Fig. 82 �����' TGA9�- ��� �5�=. �A TGA9

���Q� Table 3� IDT (initial decomposition temperature); ��

á=. c �5, F0' ö� IDT. 555oC� ��+�0 �N$ Ç�

ö� F5¾ F10' ö� ¶ ��; ��/ 3<�� F30' ö� =N

uNDÓ�0 F50' ö� û! ��w `³ (*. äÉ uN #-

ØCh � �á=. �L��� ������ �� �� � ����

�� ��� ��� -O-, -NH-, -CO- �� ���� �� �� !"

� �# & 300oC' �(�)* � +,�- ���=� >?@ �=

[1-2]. cA� 5Ü' �N¾ LÃ�� Cw :! �NLà ø-<6�

) 45DÓª� �����' � �� � �Â� =�/Ñ) F50

' º»¨ C-F ̄ ä. äÉ z.�� �� Cw û! ��w (*. ä

É uN #�� ìÛ¨=[6, 16, 18]. cA� F50- Ub =½ ��

���' ö�, �N$ Ç� ³ �N²Ü� 30% �D� º»¨ ���

��� �NÇ�� 'w � +,�� ¶ :�- �º/ 3/� �N²

Ü� 30% �:C �����' ö� � +,�� =N uN #- i

Òh � �á=.

�N$ Ç� 9·å' ����� GH' C�Å*(tensile strength)¾

üÛ sl(ultimate elongation)- Table 2� ��á=. Ð °Ô�5 �

Ç� �����C F0' C�Å*� 116 MPa, üÛ sl2 33%�

��á�0, �N$ Ç� ����� GH' ö� �Ç� GH'

�5 �¢DE ¶ �$; ��/ 32 #- ØCh � �á=. �A

�5� �S �N$ Ç�� 'w ������ * ¨ �N. ��

���' !"� B��� ¶ :�- �º/ 32 #�� ìÛ¨=

[6, 9, 19].

3-4. �� ��

89d�2 (* & �ü�� Ϭ c J�' ±£ & ®:� 8¬Ý

=� >?@ �=[5]. Ð °Ô�)� �NÇ� 9·å �����' 89

l- :(�) �ü�; 101 HzQ� 106 Hz/ �$³ôÑ) ×,D

Ó�0 c �5; Fig. 8� ��á=. Ð °Ô�5, �Ç� ����

�C F0' ö� 89l� �ü�>Æ� Ϭ 3.1-2.9��' �Ê; ¸

Ó�0 ×, ���� 3.04� 9P�C �����' �- ��á

=[13-14]. cA� �N$ Ç� GH' ö� :! ­Ñi! �5�

) �Ò �¾ �� Ç�.â ��� z.DE * ¨ �N²Ü� z

.h�ñ �5��� GH' 89l� uND� ö�- iÒh � �

á=. �, ×,¨ �ü� >Æ�) 89l ���� F5=2.99, F10=2.68,

F30=2.67 c�� F50=2.55� ®Ëf uN #- ØCh � �á=.

:! )?�) 45 �¾ �� 89l2 N�$*, 8Q¯, ¦§

�' ý ./ nC� äÉ :�- @�0 N�$*¾ ¦§�5� �A

D0 8Q¯¾� L�A =[6, 8-9]. Ð °Ô�) GH� �S �N

$ Ç�; ²��� * ¨ �N� Cw ����� � �� �

8Q¯� z.D� ¦§�2 uNDE �5��� 89l� uN #

�� ìÛ¨=. �A �8� op, DSC�5�) �Ò �¾ �� �

N$ Ç�� 'w ������ º»¨ �N� . �����' �

�� � 8Q¯; z.³ë 89l� uN #�� iÒ¨=[20].

vp, 9 . B�) C� D�@ �� � � 9 . B� ÅDÉ E

� �� � ¸= \ FÉ ¦§D,� 9 [� B� �G ÛÛDÉ E

��� �N� ' ¦§�2 µ=. Ù , ù$�N� �2 � Ü- .

Fig. 7. DSC diagrams of polyimide thin film.

Fig. 8. TGA thermograms of polyimide thin film.

Table 3. Thermal stability parameter of polyimide thin film

F0 F5 F10 F30 F50

IDT [oC] 555 549 550 533 395 Fig. 9. Dielectric constants of polyimide thin film.

HWAHAK KONGHAK Vol. 41, No. 4, August, 2003

Page 6:  · Æw Dielectric Spectrometer (Novocontrol GmbH, Model: CONCEPT 40)- DE F = DÓ ×, . l 89 ×, 2 ) :( ; ü 10 1 HzQ âò à 10 6 Hz / Ñ) $³ô 89

490 ���� ���� �

i-

ri-

nd

on

i-

lu-

,”

ak-

ing

on

bon

t on

s;

yn-

vel

ub-

of

,

es

ohn

Ý ù$�N¾ �¢h È Ä� Hb��� I�J� 1�0 �A �

8� K) 45 «� �N� � Ä� 12 ¦§� È;� van der

Waals C�� Õ� µÕ/! È;�=. cA,� C-F �Â' 9 ¦§

� C-H �Â� �¢DE ¸= µ! È;� �N$ Ç� �����

' 89l� uN #�� ìÛ¨=[20].

4. � �

���)� ILD (interlayer dielectric) B#� L� �F�� ��

���' 89l- uN³ô! Æw �N$ Ç�DE GH' ­Ñd�

& 89d�- iÒDÓ=. Ð °Ô�5 �N$ Ç�� 'w =Á5 �

2 �5; iÒ h � �á=.

(1) U�¨ ����� GH Æ� �N$ Ç�; DÓ�0, °Ô�5

Ç�.â ��� z.h�ñ, � Ç� .âÜ� z.h�ñ GH� *

¨ �N²Ü� z. #- ØCh � �á=.

(2) �����' ��·!"� d�' ö� �NÇ�. GH' B��

äÉ :�- �º/ 32 #- iÒh � �á=. LÑ F50' ö� IDT

. =½ ³¦� �w äÉ uNDÓ��, û! ��w `³ (*. F30

/� 530oC �:��) �� �� d�- ��� #- ØCh �

�á=.

(3) �N$ Ç�DE ����� GH� * ¨ �N� � Cw �

��' ¦§�- uN³ô� 8Q¯; z.³ë �5��� 8

9l� uN #- iÒh � �á=.

� �

1. Laius, L. A., Polyimide; Thermally Stable Polymer, Consultants

Bureau, New York(1987).

2. Qu, W. L. and Ko, T. M., “Studies of Dielectric Characteristics and

Surface Energies of Spin-Coated Polyimide Films,” J. Appl. Polym.

Sci., 82(7), 1642-1652(2001).

3. Singer. P., Changing the Promise of Faster Chips, Semiconductor

International, November, 52(1994).

4. Ghosh. M. K. and Mittal. K. L., Polyimides; Fundamentals and

Applications, Marcel Dekker, New York(1936).

5. Hippel., Dielectric Materials and Applications, Artech House(1954).

6. Banerjee, S., Madhra, M. K., Salunke, A. K. and Maier. G., “Synthe-

sis and Properties of Fluorinated Polyimides. 1. Derived from Novel

4,4'-Bis(aminophenoxy)-3,3'-trifluoromethyl Terphenyl,” J. Polym.

Sci., A, Polym. Chem., 40(8), 1016-1027(2002).

7. Lee, Y. K. and Murarka. S. P., “Characterization of Charges in Flu-

orinated Polyimide Film with Different Thermal History by Using

Capacitance-Voltage Methods,” Mater. Res. Bull., 34(6), 869-876(1999).

8. Jiang, L. Y., Leu, C. M. and Wei, K. H., “Layered Silicates/Fluor

nated Polyamide Nanocomposties for Advanced Dielectric Mate

als Applications,” Adv. Mater., 14(6), 426-429(2002).

9. Yang, C. P., Hsiao, S. H. and Chen, K. H., “Organosoluble a

Optically Transparent Fluorine-Containing Polyimides Based

4,4'-Bis(4-amino-2-trifluoromethylphenoxy)-3,3',5,5'-Tetramethylb

phenyl,” Polymer, 43(19), 5095(2002).

10. Chen, K. Y. and Kuo, J. F., “Synthesis and Properties of Novel F

orinated Aliphatic Polyurethanes with Fluoro Chain Extenders

Macromol. Chem. Phys., 201(18), 2676(2000).

11. Chaiyasu, C., Tsuda, T., Kitagawa, S., Wada, H., Monde, T. and N

abeya, Y., “Pressurized Flow Driven Electrochromatography Us

Fluorinated-Bonded Silica,” J. Microcolumn. Sep., 11(8), 590(1999).

12. Sharts, C. M., “Organic Fluorine Chemistry,” J. Chem. Educ., 45(3),

185(1968).

13. Park, S. J. and Kim, J. S., “Role of Chemically Modified Carb

Blacks Surfaces in Enhancing Interfacial Adhesion between Car

Blacks and Rubber in a Composites System,” J. Colloid Interface

Sci., 232(2), 311-316(2000).

14. Park, S. J. and Jin, J. S., “Effect of Corona Discharge Treatmen

the Dyeability of Low-Density Polyethylene Film,”J. Colloid Inter-

face Sci., 236(1), 155-160(2001).

15. Bessonov, M. I. and Zubkov, V. A., Polyamic Acids and Polyimide

Synthesis, Transformations and Structure, CRC Press(1993).

16. Madhra, M. K., Salunke, A. K., Banerjee, S. and Prabha, S., “S

thesis and Properties of Fluorinated Polyimides, 2Derived from No

2,6-Bis(3'-trifluoromethyl-p-aminobiphenyl ether)pyridine and 2,5-

Bis(3'-trifluoromethyl-p-aminobiphenyl ether)thiophene,”Macro-mol.

Chem. Phys, 203(9), 1238-1248(2002).

17. Van Krevelen. D. W., Properties of Polymers, Elsevier Science P

lishing Company Inc., New York(1990).

18. Park, S. J. and Kim, H. C., “Thermal Stability and Toughening

Epoxy Resin with Polysulfone Resin,” J. Polym. Sci., B, Polym. Phys.

39(1), 121-128(2001).

19. Chern, Y. T. and Shine, H. C., “Low Dielectric Constant Polyimid

Derived from 1,3-Bis(4-aminophenyl)adamantane,”Macromol. Chem.

Phys., 199(6), 963(1998).

20. Grahan Solomons, T. W. and Fryhle, C. B., Organic Chemistry, J

Wiley, 7th, New York(2001).

���� �41� �4� 2003� 8�