22
Water Demand and Availability for the Mkomazi Catchment 1 Introduction and Objectives The activities for both these work tasks are reported collectively for the Mkomazi due to the integrated nature of the CSIR’s involvement in both the demand and deficiency modelling in this catchment, compared to only deficiency modelling for the individual Mbuluzi and Mpfure catchments. The collation of suitable input data for modelling water demand and the final production of spatially referenced demand data for the Mkomazi were completed in close collaboration with the partner 6 University of Natal), because of the associated overlap of technical expertise in terms of hydrological and spatial modelling. Suitable environmental, socio-economic and topographic datasets were sourced from a variety of organisational and published sources. Significant inputs and assistance was received from both Umgeni Water and the Department of Water Affairs and Forestry, who are also key potential end-users of the IWRMS project deliverables. Digital GIS coverages that spatially represent the various demand / deficiency scenario’s have been produced, and are available in the project database (in ArcInfo format). 2 Methodology Three different approaches have been used to develop water “demand / deficiency” scenario’s for the Mkomazi (South Africa). The primary approach has been to model stream flow and associated demand / deficiency values for different present and future scenario’s using the ACRU hydrological model. These results, which constitute the definitive hydrological dataset for the catchment,are reported in Taylor et al (2000). Two alternative approaches are reported, which were developed as simplistic, spreadsheet-based alternatives to final demand / deficiency modelling within ACRU (although outputs from initial ACRU model runs are used as primary inputs in some of these spreadsheet models). These two procedures are presented for comparative purposes only. It is important to realise that in all three modelling approaches, the same fundamental spatial frameworks have been used to ensure a degree of standardisation. These are based on the same sub-quaternary catchment cells, and the land- use patterns described in the South African National Land-Cover database (Thompson, 1999; Fairbanks et al, 2000). The two alternative modelling scenario’s provide a more generalised overview of current and future demand / deficiency conditions in the Mkomazi catchment, based on very specific sectoral demand and abstraction parameters (not all of which are directly comparable to the primary ACRU model outputs). The first approach uses a simple balancing-model approach, based on the difference between ACRU simulated natural baseline (i.e. pristine vegetation conditions), and ACRU-modelled stream flow conditions for various sector abstraction conditions. The second approach is based on the spatial disaggregation of pre-published sector abstraction demands, that have been spatially re-distributed on the basis of

water demand mkomazi csir - uni-jena.de · Water Demand and Availability for the Mkomazi Catchment 1 Introduction and Objectives The activities for both these work tasks are reported

  • Upload
    doanthu

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Water Demand and Availability for the Mkomazi Catchment

1 Introduction and Objectives

The activities for both these work tasks are reported collectively for the Mkomazi due to the

integrated nature of the CSIR’s involvement in both the demand and deficiency modelling in

this catchment, compared to only deficiency modelling for the individual Mbuluzi and Mpfure

catchments. The collation of suitable input data for modelling water demand and the final

production of spatially referenced demand data for the Mkomazi were completed in close

collaboration with the partner 6 University of Natal), because of the associated overlap of

technical expertise in terms of hydrological and spatial modelling. Suitable environmental,

socio-economic and topographic datasets were sourced from a variety of organisational and

published sources. Significant inputs and assistance was received from both Umgeni Water

and the Department of Water Affairs and Forestry, who are also key potential end-users of the

IWRMS project deliverables. Digital GIS coverages that spatially represent the various

demand / deficiency scenario’s have been produced, and are available in the project

database (in ArcInfo format).

2 Methodology

Three different approaches have been used to develop water “demand / deficiency”

scenario’s for the Mkomazi (South Africa). The primary approach has been to model stream

flow and associated demand / deficiency values for different present and future scenario’s

using the ACRU hydrological model. These results, which constitute the definitive hydrological

dataset for the catchment,are reported in Taylor et al (2000). Two alternative approaches are

reported, which were developed as simplistic, spreadsheet-based alternatives to final demand

/ deficiency modelling within ACRU (although outputs from initial ACRU model runs are used

as primary inputs in some of these spreadsheet models). These two procedures are

presented for comparative purposes only. It is important to realise that in all three modelling

approaches, the same fundamental spatial frameworks have been used to ensure a degree of

standardisation. These are based on the same sub-quaternary catchment cells, and the land-

use patterns described in the South African National Land-Cover database (Thompson, 1999;

Fairbanks et al, 2000).

The two alternative modelling scenario’s provide a more generalised overview of current and

future demand / deficiency conditions in the Mkomazi catchment, based on very specific

sectoral demand and abstraction parameters (not all of which are directly comparable to the

primary ACRU model outputs). The first approach uses a simple balancing-model approach,

based on the difference between ACRU simulated natural baseline (i.e. pristine vegetation

conditions), and ACRU-modelled stream flow conditions for various sector abstraction

conditions. The second approach is based on the spatial disaggregation of pre-published

sector abstraction demands, that have been spatially re-distributed on the basis of

associated land-use patterns that have been derived from a ‘standard’ land-cover database.

The objective being to compare the variation in outputs from very different modelling

approaches, with different levels of both technical and scientific complexity, but with

essentially the same objectives and spatial frameworks.

Water deficiency units are based on the difference between natural runoff and sectoral water

demand. In the case of the Mbuluzi and Mpfure catchments the collation of the required water

demand data was the responsibility of the local Swaziland and Zimbabwean partners.

Unfortunately only demand data for the Mbuluzi catchment was eventually provided with the

necessary level of spatial and sectoral coverage, that was a pre-requisite for the calculation of

catchment-wide deficiency units. Water deficiency modelling for the Mbuluzi was completed in

close collaboration with both partner 8 (University of Swaziland) and partner 6 (University of

Natal).

3 Results

3.1 Results from the ACRU-based modelling

A series of demand / deficiency scenario’s were generated using data generated within the

ACRU hydrological model. This modelling process is documented in Taylor et al (2000). What

is described below are the key ACRU derived datasets that have been used to generate the

GIS spatial coverages that illustrate specific demand / deficiency scenario’s. The following

ACRU model outputs were used :

• Baseline flow : values represent simulated, accumulated stream flow the scenario of

pristine natural conditions (i.e. Acock’s vegetation)

• Environmental demand flow : values represent simulated, accumulated stream flow

required to meet the environmental reserve requirements

• Current stream flow : values represent simulated, accumulated stream flow the

scenario of present land-use (i.e. present forestry, irrigation and dryland cultivation),

with present domestic and livestock abstractions, and potential inter-basin transfer from

the Smithfield (Phase 1) scheme, but excluding any environmental demand and

SAPPI-SAICOR abstraction.

• Future stream flow (scenario 1) : values represent simulated, accumulated stream flow

the scenario of present land-use (i.e. present forestry, irrigation and dryland

cultivation), with future domestic and livestock abstractions, potential inter-basin

transfer from the Smithfield (Phase 1) scheme, SAPPI-SAICOR abstraction, but

excluding environmental demand.

• Future stream flow (scenario 2) : values represent simulated, accumulated stream flow

the scenario of modified land-use (i.e. present irrigation and dryland cultivation, but

with a 10 % increase in afforestation), with future domestic and livestock

abstractions, but excluding both environmental demand, potential inter-basin transfer

from the Smithfield (Phase 1) scheme, and SAPPI-SAICOR abstraction.

• Future stream flow (scenario 3) : are the same as future scenario 2, but include

potential inter-basin transfer from the Smithfield (Phase 1) scheme, and SAPPI-

SAICOR abstraction values, but still exclude any environmental demand.

The abstraction rates for the Smithfield (Phase 1) scheme are potential only, due to the fact

that the scheme is not yet operational. So the use of the terms “current” and “present” to

describe certain stream flows, and associated demand / deficiency scenario’s is not

technically correct, since a potential demand has been integrated with actual abstractions.

Where inter-basin transfers have been included, it has been assumed that no dam releases

are made for downstream use unless the (Smithfield) dam is full.

SAPPI-SAICOR abstraction, which consititutes the primary component of the industrial sector,

have only been included in certain scenarios for comparison, due to the location of this

abstraction at the seaward mouth of the catchment (in modelling cell 52), and the negligible

effect that this position will have on upstream catchment hydrology.

All values are reported in million cubic metres (Mm3), and have been calculated for both mean

annual, mean September, and September dry conditions in order to cover both ‘normal’ and

extreme (dry) conditions. Spatial distribution patterns for land-use demand were derived from

the South African National Land-Cover database (Thompson, 1999; Fairbanks et al, 2000).

The following demand / deficiency scenarios were calculated from the ACRU-modelled

stream flow’s :

• Present total sector demand i.e. [baseline - present stream flow ] + environ. demand

• Present total stream flow deficit i.e. baseline - present total sector demand

• Future total sector demand (1) i.e. [baseline - future stream flow (1) ] + environ.

demand

• Future total stream flow deficit (1) i.e. baseline – future total sector demand (1)

• Future total sector demand (3) i.e. [baseline - future stream flow (3) ] + environ.

demand

• Future total stream flow deficit (3) i.e. baseline – future total sector demand (3)

• Present total demand as a % of baseline

• Future total demand (1) as a % of baseline

• Future total demand (3) as a % of baseline

Actual values, and descriptions of the various sub-scenario’s are contained in the

accompanying spreadsheet “combined ACRU runoff data for Mkomazi.xls”. All are available

as digital GIS coverages, of which selected ones are illustrated below :

Present total demand (mean annual) Present total demand (Sept mean)

Future total demand (1) (mean annual) Future total demand (1) (Sept mean)

Future total demand (3) (mean annual) Future total demand (3) (Sept mean)

Future total stream flow deficit (1) Future total stream flow deficit (1)

(mean annual) (Sept mean)

Present total demand as a % of baseline Present total demand as a % of

baseline

(mean annual) (Sept mean)

Future total demand (1) as % of baseline Future total demand (1) as % of

baseline

(mean annual) (Sept mean)

Future total demand (3) as % of baseline Future total demand (3) as % of

baseline

(mean annual) (Sept mean)

3.2 Results from the land-cover disaggregation framework modelling

An alternative approach to modelling water demand and deficiency was tested in the

Mkomazi catchment, based on pre-published sector demand data that was spatially

disaggregated to sub-quaternary catchment levels using land-cover distribution patterns. The

objective being to compare, if feasible, the results of a modelling routine which was based on

spatially defined hydrological principles (i.e. ACRU), to one where the same spatial resolution

and thus run-off distribution was achieved only after calculation of initial sector water

demands using a different hydrological model.

Sector demand information, i.e. livestock, irrigation, afforestation, industrial, domestic (rural

and urban) and environmental, was sourced primarily from the “DWAF / Umgeni Water :

Mkomazi-Mgeni Transfer Scheme Pre-Feasibility Study” (Ninham Shand, 1998). The reported

environmental reserve requirements were cross-checked against similar data (based on

IRF’s), reported in “Instream Flow Requirements (IFR’s) : Selected extracts of hydrological

relevance taken from IFR studies 1992-1999“ (GIBB Africa, 1999). Extraction data for the

proposed Smithfield Dam scheme was sourced from the Durban office of the Dept. Water

Affairs and Forestry, and cross-checked with Umgeni Water (Summerton pers com).

The published sector demand data was disaggregated down to the required sub-catchment

level using the land-cover distribution patterns from the 1:250,000 scale SA National Land-

Cover database (Thompson, 1999, Fairbanks et al, 2000). This was achieved in a two-step

process, whereby individual water demand sectors were linked to specific land-cover classes

(or unique class-groupings). The spatial distribution of the land-cover classes was then used

to spatially characterise the point-value demand data on a proportional basis. For example,

quaternary catchment X contains 100 ha of afforestation, distributed as 50 ha in sub-

catchment X1, 20 ha in X2 and 30 ha in X3, with a published total demand of 20,000 Mm3/a.

Then the spatially disaggregated afforestation water demand would be 10,000 Mm3/a in X1,

4000 Mm3/a in X2 and 6000 Mm3/a in X3.

The validity of this modelling approach is supported by the fact whilst there may be significant

differences between published and land-cover derived land-use areas, there are strong

similarities in distribution trends at quaternary catchment level (e.g. forestry and irrigation).

This variation is to be expected since the published datasets, are in most cases, derived from

datasets that pre-date the National Land-Cover dataset.

Due to inherent data constraints, certain assumptions were made during modelling process

that may limited direct comparability with the ACRU-derived results. This however should not

be seen as a limitation, but rather an indication of the differences that are likely to be

encountered when comparing potentially equivalent results, which have been derived from

two very different analytical procedures. For example, the (hydrological) modelling procedures

used to generate the published data may well differ from the ACRU-based approach, since

the original input data used in the published data was itself disaggregated from four basic

sub-catchments. Conditional rule-based parameters governing for example, the modification

of scenario’s such as increasing afforestation, irrigation, or the use of groundwater also

differed between the two approaches.

In some cases scenario differences were also noted between the two published data sources,

necessitating assumptions that it was possible to equate ‘worst case’ scenario’s (as reported

N.Shand, 1998), with the drought-level IFR’s (as reported in GIBB Africa, 1999), in order to

“normalise” the data.

Certain modelling rules were also governed by the nature of the spatial framework used in

the analysis. For example, upstream extrapolation of point-based IFR requirements were

limited to only those catchments between IFR sites and did not include cumulative

measurements across several IFR catchment areas. These estimates were also made

without reference to variation in landscape or vegetation patterns within the catchment (unlike

the ACRU-based Acock’s vegetation modelling used to estimate natural runoff under pristine

conditions). several IFR catchment areas.

Since no distinction is made between ‘normal’ or drought impacted years in terms of the

(published) available natural runoff, only the high and low flow maintenance requirements

have been used in the demand modelling, on the basis that if calculated water availability is a

problem under low flow maintenance conditions, then it will definitely be so under all drought

flow requirements.

In cases where zero quaternary area estimates for a particular land-cover type are recorded

in either the National Land-Cover or N.Shand (1998) report values, then equal disaggregation

weightings were assumed between all sub-quaternary catchments.

The key modelling conditions described in the published source documents and any relevant

assumptions used in the associated spatial modelling are described below.

3.2.1 Natural Runoff (Mm3/ annual totals)

The published quaternary-level natural runoff was originally derived on the basis of the ratio of

catchment area to mean annual precipitation (MAP). These quaternary level values were

disaggregated to the 52 modelling sub-catchments using a simple pro-rata area-based

distribution (within each quaternary catchment).

3.2.2 Environmental Demand (Mm3/ annual totals)

Both IFR and Estuarine Freshwater Requirements (EFRs) are supplied in the N.Shand report

(1998). IFR data is only supplied however for one of the four sites, namely site #4, which is

furthest downstream, situated a few km upstream of the Goodenough Weir. Downstream of

IFR site #4 the river is reported as being very degraded, at which point the EFR becomes

dominant. The stated EFR data is based on the flow levels required to keep the mouth open

during critical times of the year. EFR data is only supplied as a monthly flow rate (m3/s), rather

than annual volume (Mm3/a) as per the IFR’s. Comparable EFR rates have thus been derived

by converting the monthly flow rates into volumes assuming a uniform, per monthly flow rate.

IFR data is available for both maintenance and drought requirements under high and low flow.

Alternative IFR data is available from the GIBB Africa report (1999), for all four IFR sites,

under the same maintenance and drought high and low flow conditions. These figures

however differ slightly from those reported in N.Shand (1999) and are assumed to be from a

different source, or have been tabled in a more detailed manner. In addition to the IFR data,

information is also presented on the location and affected quaternary catchments for each

IFR site, and the associated natural mean annual runoff (MAR), making this a more

comprehensive dataset to work with than the N.Shand data. The GIBB Africa (1999) natural

MAR’s and catchment area statistics compare very well with the N.Shand (1998) data, and

are almost identical.

The disaggregation of the 4 x IFR and 1 x EFR site values to the relevant 52 sub-catchments

was calculated on the basis of a pro-rata distribution of percent mean annual runoff for the

specific group of sub-quaternary catchments, located upstream of the given IFR site, and

downstream of the previous IFR site.

3.2.3 Afforestation Demand (Mm3/ annual totals)

Afforestation demand was calculated using the AFFDEM model developed by BKS

Engineers. (N.Shand, 1998). The spatial distribution and subsequent demand requirements

were calculated on the basis of area-based, pro-rata ratios per quaternary and modeling sub-

catchment. No attempt was made to weight the disaggregation process in terms of rainfall

variance between quaternary catchments, since the total forestry demand is less than 5 % of

the total natural runoff. Three alternate datasets were available for determining the spatial

extent of forestry, which collectively are used within the N.Shand report to estimate the true

area of afforestation. These were CSIR’s satellite image based National Forestry Coverage

(which pre-dates the National Land-Cover dataset), Umgeni Water’s airborne video generated

data, and forest area and permit details from DWAF. The Umgeni Water data was used in the

demand modelling scenario since it was deemed the most accurate (with the CSIR’s forestry

information being the next best).

Both current afforestation demand, as well as future (i.e. 2040) high, middle, and low

estimates are provided in the N.Shand report. Future predictions were made on the basis

existing areas, currently approved permits and maximum allowable areas as determined by

DWAF. Note : in some cases this was not the same as the standard 10 % maximum increase

used within the comparable ACRU-based balancing modelling.

3.2.4 Irrigation Demand (Mm3/ annual totals)

Both diffuse (i.e. use of smaller tributaries and farm dams) and main stream (i.e. abstraction

from primary rivers and reservoirs), irrigation demands are detailed in the N.Shand report.

Future irrigation demands are also provided for both high, medium and low development

scenarios. The principle of a approximnately 110 % increase in total (potential) irrigation was

adopted for the high scenario per sub-catchment, where irrigation currently exists, with a

more limited expansion in those sub-catchments where no current irrigation has been

identified. The low scenario was based on 50 % of the proposed middle scenario increase.

3.2.5 Livestock Demand (Mm3/ annual totals)

Published livestock estimates were based on combined cattle, sheep and goat figures, which

were sourced from the State Veterinary Services (KwaZulu-Natal Dept of Agriculture, 1998),

and included in the Livestock Census for 1997. Unit demands per stock were developed and

allocated on a pro-rata, sub-catchment area basis. Cattle were given an average value to

account for the dairy / beef split. Future demand estimates were calculated using a similar

approach as used in the population growth model, on the assumption that livestock units

would follow a similar trend as local population demographics. The disaggregation of the

livestock demand values to the 52 sub-catchments was based pro-rata, on the spatial

distribution patterns of improved and unimproved grasslands (including degraded), on the

assumption that the majority of stockholding occurs on this land-cover type.

3.2.6 Domestic Urban Demand (Mm3/ annual totals)

Base data for the domestic demand were taken from population projections originally derived

from the 1991 Census. Published demand predictions were calculated on a quaternary sub-

catchment basis, for both urban and non-urban populations for current (1995) and future

(2040), scenario’s, with high, middle and low growth predictions. The low growth scenario’s

were used to assess the possible impact of HIV-AIDS. All estimates are however based on

somewhat outdated population statistics, and in the case of the AIDS impact, high

generalised. Per capita daily water demands were calculated using the guidelines published

by the National Housing Board for water point, yard and house-based reticulation points, and

were again modelled for high, medium and low consumption scenario’s, for current and future

population estimates.

A similar approach as used with livestock was used to disaggregate both domestic urban and

domestic rural demand. The distribution of the domestic urban demand was based, pro rata

on the spatial pattern of urban classes derived from the National Land-Cover database, (i.e.

residential, commercial and smallholdings). Domestic rural demand was distributed on the

basis of the subsistence cultivation land-cover class, since the definition states “including

small, scattered kraals in close proximity to this particular land-use which are not identifiable

as a unique cover-class in their own right” (Thompson, 1999).

3.2.7 Groundwater supplementation of Rural Water Demand

The availability of groundwater has also been considered as a means of supplying the rural

population from an alternative source to surface water in the N.Shand report (1998). Since at

the time of the original calculations, the distribution of rural communities within each sub-

catchment was unknown, an arbitrary 10 % of the catchment was assumed to be

representative of the area within which it would be economically viable and or suitable to drill

boreholes . Using the available (groundwater) harvestable potentials, a safe abstraction total

was calculated for each sub-catchment, and subsequently integrated with the rural

consumption figures to provide a further, alternate scenario.

3.2.8 Industrial Demand (Mm3/ annual totals)

The SAPPI/ SAICCOR factory situated near the Mkomazi mouth is the only industrial

abstraction of any significance in the catchment, with a current permit allocation of 50 Mm3 /

annum. The assumption in all calculations is that all of this is used, although it is known that a

proportion of this is used to meet local domestic demands on the South Coast outside of the

catchment. In terms of this modelling exercise it is assumed that this rate will remain

unchanged, and that no additional industrial development of any significance is planned within

the catchment. No attempt has been made to account for any return flows from the plant to

the river or estuary.

3.2.9 Cross Basin Transfer Demands (Mgeni-Mkomazi) (Mm3/ annual totals)

Several cross-basin transfer schemes have been proposed for the future from the Mkomazi to

the Mgeni catchment basins. These were originally defined as the Ngwadini, and Smithfield /

Impendle transfer schemes. Information provided by Umgeni Water (M Summerton pers com)

indicates that at present the Ngwadini option has been discarded and that the Smithfield /

Impendle options may be combined. This approach is similar to that used in the ACRU-based

modelling where only the implications of the Smithfield development were considered.

Using this pre-published demand data, several demand / deficiency scenario’s were

generated at the designated 52 sub-catchment level, for both present and future conditions,

under maintenance and drought conditions, for both high and low flow rates, linked to

changes in land-use, population levels, and possible inter-basin abstractions. The original

data and demand / deficiency calculations for these scenario’s are contained in the

accompanying spreadsheet (mkomazi final gis modelling data.xls , note : worksheet 3

contains the definitions for the different scenarios).

A single GIS coverage (ArcInfo format) has been created which contains both individual and

total sector demand / deficiency. A selected set of scenario’s are included for illustration

purposes :

Current and future total water demand (including environmental reserves)

Current and future total water demand (excluding environmental reserves)

Current and future total water availability (including environmental reserves)

Current and future total water availability (excluding environmental reserves)

Proportion of environmental reserve remaining after sector deductions

4. Conclusions

As reported previously, the generation of water deficiency units is dependent on the

availability of comparable water demand data, in order to be able to calculate the difference

between amount available, amount required, and resulting credit / deficit. Suitable demand

data for the Mpfure catchment (Zimbabwe) was eventually not supplied in a format suitable

for the generation of the final deficiency data for that specific catchment.

It is difficult to make direct, quantitative comparisons between all three hydrological modelling

approaches since the actual parameters used in all three vary slightly, so that no two

scenario’s are exactly the same. This is a direct result of both the differences in input data

parameters, which were in themselves pre-set by the analytical method and source(s) of data

used. However, what is encouraging is that the overall spatial trends appear to be similar,

with similar sub-catchment regions responding comparably, albeit on a qualitatively basis, to

equivalent scenario conditions.

Combined ACRU Runoff Data for Mkomazi corrected - use these !

SECTOR DATAACOCKS DATA Environment Acocks / Environment : check data Environmental demand (Mm3)(natural runoff under pristine conditions) Demand (Mm3) amount required Deficit (Mm3) amount remaining (env demand + deficit) = ACRU acocks interpolated from publ demand figures

SC accumulated area km2 ha annual sep_mean sep_dry annual sep_mean sep_dry annual sep_mean sep_dry annual diff sep_mean diff mean sep_mean sep_dry

1 1 162.914 16291.4 90.28 2.04 0.93 30.30 0.43 0.22 59.98 1.61 0.71 90.28 0.00 2.04 0.00 30.30 0.43 0.222 2 63.323 6332.3 31.06 0.72 0.34 10.42 0.15 0.08 20.64 0.56 0.26 31.06 0.00 0.72 0.00 10.42 0.15 0.083 1,2,3 141.686 14168.6 156.66 3.83 1.80 52.57 0.81 0.43 104.09 3.02 1.37 156.66 0.00 3.83 0.00 52.57 0.81 0.434 3,4 29.216 2921.6 166.75 4.13 1.87 55.96 0.87 0.45 110.80 3.26 1.42 166.75 0.00 4.13 0.00 55.96 0.87 0.455 5 142.968 14296.8 99.18 3.22 1.00 33.28 0.68 0.24 65.90 2.54 0.76 99.18 0.00 3.22 0.00 33.28 0.68 0.246 6 57.758 5775.8 35.00 0.84 0.35 11.75 0.18 0.08 23.26 0.66 0.26 35.00 0.00 0.84 0.00 11.75 0.18 0.087 5,6,7 208.006 20800.6 199.71 6.01 2.13 67.02 1.27 0.51 132.69 4.74 1.62 199.71 0.00 6.01 0.00 67.02 1.27 0.518 4,7,8 47.091 4709.1 383.15 10.75 4.26 128.58 2.27 1.02 254.57 8.48 3.25 383.15 0.00 10.75 0.00 128.58 2.27 1.029 9 189.227 18922.7 64.90 2.01 0.70 21.78 0.42 0.17 43.12 1.58 0.53 64.90 0.00 2.01 0.00 21.78 0.42 0.17

10 9,10 77.443 7744.3 90.45 2.91 1.07 30.35 0.61 0.25 60.10 2.29 0.81 90.45 0.00 2.91 0.00 30.35 0.61 0.2511 11 93.123 9312.3 46.84 1.10 0.50 15.72 0.23 0.12 31.12 0.87 0.38 46.84 0.00 1.10 0.00 15.72 0.23 0.1212 12 32.865 3286.5 10.60 0.32 0.12 3.56 0.07 0.03 7.04 0.25 0.09 10.60 0.00 0.32 0.00 3.56 0.07 0.0313 11,12,13 148.147 14814.7 108.06 3.26 1.37 36.26 0.69 0.33 71.80 2.57 1.04 108.06 0.00 3.26 0.00 36.26 0.69 0.3314 8,10,13,14 29.97 2997 589.28 17.23 7.12 197.75 3.64 1.70 391.53 13.59 5.42 589.28 0.00 17.23 0.00 197.75 3.64 1.7015 15 18.867 1886.7 6.30 0.25 0.07 2.11 0.05 0.02 4.19 0.20 0.05 6.30 0.00 0.25 0.00 2.11 0.05 0.0216 15,16 70.939 7093.9 29.44 1.09 0.33 9.88 0.23 0.08 19.56 0.86 0.25 29.44 0.00 1.09 0.00 9.88 0.23 0.0817 17 69.655 6965.5 20.25 0.62 0.23 6.80 0.13 0.05 13.45 0.49 0.17 20.25 0.00 0.62 0.00 6.80 0.13 0.0518 14,16,17,18 158.546 15854.6 681.89 20.20 8.01 228.83 4.27 1.91 453.06 15.93 6.10 681.89 0.00 20.20 0.00 228.83 4.27 1.9119 18,19 77.69 7769 707.94 21.29 8.37 237.57 4.50 2.00 470.37 16.79 6.37 707.94 0.00 21.29 0.00 237.57 4.50 2.0020 20 55.13 5513 16.98 0.52 0.17 4.63 0.09 0.04 12.35 0.43 0.13 16.98 0.00 0.52 0.00 4.63 0.09 0.0421 20,21 24.124 2412.4 23.92 0.78 0.26 6.52 0.14 0.05 17.40 0.65 0.21 23.92 0.00 0.78 0.00 6.52 0.14 0.0522 22 9.061 906.1 2.85 0.09 0.03 0.78 0.02 0.01 2.07 0.07 0.02 2.85 0.00 0.09 0.00 0.78 0.02 0.0123 19,21,22, 23 145.818 14581.8 770.27 23.41 8.83 210.06 4.12 1.84 560.21 19.29 6.99 770.27 0.00 23.41 0.00 210.06 4.12 1.8424 23,24 65.329 6532.9 783.56 23.94 9.11 213.68 4.21 1.90 569.88 19.73 7.21 783.56 0.00 23.94 0.00 213.68 4.21 1.9025 25 135.996 13599.6 50.64 2.19 0.63 13.81 0.39 0.13 36.83 1.80 0.49 50.64 0.00 2.19 0.00 13.81 0.39 0.1326 25, 26 106.48 10648 84.16 3.69 0.99 22.95 0.65 0.21 61.21 3.04 0.79 84.16 0.00 3.69 0.00 22.95 0.65 0.2127 24, 26, 27 116.175 11617.5 904.55 29.24 10.90 246.68 5.15 2.28 657.88 24.09 8.63 904.55 0.00 29.24 0.00 246.68 5.15 2.2828 27, 28 137.541 13754.1 947.71 31.12 11.51 258.44 5.48 2.40 689.26 25.64 9.10 947.71 0.00 31.12 0.00 258.44 5.48 2.4029 29 117.434 11743.4 27.40 1.07 0.18 7.47 0.19 0.04 19.93 0.88 0.14 27.40 0.00 1.07 0.00 7.47 0.19 0.0430 30 122.668 12266.8 21.98 1.05 0.20 5.99 0.19 0.04 15.99 0.87 0.16 21.98 0.00 1.05 0.00 5.99 0.19 0.0431 29, 30, 28, 31 76.546 7654.6 1012.33 34.01 12.90 276.07 5.99 2.69 736.26 28.02 10.21 1012.33 0.00 34.01 0.00 276.07 5.99 2.6932 31, 32 7.28 728 1013.37 34.09 12.93 276.35 6.00 2.70 737.02 28.09 10.23 1013.37 0.00 34.09 0.00 276.35 6.00 2.7033 33 76.065 7606.5 12.60 0.62 0.11 3.90 0.09 0.02 8.70 0.52 0.10 12.60 0.00 0.62 0.00 3.90 0.09 0.0234 33, 34 101.097 10109.7 31.05 1.65 0.39 9.62 0.25 0.05 21.44 1.40 0.34 31.05 0.00 1.65 0.00 9.62 0.25 0.0535 32, 34, 35 211.443 21144.3 1087.46 38.27 14.31 336.82 5.70 2.00 750.64 32.57 12.31 1087.46 0.00 38.27 0.00 336.82 5.70 2.0036 35, 36 11.944 1194.4 1090.36 38.40 14.36 312.82 4.72 1.92 777.54 33.69 12.44 1090.36 0.00 38.40 0.00 312.82 4.72 1.9237 36, 37 97.829 9782.9 1142.59 39.19 14.44 327.81 4.81 1.93 814.78 34.37 12.50 1142.59 0.00 39.19 0.00 327.81 4.81 1.9338 38 23.739 2373.9 4.21 0.24 0.04 1.21 0.03 0.01 3.00 0.21 0.03 4.21 0.00 0.24 0.00 1.21 0.03 0.0139 38, 39 56.036 5603.6 12.05 0.71 0.13 3.46 0.09 0.02 8.60 0.62 0.11 12.05 0.00 0.71 0.00 3.46 0.09 0.0240 40 48.362 4836.2 7.18 0.24 0.04 2.06 0.03 0.01 5.12 0.21 0.03 7.18 0.00 0.24 0.00 2.06 0.03 0.0141 40, 41 29.743 2974.3 11.48 0.48 0.09 3.29 0.06 0.01 8.19 0.42 0.07 11.48 0.00 0.48 0.00 3.29 0.06 0.0142 41, 42 30.066 3006.6 17.22 0.80 0.18 4.94 0.10 0.02 12.28 0.70 0.16 17.22 0.00 0.80 0.00 4.94 0.10 0.0243 42, 43 143.62 14362 37.59 2.14 0.38 10.79 0.26 0.05 26.81 1.88 0.33 37.59 0.00 2.14 0.00 10.79 0.26 0.0544 43, 44 109.855 10985.5 55.95 3.25 0.61 16.05 0.40 0.08 39.90 2.85 0.53 55.95 0.00 3.25 0.00 16.05 0.40 0.0845 37, 44, 39, 45 226.22 22622 1203.89 45.15 15.60 345.39 5.55 2.09 858.50 39.60 13.51 1203.89 0.00 45.15 0.00 345.39 5.55 2.0946 46 16.759 1675.9 3.45 0.23 0.03 0.99 0.03 0.00 2.46 0.21 0.02 3.45 0.00 0.23 0.00 0.99 0.03 0.0047 45, 46, 47 199.768 19976.8 1242.88 48.83 16.42 356.58 6.00 2.20 886.30 42.83 14.22 1242.88 0.00 48.83 0.00 356.58 6.00 2.2048 47, 48 25.703 2570.3 1248.97 49.12 16.52 358.33 6.04 2.21 890.64 43.09 14.31 1248.97 0.00 49.12 0.00 358.33 6.04 2.2149 48, 49 26.233 2623.3 1254.75 49.42 16.62 359.99 6.07 2.23 894.76 43.35 14.39 1254.75 0.00 49.42 0.00 359.99 6.07 2.2350 49, 50 0.785 78.5 1254.98 49.43 16.62 360.05 6.07 2.23 894.93 43.36 14.40 1254.98 0.00 49.43 0.00 360.05 6.07 2.2351 50, 51 2.297 229.7 1255.64 49.46 16.63 360.24 6.08 2.23 895.40 43.38 14.40 1255.64 0.00 49.46 0.00 360.24 6.08 2.2352 51, 52 5.717 571.7 1256.84 49.52 16.65 360.59 6.08 2.23 896.26 43.44 14.42 1256.84 0.00 49.52 0.00 360.59 6.08 2.23

total (km2) 4382.297 438229.7total (m2) 4382297000 4382297000 new_sent2csir_itb.xls sent2csir_ENV.xls sent2csir_ENV.xls mm2csir_env_new.xls

0 c/o valerie c/o valerie c/o valerie c/o valerie (corrected)

GIS COVERAGE / MAP DATAMODELED SECTOR STREAMFLOWSPresent sector streamflow Present sector + 10 % forest Future sector streamflow Future sector + 10% forest Mean Sep-Mean Sep-dry Present total sector demand (Mm3) Present total streamflow deficit (Mm3)current livestock and domestic, plus current forestry, irrig and dryland from l/c, downstream streamflow accumulated, no Smithfield abstraction)current livestock and domestic, 10 % incr forestry (eg. grassveld loss), current irrig and dryland from l/c, no transfer from Smithfield Dam, downstream streamflow accumulatedfuture livestock and domestic, plus current(future livestock and domestic, 10 % incr forestry (eg. grassveld loss), current irrig and dryland from l/c, and transfer from Smithfield Dam, downstream streamflow accumulated)Baseline Baseline Baseline (sector+ environment demand) (baseline - total sector demand)

mean sep_mean sep_dry mean sep_mean sep_dry mean sep_mean sep_dry mean sep_mean sep_dry (Mm3) (Mm3) (Mm3) mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry

90.15 2.04 0.93 86.26 1.94 0.17 90.04 2.02 0.91 86.26 1.94 0.91 90.28 2.04 0.93 30.43 0.43 0.22 59.85 1.61 0.7130.79 0.71 0.34 29.43 0.68 0.02 30.74 0.70 0.34 29.43 0.68 0.33 31.06 0.72 0.34 10.70 0.16 0.08 20.37 0.56 0.26

155.23 3.79 1.80 148.64 3.64 0.54 154.97 3.79 1.77 148.64 3.64 1.73 156.66 3.83 1.80 54.01 0.85 0.43 102.65 2.98 1.37165.76 4.09 1.91 159.01 3.93 0.63 165.44 4.09 1.87 159.01 3.93 1.87 166.75 4.13 1.87 56.95 0.91 0.41 109.80 3.22 1.4699.08 3.20 0.99 95.58 3.07 0.29 98.96 3.19 0.99 95.58 3.07 0.90 99.18 3.22 1.00 33.38 0.69 0.25 65.80 2.52 0.7535.01 0.83 0.36 33.61 0.80 0.03 34.95 0.83 0.35 33.61 0.80 0.34 35.00 0.84 0.35 11.74 0.18 0.07 23.26 0.65 0.28

197.54 5.93 2.04 189.08 5.64 1.07 197.13 5.89 2.00 189.08 5.64 1.96 199.71 6.01 2.13 69.18 1.35 0.59 130.52 4.66 1.54381.18 10.66 4.26 365.23 10.15 3.71 380.50 10.58 4.18 365.23 10.15 4.09 383.15 10.75 4.26 130.54 2.36 1.02 252.61 8.39 3.2563.56 1.93 0.64 59.95 1.84 0.11 63.41 1.93 0.62 59.95 1.84 0.61 64.90 2.01 0.70 23.12 0.50 0.22 41.78 1.51 0.4887.04 2.59 0.72 82.75 2.45 0.20 86.83 2.56 0.72 82.75 2.45 0.69 90.45 2.91 1.07 33.77 0.93 0.60 56.69 1.97 0.4746.52 1.09 0.50 44.56 1.03 0.05 46.40 1.07 0.49 44.56 1.03 0.49 46.84 1.10 0.50 16.03 0.24 0.12 30.80 0.86 0.388.99 0.20 0.01 8.49 0.18 0.00 8.95 0.19 0.01 8.49 0.18 0.01 10.60 0.32 0.12 5.16 0.19 0.14 5.44 0.13 -0.02

101.59 2.82 0.99 98.47 2.74 0.27 101.24 2.80 0.96 98.47 2.74 0.93 108.06 3.26 1.37 42.73 1.13 0.71 65.33 2.13 0.66577.75 16.37 6.26 554.26 15.66 8.68 576.32 16.23 6.12 554.26 15.66 5.98 589.28 17.23 7.12 209.28 4.50 2.56 380.00 12.73 4.56

6.77 0.25 0.09 6.45 0.24 0.00 6.75 0.25 0.09 6.45 0.24 0.08 6.30 0.25 0.07 1.64 0.05 0.00 4.66 0.20 0.0729.21 1.07 0.35 27.72 1.01 0.03 29.09 1.06 0.34 27.72 1.01 0.32 29.44 1.09 0.33 10.11 0.25 0.06 19.33 0.84 0.2718.54 0.54 0.16 17.73 0.52 0.01 18.43 0.53 0.15 17.73 0.52 0.15 20.25 0.62 0.23 8.50 0.21 0.12 11.75 0.41 0.11

663.43 19.16 7.49 637.47 18.29 11.66 661.68 18.98 7.32 637.47 18.29 7.14 681.89 20.20 8.01 247.29 5.32 2.44 434.60 14.89 5.57685.56 20.01 7.82 659.36 19.29 12.72 683.74 19.83 7.64 659.36 19.29 7.46 707.94 21.29 8.37 259.95 5.77 2.55 447.99 15.51 5.8213.94 0.44 0.13 13.87 0.44 0.01 13.87 0.44 0.12 13.87 0.44 0.12 16.98 0.52 0.17 7.66 0.17 0.07 9.31 0.35 0.1018.34 0.63 0.17 18.24 0.62 0.01 18.24 0.62 0.16 18.24 0.62 0.16 23.92 0.78 0.26 12.10 0.30 0.15 11.82 0.49 0.111.93 0.07 0.01 1.92 0.06 0.00 1.92 0.06 0.01 1.92 0.06 0.01 2.85 0.09 0.03 1.69 0.04 0.02 1.15 0.05 0.01

516.25 8.42 0.00 716.47 21.15 15.15 514.20 8.42 0.00 480.93 7.60 0.00 770.27 23.41 8.83 464.07 19.11 10.67 306.20 4.30 -1.84531.63 9.11 0.21 731.23 21.61 15.80 529.30 8.90 0.21 495.82 8.26 0.21 783.56 23.94 9.11 465.62 19.05 10.80 317.95 4.90 -1.6936.65 1.24 0.04 36.42 1.22 0.04 36.42 1.22 0.04 36.42 1.22 0.04 50.64 2.19 0.63 27.81 1.34 0.72 22.84 0.85 -0.0954.29 1.87 0.00 53.95 1.84 0.10 53.95 1.84 0.00 53.95 1.84 0.00 84.16 3.69 0.99 52.82 2.47 1.20 31.34 1.22 -0.21

621.12 12.39 0.50 819.08 25.02 20.50 618.15 12.39 0.50 583.71 11.64 0.50 904.55 29.24 10.90 530.11 21.99 12.68 374.45 7.24 -1.78659.26 14.38 0.78 857.23 26.94 23.09 656.13 14.38 0.78 621.87 13.60 0.78 947.71 31.12 11.51 546.89 22.21 13.12 400.82 8.91 -1.6221.09 0.75 0.06 20.90 0.74 0.02 20.90 0.74 0.06 20.90 0.74 0.06 27.40 1.07 0.18 13.78 0.51 0.15 13.62 0.56 0.0210.49 0.63 0.05 10.46 0.63 0.01 10.46 0.63 0.05 10.46 0.63 0.05 21.98 1.05 0.20 17.49 0.61 0.19 4.49 0.44 0.01

702.44 16.42 1.17 900.34 29.02 26.13 699.22 16.12 1.17 664.92 15.54 1.17 1012.33 34.01 12.90 585.95 23.58 14.42 426.38 10.43 -1.52703.30 16.46 1.18 901.10 28.80 25.95 700.07 16.16 1.18 665.68 15.58 1.18 1013.37 34.09 12.93 586.42 23.63 14.46 426.95 10.46 -1.52

5.58 0.33 0.00 5.55 0.33 0.00 5.55 0.33 0.00 5.55 0.33 0.00 12.60 0.62 0.11 10.92 0.37 0.13 1.68 0.24 -0.0224.07 1.36 0.27 23.60 1.33 0.03 23.86 1.35 0.27 23.60 1.33 0.27 31.05 1.65 0.39 16.60 0.53 0.18 14.46 1.12 0.21

760.36 19.97 2.00 957.02 32.28 30.89 756.37 19.63 1.66 721.76 18.97 1.66 1087.46 38.27 14.31 663.92 24.00 14.31 423.54 14.27 0.00762.75 20.04 2.00 959.45 32.39 31.08 759.08 19.70 1.67 724.02 19.04 1.67 1090.36 38.40 14.36 640.43 23.09 14.28 449.93 15.32 0.08777.88 20.62 2.06 974.50 33.00 32.16 773.76 20.62 2.06 739.04 19.59 2.06 1142.59 39.19 14.44 692.51 23.38 14.31 450.07 15.81 0.13

5.08 0.28 0.06 4.86 0.27 0.00 5.05 0.28 0.05 4.86 0.27 0.05 4.21 0.24 0.04 0.34 -0.01 -0.01 3.87 0.25 0.0512.47 0.73 0.15 11.81 0.70 0.01 12.37 0.73 0.14 11.81 0.70 0.14 12.05 0.71 0.13 3.04 0.06 -0.01 9.01 0.65 0.132.52 0.08 0.01 2.50 0.08 0.00 2.50 0.08 0.01 2.50 0.08 0.01 7.18 0.24 0.04 6.72 0.18 0.03 0.46 0.05 0.002.33 0.14 0.02 2.31 0.14 0.00 2.31 0.14 0.02 2.31 0.14 0.02 11.48 0.48 0.09 12.45 0.39 0.07 -0.97 0.08 0.013.17 0.23 0.03 3.15 0.23 0.00 3.15 0.23 0.03 3.15 0.23 0.03 17.22 0.80 0.18 18.99 0.67 0.18 -1.77 0.13 0.01

13.50 0.96 0.00 13.42 0.96 0.01 13.42 0.96 0.00 13.42 0.96 0.00 37.59 2.14 0.38 34.88 1.45 0.43 2.71 0.69 -0.0529.29 1.99 0.11 28.79 1.95 0.06 29.08 1.99 0.11 28.79 1.95 0.11 55.95 3.25 0.61 42.70 1.67 0.59 13.24 1.59 0.03

843.50 25.45 3.28 1038.06 37.76 39.20 838.99 25.04 2.87 802.46 24.22 2.87 1203.89 45.15 15.60 705.78 25.25 14.40 498.11 19.90 1.193.92 0.26 0.05 3.81 0.25 0.00 3.87 0.26 0.05 3.81 0.25 0.05 3.45 0.23 0.03 0.52 0.00 -0.02 2.93 0.24 0.05

887.21 29.39 3.89 1080.82 41.49 44.84 882.46 28.95 3.89 845.30 28.09 3.89 1242.88 48.83 16.42 712.24 25.45 14.73 530.63 23.39 1.69894.23 29.56 4.35 1087.68 42.17 45.87 889.01 29.56 3.91 852.06 28.69 3.91 1248.97 49.12 16.52 713.06 25.60 14.39 535.90 23.53 2.13901.37 30.18 4.37 1094.24 42.42 46.42 845.39 25.80 0.87 808.22 25.37 0.87 1254.75 49.42 16.62 713.36 25.32 14.47 541.39 24.10 2.15901.54 30.18 4.37 1094.88 42.43 46.46 845.55 25.81 0.87 808.37 25.37 0.87 1254.98 49.43 16.62 713.49 25.32 14.47 541.49 24.11 2.15902.45 30.20 4.38 1095.46 42.45 46.51 846.43 26.26 1.31 809.23 25.38 0.88 1255.64 49.46 16.63 713.43 25.33 14.48 542.21 24.12 2.15904.07 30.24 4.38 1097.33 42.51 46.65 847.97 26.29 1.31 811.16 25.42 1.31 1256.84 49.52 16.65 713.36 25.37 14.50 543.48 24.15 2.15

new_interbasin_present.xls new_forestry_increase.xls new_interbasin_future.xls new_forest_increase+future.xlsc/o valerie c/o valerie c/o valerie c/o valerie runoff groups % runoff groups

< 0 1 0 - 100 - 1 2 10 - 201 - 2 3 20 - 302 - 4 4 30 - 40 4 - 8 5 40 - 50

8 - 16 6 50 - 60 16 - 32 7 60 - 70 32 - 64 8 70 - 80

64 - 128 9 80 - 90 128 - 256 10 90 - 100 256 - 512 11512 - 1024 12

> 1024 13

Future total sector demand (Mm3) Future total streamflow deficit (Mm3) Future total sector + forest incr (Mm3) Future total streamflow deficit #2 (Mm3) Present total demand as a % of baselineFuture total demand as a % of baseline Future total demand as a % of baseline(sector+ environment demand) (baseline - total sector demand) (sector+ environment demand) (baseline - total sector + forest incr demand) (incl 10 % incr in forestry)

mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry

30.54 0.45 0.24 59.74 1.59 0.69 34.32 0.53 0.24 55.96 1.51 0.69 33.7 21.1 23.9 33.8 21.9 25.7 38.0 25.9 25.710.74 0.16 0.09 20.32 0.55 0.25 12.05 0.19 0.09 19.01 0.53 0.25 34.4 22.0 23.9 34.6 22.9 25.7 38.8 26.4 27.654.26 0.85 0.47 102.40 2.98 1.34 60.59 0.99 0.50 96.07 2.83 1.30 34.5 22.1 23.9 34.6 22.1 25.9 38.7 25.9 28.057.27 0.91 0.45 109.48 3.22 1.42 63.70 1.07 0.45 103.05 3.06 1.42 34.2 22.1 21.8 34.3 22.1 23.9 38.2 25.9 23.933.51 0.71 0.25 65.67 2.51 0.75 36.89 0.82 0.34 62.30 2.39 0.66 33.7 21.6 25.3 33.8 22.0 25.3 37.2 25.6 33.911.79 0.18 0.08 23.21 0.65 0.27 13.14 0.22 0.09 21.86 0.62 0.26 33.5 21.8 20.6 33.7 21.8 22.2 37.5 26.0 25.669.59 1.39 0.63 130.11 4.62 1.49 77.64 1.64 0.67 122.06 4.37 1.45 34.6 22.5 27.7 34.8 23.2 29.7 38.9 27.3 31.6

131.22 2.44 1.10 251.93 8.30 3.16 146.49 2.87 1.19 236.66 7.88 3.08 34.1 21.9 23.9 34.2 22.7 25.9 38.2 26.7 27.923.28 0.50 0.24 41.63 1.51 0.46 26.74 0.59 0.26 38.17 1.41 0.44 35.6 24.9 32.0 35.9 24.9 34.7 41.2 29.6 37.433.98 0.96 0.60 56.47 1.95 0.47 38.06 1.07 0.63 52.39 1.84 0.44 37.3 32.1 56.4 37.6 33.1 56.4 42.1 36.7 58.916.15 0.26 0.13 30.68 0.84 0.37 17.99 0.30 0.13 28.85 0.80 0.37 34.2 22.0 23.9 34.5 23.7 25.7 38.4 27.1 25.75.21 0.20 0.14 5.39 0.13 -0.02 5.67 0.21 0.14 4.93 0.12 -0.02 48.7 59.9 >100 49.1 60.9 >100 53.5 64.0 >100

43.09 1.16 0.74 64.97 2.11 0.63 45.86 1.21 0.77 62.21 2.05 0.60 39.5 34.6 51.9 39.9 35.4 53.9 42.4 37.1 55.9210.71 4.64 2.70 378.57 12.59 4.42 232.77 5.21 2.84 356.51 12.02 4.28 35.5 26.1 35.9 35.8 26.9 37.9 39.5 30.2 39.9

1.67 0.05 0.00 4.63 0.20 0.07 1.97 0.06 0.00 4.33 0.19 0.07 26.1 20.4 6.7 26.5 21.9 3.9 31.3 25.7 1.110.23 0.26 0.07 19.21 0.83 0.26 11.60 0.30 0.09 17.84 0.79 0.24 34.4 22.8 18.5 34.7 23.6 21.2 39.4 27.8 26.68.61 0.22 0.13 11.64 0.40 0.10 9.31 0.24 0.14 10.94 0.38 0.09 42.0 34.6 54.2 42.5 35.7 57.2 46.0 38.0 60.3

249.03 5.49 2.61 432.86 14.71 5.40 273.24 6.19 2.79 408.65 14.02 5.23 36.3 26.3 30.4 36.5 27.2 32.6 40.1 30.6 34.8261.77 5.96 2.73 446.17 15.33 5.64 286.15 6.50 2.91 421.79 14.79 5.46 36.7 27.1 30.4 37.0 28.0 32.6 40.4 30.5 34.8

7.73 0.17 0.08 9.24 0.35 0.09 7.73 0.17 0.08 9.24 0.35 0.09 45.1 32.2 43.5 45.5 33.2 46.7 45.5 33.2 46.712.21 0.30 0.16 11.71 0.48 0.10 12.21 0.30 0.16 11.71 0.48 0.10 50.6 37.8 57.2 51.0 38.8 60.3 51.0 38.8 60.31.71 0.04 0.02 1.14 0.05 0.01 1.71 0.04 0.02 1.14 0.05 0.01 59.5 45.6 69.2 59.9 46.6 72.6 59.9 46.6 72.6

466.13 19.11 10.67 304.14 4.30 -1.84 499.40 19.93 10.67 270.88 3.48 -1.84 60.2 81.6 >100 60.5 81.6 >100 64.8 85.1 >100467.95 19.26 10.80 315.62 4.69 -1.69 501.43 19.89 10.80 282.14 4.05 -1.69 59.4 79.5 >100 59.7 80.4 >100 64.0 83.1 >10028.04 1.35 0.72 22.61 0.84 -0.09 28.04 1.35 0.72 22.61 0.84 -0.09 54.9 61.1 >100 55.4 61.7 >100 55.4 61.7 >10053.16 2.49 1.20 31.00 1.19 -0.21 53.16 2.49 1.20 31.00 1.19 -0.21 62.8 66.9 >100 63.2 67.6 >100 63.2 67.6 >100

533.08 21.99 12.68 371.47 7.24 -1.78 567.52 22.74 12.68 337.03 6.50 -1.78 58.6 75.2 >100 58.9 75.2 >100 62.7 77.8 >100550.03 22.21 13.12 397.68 8.91 -1.62 584.28 23.00 13.12 363.42 8.12 -1.62 57.7 71.4 >100 58.0 71.4 >100 61.7 73.9 >10013.97 0.52 0.15 13.43 0.55 0.02 13.97 0.52 0.15 13.43 0.55 0.02 50.3 47.3 87.5 51.0 48.4 87.5 51.0 48.4 87.517.51 0.61 0.19 4.47 0.44 0.01 17.51 0.61 0.19 4.47 0.44 0.01 79.6 58.3 95.9 79.7 58.3 95.9 79.7 58.3 95.9

589.18 23.87 14.42 423.15 10.14 -1.52 623.48 24.46 14.42 388.85 9.55 -1.52 57.9 69.3 >100 58.2 70.2 >100 61.6 71.9 >100589.65 23.93 14.46 423.72 10.16 -1.52 624.03 24.52 14.46 389.33 9.58 -1.52 57.9 69.3 >100 58.2 70.2 >100 61.6 71.9 >10010.96 0.37 0.13 1.64 0.24 -0.02 10.96 0.37 0.13 1.64 0.24 -0.02 86.7 60.6 >100 87.0 60.6 >100 87.0 60.6 >10016.81 0.55 0.18 14.24 1.10 0.21 17.08 0.56 0.18 13.98 1.08 0.21 53.4 32.1 45.8 54.1 33.2 45.8 55.0 34.2 45.8

667.92 24.33 14.64 419.55 13.93 -0.34 702.52 25.00 14.64 384.94 13.27 -0.34 61.1 62.7 >100 61.4 63.6 >100 64.6 65.3 >100644.11 23.42 14.61 446.26 14.98 -0.25 679.17 24.09 14.61 411.19 14.32 -0.25 58.7 60.1 99.4 59.1 61.0 >100 62.3 62.7 >100696.64 23.38 14.31 445.95 15.81 0.13 731.36 24.41 14.31 411.23 14.78 0.13 60.6 59.7 99.1 61.0 59.7 99.1 64.0 62.3 99.1

0.37 0.00 -0.01 3.84 0.25 0.05 0.55 0.00 -0.01 3.65 0.24 0.05 8.0 2.4 36.6 8.7 1.4 30.4 13.2 1.5 30.43.14 0.07 0.00 8.91 0.64 0.13 3.70 0.10 0.01 8.36 0.61 0.12 25.2 8.9 5.4 26.0 10.0 0.9 30.7 13.4 7.16.74 0.18 0.03 0.44 0.05 0.00 6.74 0.18 0.03 0.44 0.05 0.00 93.6 77.6 88.4 93.9 77.6 88.4 93.9 77.6 88.4

12.46 0.39 0.07 -0.98 0.08 0.01 12.46 0.39 0.07 -0.98 0.08 0.01 >100 82.8 86.1 >100 82.8 86.1 >100 82.8 86.119.01 0.67 0.18 -1.79 0.13 0.01 19.01 0.67 0.18 -1.79 0.13 0.01 >100 83.9 95.7 >100 83.9 95.7 >100 83.9 95.734.96 1.45 0.43 2.64 0.69 -0.05 34.96 1.45 0.43 2.64 0.69 -0.05 92.8 67.6 >100 93.0 67.6 >100 93.0 67.6 >10042.92 1.67 0.59 13.03 1.59 0.03 43.21 1.70 0.59 12.74 1.55 0.03 76.3 51.2 95.7 76.7 51.2 95.7 77.2 52.3 95.7

710.30 25.66 14.81 493.59 19.49 0.78 746.83 26.48 14.81 457.06 18.67 0.78 58.6 55.9 92.3 59.0 56.8 95.0 62.0 58.7 95.00.57 0.00 -0.01 2.88 0.23 0.04 0.63 0.01 -0.01 2.82 0.23 0.04 15.1 0.6 74.1 16.6 1.6 55.4 18.4 3.7 55.4

717.00 25.88 14.73 525.88 22.95 1.69 754.16 26.74 14.73 488.72 22.09 1.69 57.3 52.1 89.7 57.7 53.0 89.7 60.7 54.8 89.7718.28 25.60 14.82 530.69 23.53 1.70 755.23 26.47 14.82 493.74 22.66 1.70 57.1 52.1 87.1 57.5 52.1 89.7 60.5 53.9 89.7769.34 29.69 17.97 485.41 19.73 -1.35 806.52 30.13 17.97 448.23 19.29 -1.35 56.9 51.2 87.1 61.3 60.1 >100 64.3 61.0 >100769.48 29.69 17.97 485.50 19.74 -1.35 806.66 30.13 17.97 448.31 19.30 -1.35 56.9 51.2 87.1 61.3 60.1 >100 64.3 61.0 >100769.45 29.27 17.55 486.19 20.18 -0.92 806.65 30.15 17.98 448.99 19.31 -1.35 56.8 51.2 87.1 61.3 59.2 >100 64.2 61.0 >100769.45 29.31 17.57 487.39 20.21 -0.92 806.27 30.19 17.57 450.58 19.33 -0.92 56.8 51.2 87.1 61.2 59.2 >100 64.2 61.0 >100

INTERBASIN TRANSFER DATAitb simulated (actual "loss" due to Smithfield Dam extraction) (a) Acocks / itb demand : test dataDemand (Mm3) Deficit (actual deduction) (b) diff / itb deficit : test data

annual sep_mean sep-dry annual sep_mean sep-dry diff (a) diff (b)90.04 2.02 0.91 0.24 0.02 0.02 0.24 0.0030.74 0.70 0.34 0.32 0.01 0.01 0.32 0.00

154.97 3.79 1.77 1.69 0.04 0.04 1.69 0.00165.44 4.09 1.87 1.31 0.04 0.00 1.31 0.0098.96 3.19 0.99 0.23 0.03 0.01 0.23 0.0034.95 0.83 0.35 0.05 0.01 -0.01 0.05 0.00

197.13 5.89 2.00 2.58 0.12 0.12 2.58 0.00380.50 10.58 4.18 2.64 0.17 0.09 2.64 0.0063.41 1.93 0.62 1.49 0.08 0.08 1.49 0.0086.83 2.56 0.72 3.63 0.35 0.35 3.63 0.0046.40 1.07 0.49 0.44 0.03 0.01 0.44 0.008.95 0.19 0.01 1.65 0.13 0.11 1.65 0.00

101.24 2.80 0.96 6.83 0.47 0.41 6.83 0.00576.32 16.23 6.12 12.96 1.00 1.00 12.96 0.00

6.75 0.25 0.09 -0.45 0.00 -0.02 -0.45 0.0029.09 1.06 0.34 0.35 0.03 -0.01 0.35 0.0018.43 0.53 0.15 1.82 0.09 0.08 1.82 0.00

661.68 18.98 7.32 20.20 1.22 0.70 20.20 0.00683.74 19.83 7.64 24.20 1.46 0.73 24.20 0.0013.87 0.44 0.12 3.10 0.08 0.04 3.10 0.0018.24 0.62 0.16 5.68 0.17 0.10 5.68 0.001.92 0.06 0.01 0.93 0.03 0.01 0.93 0.00

514.20 8.42 8.01 256.07 14.99 0.82 256.07 0.00529.30 8.90 0.21 254.27 15.04 8.90 254.27 0.0036.42 1.88 0.04 14.23 0.31 0.58 14.23 0.0053.95 1.84 0.24 30.21 1.84 0.75 30.21 0.00

618.15 12.39 0.50 286.40 16.85 10.41 286.40 0.00656.13 14.38 0.78 291.58 16.74 10.72 291.58 0.0020.90 0.74 0.06 6.49 0.33 0.12 6.49 0.0010.46 0.63 0.05 11.52 0.43 0.15 11.52 0.00

699.22 16.12 1.17 313.11 17.88 11.73 313.11 0.00700.07 16.16 1.18 313.30 17.93 11.76 313.30 0.00

5.55 0.33 0.07 7.06 0.28 0.05 7.06 0.0023.86 1.35 0.27 7.19 0.30 0.12 7.19 0.00

756.37 19.63 1.66 331.10 18.63 12.64 331.10 0.00759.08 19.70 1.67 331.28 18.70 12.69 331.28 0.00773.76 20.62 2.06 368.83 18.56 12.37 368.83 0.00

5.05 0.28 0.05 -0.84 -0.03 -0.02 -0.84 0.0012.37 0.73 0.14 -0.32 -0.02 -0.02 -0.32 0.002.50 0.08 0.01 4.68 0.15 0.03 4.68 0.002.31 0.14 0.02 9.17 0.34 0.06 9.17 0.003.15 0.23 0.03 14.07 0.57 0.15 14.07 0.00

13.42 0.96 0.20 24.17 1.18 0.18 24.17 0.0029.08 1.99 0.11 26.87 1.27 0.51 26.87 0.00

838.99 25.04 2.87 364.90 20.11 12.72 364.90 0.003.87 0.26 0.05 -0.42 -0.03 -0.02 -0.42 0.00

882.46 28.95 3.89 360.42 19.88 12.53 360.42 0.00889.01 29.56 3.91 359.95 19.56 12.61 359.95 0.00845.39 25.80 0.87 409.36 23.62 15.74 409.36 0.00845.55 25.81 0.87 409.43 23.62 15.75 409.43 0.00846.43 26.26 1.31 409.21 23.20 15.32 409.21 0.00847.97 26.29 1.31 408.87 23.23 15.34 408.87 0.00

new_sent2csir_itb.xls new_sent2csir_itb.xlsc/o valerie c/o valerie

Combined ACRU Runoff Data for Mkomazi

SECTOR DATA (Mm3) MODELED SECTOR STREAMFLOWS (Mm3)ACOCKS DATA Environmental demand Present sector streamflow Present sector + 10 % forest Future sector streamflow(natural runoff under pristine conditions) interpolated from publ demand figures current livestock and domestic, plus current forestry, irrig and dryland from l/c, downstream streamflow accumulated, no Smithfield abstraction)current livestock and domestic, 10 % incr forestry (eg. grassveld loss), current irrig and dryland from l/c, no transfer from Smithfield Dam, downstream streamflow accumulatedfuture livestock and domestic, plus current forestry, irrig and dryland from l/c, and transfer from Smithfield Dam, downstream accumulated

SC accumulated area km2 ha annual sep_mean sep_dry mean sep_mean sep_dry mean sep_mean sep_dry mean sep_mean sep_dry mean sep_mean sep_dryBASE_MN BASE_SEPMN BASE_SEPDR ENV_D_MN ENV_D_SEPMN ENV_D_SEPDR CURR_S_MN CURR_S_SEPMN CURR_S_SEPDR CURF_S_MN CURF_S_SEPMN CURF_S_SEPDR FUT_S_MN FUT_S_SEPMN FUT_S_SEPDR

1 1 162.914 16291.4 90.28 2.04 0.93 30.30 0.43 0.22 90.15 2.04 0.93 86.26 1.94 0.17 90.04 2.02 0.912 2 63.323 6332.3 31.06 0.72 0.34 10.42 0.15 0.08 30.79 0.71 0.34 29.43 0.68 0.02 30.74 0.70 0.343 1,2,3 141.686 14168.6 156.66 3.83 1.80 52.57 0.81 0.43 155.23 3.79 1.80 148.64 3.64 0.54 154.97 3.79 1.774 3,4 29.216 2921.6 166.75 4.13 1.87 55.96 0.87 0.45 165.76 4.09 1.91 159.01 3.93 0.63 165.44 4.09 1.875 5 142.968 14296.8 99.18 3.22 1.00 33.28 0.68 0.24 99.08 3.20 0.99 95.58 3.07 0.29 98.96 3.19 0.996 6 57.758 5775.8 35.00 0.84 0.35 11.75 0.18 0.08 35.01 0.83 0.36 33.61 0.80 0.03 34.95 0.83 0.357 5,6,7 208.006 20800.6 199.71 6.01 2.13 67.02 1.27 0.51 197.54 5.93 2.04 189.08 5.64 1.07 197.13 5.89 2.008 4,7,8 47.091 4709.1 383.15 10.75 4.26 128.58 2.27 1.02 381.18 10.66 4.26 365.23 10.15 3.71 380.50 10.58 4.189 9 189.227 18922.7 64.90 2.01 0.70 21.78 0.42 0.17 63.56 1.93 0.64 59.95 1.84 0.11 63.41 1.93 0.6210 9,10 77.443 7744.3 90.45 2.91 1.07 30.35 0.61 0.25 87.04 2.59 0.72 82.75 2.45 0.20 86.83 2.56 0.7211 11 93.123 9312.3 46.84 1.10 0.50 15.72 0.23 0.12 46.52 1.09 0.50 44.56 1.03 0.05 46.40 1.07 0.4912 12 32.865 3286.5 10.60 0.32 0.12 3.56 0.07 0.03 8.99 0.20 0.01 8.49 0.18 0.00 8.95 0.19 0.0113 11,12,13 148.147 14814.7 108.06 3.26 1.37 36.26 0.69 0.33 101.59 2.82 0.99 98.47 2.74 0.27 101.24 2.80 0.9614 8,10,13,14 29.97 2997 589.28 17.23 7.12 197.75 3.64 1.70 577.75 16.37 6.26 554.26 15.66 8.68 576.32 16.23 6.1215 15 18.867 1886.7 6.30 0.25 0.07 2.11 0.05 0.02 6.77 0.25 0.09 6.45 0.24 0.00 6.75 0.25 0.0916 15,16 70.939 7093.9 29.44 1.09 0.33 9.88 0.23 0.08 29.21 1.07 0.35 27.72 1.01 0.03 29.09 1.06 0.3417 17 69.655 6965.5 20.25 0.62 0.23 6.80 0.13 0.05 18.54 0.54 0.16 17.73 0.52 0.01 18.43 0.53 0.1518 14,16,17,18 158.546 15854.6 681.89 20.20 8.01 228.83 4.27 1.91 663.43 19.16 7.49 637.47 18.29 11.66 661.68 18.98 7.3219 18,19 77.69 7769 707.94 21.29 8.37 237.57 4.50 2.00 685.56 20.01 7.82 659.36 19.29 12.72 683.74 19.83 7.6420 20 55.13 5513 16.98 0.52 0.17 4.63 0.09 0.04 13.94 0.44 0.13 13.87 0.44 0.01 13.87 0.44 0.1221 20,21 24.124 2412.4 23.92 0.78 0.26 6.52 0.14 0.05 18.34 0.63 0.17 18.24 0.62 0.01 18.24 0.62 0.1622 22 9.061 906.1 2.85 0.09 0.03 0.78 0.02 0.01 1.93 0.07 0.01 1.92 0.06 0.00 1.92 0.06 0.0123 19,21,22, 23 145.818 14581.8 770.27 23.41 8.83 210.06 4.12 1.84 516.25 8.42 0.00 716.47 21.15 15.15 514.20 8.42 0.0024 23,24 65.329 6532.9 783.56 23.94 9.11 213.68 4.21 1.90 531.63 9.11 0.21 731.23 21.61 15.80 529.30 8.90 0.2125 25 135.996 13599.6 50.64 2.19 0.63 13.81 0.39 0.13 36.65 1.24 0.04 36.42 1.22 0.04 36.42 1.22 0.0426 25, 26 106.48 10648 84.16 3.69 0.99 22.95 0.65 0.21 54.29 1.87 0.00 53.95 1.84 0.10 53.95 1.84 0.0027 24, 26, 27 116.175 11617.5 904.55 29.24 10.90 246.68 5.15 2.28 621.12 12.39 0.50 819.08 25.02 20.50 618.15 12.39 0.5028 27, 28 137.541 13754.1 947.71 31.12 11.51 258.44 5.48 2.40 659.26 14.38 0.78 857.23 26.94 23.09 656.13 14.38 0.7829 29 117.434 11743.4 27.40 1.07 0.18 7.47 0.19 0.04 21.09 0.75 0.06 20.90 0.74 0.02 20.90 0.74 0.0630 30 122.668 12266.8 21.98 1.05 0.20 5.99 0.19 0.04 10.49 0.63 0.05 10.46 0.63 0.01 10.46 0.63 0.0531 29, 30, 28, 31 76.546 7654.6 1012.33 34.01 12.90 276.07 5.99 2.69 702.44 16.42 1.17 900.34 29.02 26.13 699.22 16.12 1.1732 31, 32 7.28 728 1013.37 34.09 12.93 276.35 6.00 2.70 703.30 16.46 1.18 901.10 28.80 25.95 700.07 16.16 1.1833 33 76.065 7606.5 12.60 0.62 0.11 3.90 0.09 0.02 5.58 0.33 0.00 5.55 0.33 0.00 5.55 0.33 0.0034 33, 34 101.097 10109.7 31.05 1.65 0.39 9.62 0.25 0.05 24.07 1.36 0.27 23.60 1.33 0.03 23.86 1.35 0.2735 32, 34, 35 211.443 21144.3 1087.46 38.27 14.31 336.82 5.70 2.00 760.36 19.97 2.00 957.02 32.28 30.89 756.37 19.63 1.6636 35, 36 11.944 1194.4 1090.36 38.40 14.36 312.82 4.72 1.92 762.75 20.04 2.00 959.45 32.39 31.08 759.08 19.70 1.6737 36, 37 97.829 9782.9 1142.59 39.19 14.44 327.81 4.81 1.93 777.88 20.62 2.06 974.50 33.00 32.16 773.76 20.62 2.0638 38 23.739 2373.9 4.21 0.24 0.04 1.21 0.03 0.01 5.08 0.28 0.06 4.86 0.27 0.00 5.05 0.28 0.0539 38, 39 56.036 5603.6 12.05 0.71 0.13 3.46 0.09 0.02 12.47 0.73 0.15 11.81 0.70 0.01 12.37 0.73 0.1440 40 48.362 4836.2 7.18 0.24 0.04 2.06 0.03 0.01 2.52 0.08 0.01 2.50 0.08 0.00 2.50 0.08 0.0141 40, 41 29.743 2974.3 11.48 0.48 0.09 3.29 0.06 0.01 2.33 0.14 0.02 2.31 0.14 0.00 2.31 0.14 0.0242 41, 42 30.066 3006.6 17.22 0.80 0.18 4.94 0.10 0.02 3.17 0.23 0.03 3.15 0.23 0.00 3.15 0.23 0.0343 42, 43 143.62 14362 37.59 2.14 0.38 10.79 0.26 0.05 13.50 0.96 0.00 13.42 0.96 0.01 13.42 0.96 0.0044 43, 44 109.855 10985.5 55.95 3.25 0.61 16.05 0.40 0.08 29.29 1.99 0.11 28.79 1.95 0.06 29.08 1.99 0.1145 37, 44, 39, 45 226.22 22622 1203.89 45.15 15.60 345.39 5.55 2.09 843.50 25.45 3.28 1038.06 37.76 39.20 838.99 25.04 2.8746 46 16.759 1675.9 3.45 0.23 0.03 0.99 0.03 0.00 3.92 0.26 0.05 3.81 0.25 0.00 3.87 0.26 0.0547 45, 46, 47 199.768 19976.8 1242.88 48.83 16.42 356.58 6.00 2.20 887.21 29.39 3.89 1080.82 41.49 44.84 882.46 28.95 3.8948 47, 48 25.703 2570.3 1248.97 49.12 16.52 358.33 6.04 2.21 894.23 29.56 4.35 1087.68 42.17 45.87 889.01 29.56 3.9149 48, 49 26.233 2623.3 1254.75 49.42 16.62 359.99 6.07 2.23 901.37 30.18 4.37 1094.24 42.42 46.42 845.39 25.80 0.8750 49, 50 0.785 78.5 1254.98 49.43 16.62 360.05 6.07 2.23 901.54 30.18 4.37 1094.88 42.43 46.46 845.55 25.81 0.8751 50, 51 2.297 229.7 1255.64 49.46 16.63 360.24 6.08 2.23 902.45 30.20 4.38 1095.46 42.45 46.51 846.43 26.26 1.3152 51, 52 5.717 571.7 1256.84 49.52 16.65 360.59 6.08 2.23 904.07 30.24 4.38 1097.33 42.51 46.65 847.97 26.29 1.31

Streamflow Classes (Mm3) Percentage Classes (%)< 0 1 0 - 100 - 1 2 10 - 201 - 2 3 20 - 302 - 4 4 30 - 40 4 - 8 5 40 - 50 8 - 16 6 50 - 60 16 - 32 7 60 - 70 32 - 64 8 70 - 80 64 - 128 9 80 - 90 128 - 256 10 90 - 100 256 - 512 11512 - 1024 12

> 1024 13

GIS COVERAGE / MAP DATA

Future sector + 10% forest Mean Sep-Mean Sep-dry Present total sector demand (Mm3)(future livestock and domestic, 10 % incr forestry (eg. grassveld loss), current irrig and dryland from l/c, and transfer from Smithfield Dam, downstream streamflow accumulated)Baseline Baseline Baseline (sector+ environment demand)

mean sep_mean sep_dry (Mm3) (Mm3) (Mm3) mean Sep-Mean Sep-dryFUTF_S_MN FUTF_S_SEPMN FUTF_S_SEPDR BASE_MN BASE_SEPMN BASE_SEPDR CURR_D_MN CURR_D_SEPMN CURR_D_SEPDR

86.26 1.94 0.91 90.28 2.04 0.93 30.43 0.43 0.2229.43 0.68 0.33 31.06 0.72 0.34 10.70 0.16 0.08148.64 3.64 1.73 156.66 3.83 1.80 54.01 0.85 0.43159.01 3.93 1.87 166.75 4.13 1.87 56.95 0.91 0.4195.58 3.07 0.90 99.18 3.22 1.00 33.38 0.69 0.2533.61 0.80 0.34 35.00 0.84 0.35 11.74 0.18 0.07189.08 5.64 1.96 199.71 6.01 2.13 69.18 1.35 0.59365.23 10.15 4.09 383.15 10.75 4.26 130.54 2.36 1.0259.95 1.84 0.61 64.90 2.01 0.70 23.12 0.50 0.2282.75 2.45 0.69 90.45 2.91 1.07 33.77 0.93 0.6044.56 1.03 0.49 46.84 1.10 0.50 16.03 0.24 0.128.49 0.18 0.01 10.60 0.32 0.12 5.16 0.19 0.1498.47 2.74 0.93 108.06 3.26 1.37 42.73 1.13 0.71554.26 15.66 5.98 589.28 17.23 7.12 209.28 4.50 2.566.45 0.24 0.08 6.30 0.25 0.07 1.64 0.05 0.0027.72 1.01 0.32 29.44 1.09 0.33 10.11 0.25 0.0617.73 0.52 0.15 20.25 0.62 0.23 8.50 0.21 0.12637.47 18.29 7.14 681.89 20.20 8.01 247.29 5.32 2.44659.36 19.29 7.46 707.94 21.29 8.37 259.95 5.77 2.5513.87 0.44 0.12 16.98 0.52 0.17 7.66 0.17 0.0718.24 0.62 0.16 23.92 0.78 0.26 12.10 0.30 0.151.92 0.06 0.01 2.85 0.09 0.03 1.69 0.04 0.02

480.93 7.60 0.00 770.27 23.41 8.83 464.07 19.11 10.67495.82 8.26 0.21 783.56 23.94 9.11 465.62 19.05 10.8036.42 1.22 0.04 50.64 2.19 0.63 27.81 1.34 0.7253.95 1.84 0.00 84.16 3.69 0.99 52.82 2.47 1.20583.71 11.64 0.50 904.55 29.24 10.90 530.11 21.99 12.68621.87 13.60 0.78 947.71 31.12 11.51 546.89 22.21 13.1220.90 0.74 0.06 27.40 1.07 0.18 13.78 0.51 0.1510.46 0.63 0.05 21.98 1.05 0.20 17.49 0.61 0.19664.92 15.54 1.17 1012.33 34.01 12.90 585.95 23.58 14.42665.68 15.58 1.18 1013.37 34.09 12.93 586.42 23.63 14.465.55 0.33 0.00 12.60 0.62 0.11 10.92 0.37 0.1323.60 1.33 0.27 31.05 1.65 0.39 16.60 0.53 0.18721.76 18.97 1.66 1087.46 38.27 14.31 663.92 24.00 14.31724.02 19.04 1.67 1090.36 38.40 14.36 640.43 23.09 14.28739.04 19.59 2.06 1142.59 39.19 14.44 692.51 23.38 14.314.86 0.27 0.05 4.21 0.24 0.04 0.34 -0.01 -0.0111.81 0.70 0.14 12.05 0.71 0.13 3.04 0.06 -0.012.50 0.08 0.01 7.18 0.24 0.04 6.72 0.18 0.032.31 0.14 0.02 11.48 0.48 0.09 12.45 0.39 0.073.15 0.23 0.03 17.22 0.80 0.18 18.99 0.67 0.1813.42 0.96 0.00 37.59 2.14 0.38 34.88 1.45 0.4328.79 1.95 0.11 55.95 3.25 0.61 42.70 1.67 0.59802.46 24.22 2.87 1203.89 45.15 15.60 705.78 25.25 14.403.81 0.25 0.05 3.45 0.23 0.03 0.52 0.00 -0.02

845.30 28.09 3.89 1242.88 48.83 16.42 712.24 25.45 14.73852.06 28.69 3.91 1248.97 49.12 16.52 713.06 25.60 14.39808.22 25.37 0.87 1254.75 49.42 16.62 713.36 25.32 14.47808.37 25.37 0.87 1254.98 49.43 16.62 713.49 25.32 14.47809.23 25.38 0.88 1255.64 49.46 16.63 713.43 25.33 14.48811.16 25.42 1.31 1256.84 49.52 16.65 713.36 25.37 14.50

Present total streamflow deficit (Mm3) Future total sector demand (Mm3) Future total streamflow deficit (Mm3) Future total sector + forest incr (Mm3) Future total streamflow deficit #2 (Mm3)(baseline - total sector demand) (sector+ environment demand) (baseline - total sector demand) (sector+ environment demand) (baseline - total sector + forest incr demand)

mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry mean Sep-Mean Sep-dryCURR_S_MN CURR_S_SEPMN CURR_S_SEPDR FUT_D_MN FUT_D_SEPMN FUT_D_SEPDR FUT_S_MN FUT_S_SEPMN FUT_S_SEPDR FUTF_D_MN FUTF_D_SEPMN FUTF_D_SEPDR FUTF_S_MN FUTF_S_SEPMN FUTF_S_SEPDR

59.85 1.61 0.71 30.54 0.45 0.24 59.74 1.59 0.69 34.32 0.53 0.24 55.96 1.51 0.6920.37 0.56 0.26 10.74 0.16 0.09 20.32 0.55 0.25 12.05 0.19 0.09 19.01 0.53 0.25102.65 2.98 1.37 54.26 0.85 0.47 102.40 2.98 1.34 60.59 0.99 0.50 96.07 2.83 1.30109.80 3.22 1.46 57.27 0.91 0.45 109.48 3.22 1.42 63.70 1.07 0.45 103.05 3.06 1.4265.80 2.52 0.75 33.51 0.71 0.25 65.67 2.51 0.75 36.89 0.82 0.34 62.30 2.39 0.6623.26 0.65 0.28 11.79 0.18 0.08 23.21 0.65 0.27 13.14 0.22 0.09 21.86 0.62 0.26130.52 4.66 1.54 69.59 1.39 0.63 130.11 4.62 1.49 77.64 1.64 0.67 122.06 4.37 1.45252.61 8.39 3.25 131.22 2.44 1.10 251.93 8.30 3.16 146.49 2.87 1.19 236.66 7.88 3.0841.78 1.51 0.48 23.28 0.50 0.24 41.63 1.51 0.46 26.74 0.59 0.26 38.17 1.41 0.4456.69 1.97 0.47 33.98 0.96 0.60 56.47 1.95 0.47 38.06 1.07 0.63 52.39 1.84 0.4430.80 0.86 0.38 16.15 0.26 0.13 30.68 0.84 0.37 17.99 0.30 0.13 28.85 0.80 0.375.44 0.13 -0.02 5.21 0.20 0.14 5.39 0.13 -0.02 5.67 0.21 0.14 4.93 0.12 -0.0265.33 2.13 0.66 43.09 1.16 0.74 64.97 2.11 0.63 45.86 1.21 0.77 62.21 2.05 0.60380.00 12.73 4.56 210.71 4.64 2.70 378.57 12.59 4.42 232.77 5.21 2.84 356.51 12.02 4.284.66 0.20 0.07 1.67 0.05 0.00 4.63 0.20 0.07 1.97 0.06 0.00 4.33 0.19 0.0719.33 0.84 0.27 10.23 0.26 0.07 19.21 0.83 0.26 11.60 0.30 0.09 17.84 0.79 0.2411.75 0.41 0.11 8.61 0.22 0.13 11.64 0.40 0.10 9.31 0.24 0.14 10.94 0.38 0.09434.60 14.89 5.57 249.03 5.49 2.61 432.86 14.71 5.40 273.24 6.19 2.79 408.65 14.02 5.23447.99 15.51 5.82 261.77 5.96 2.73 446.17 15.33 5.64 286.15 6.50 2.91 421.79 14.79 5.469.31 0.35 0.10 7.73 0.17 0.08 9.24 0.35 0.09 7.73 0.17 0.08 9.24 0.35 0.0911.82 0.49 0.11 12.21 0.30 0.16 11.71 0.48 0.10 12.21 0.30 0.16 11.71 0.48 0.101.15 0.05 0.01 1.71 0.04 0.02 1.14 0.05 0.01 1.71 0.04 0.02 1.14 0.05 0.01

306.20 4.30 -1.84 466.13 19.11 10.67 304.14 4.30 -1.84 499.40 19.93 10.67 270.88 3.48 -1.84317.95 4.90 -1.69 467.95 19.26 10.80 315.62 4.69 -1.69 501.43 19.89 10.80 282.14 4.05 -1.6922.84 0.85 -0.09 28.04 1.35 0.72 22.61 0.84 -0.09 28.04 1.35 0.72 22.61 0.84 -0.0931.34 1.22 -0.21 53.16 2.49 1.20 31.00 1.19 -0.21 53.16 2.49 1.20 31.00 1.19 -0.21374.45 7.24 -1.78 533.08 21.99 12.68 371.47 7.24 -1.78 567.52 22.74 12.68 337.03 6.50 -1.78400.82 8.91 -1.62 550.03 22.21 13.12 397.68 8.91 -1.62 584.28 23.00 13.12 363.42 8.12 -1.6213.62 0.56 0.02 13.97 0.52 0.15 13.43 0.55 0.02 13.97 0.52 0.15 13.43 0.55 0.024.49 0.44 0.01 17.51 0.61 0.19 4.47 0.44 0.01 17.51 0.61 0.19 4.47 0.44 0.01

426.38 10.43 -1.52 589.18 23.87 14.42 423.15 10.14 -1.52 623.48 24.46 14.42 388.85 9.55 -1.52426.95 10.46 -1.52 589.65 23.93 14.46 423.72 10.16 -1.52 624.03 24.52 14.46 389.33 9.58 -1.521.68 0.24 -0.02 10.96 0.37 0.13 1.64 0.24 -0.02 10.96 0.37 0.13 1.64 0.24 -0.0214.46 1.12 0.21 16.81 0.55 0.18 14.24 1.10 0.21 17.08 0.56 0.18 13.98 1.08 0.21423.54 14.27 0.00 667.92 24.33 14.64 419.55 13.93 -0.34 702.52 25.00 14.64 384.94 13.27 -0.34449.93 15.32 0.08 644.11 23.42 14.61 446.26 14.98 -0.25 679.17 24.09 14.61 411.19 14.32 -0.25450.07 15.81 0.13 696.64 23.38 14.31 445.95 15.81 0.13 731.36 24.41 14.31 411.23 14.78 0.133.87 0.25 0.05 0.37 0.00 -0.01 3.84 0.25 0.05 0.55 0.00 -0.01 3.65 0.24 0.059.01 0.65 0.13 3.14 0.07 0.00 8.91 0.64 0.13 3.70 0.10 0.01 8.36 0.61 0.120.46 0.05 0.00 6.74 0.18 0.03 0.44 0.05 0.00 6.74 0.18 0.03 0.44 0.05 0.00-0.97 0.08 0.01 12.46 0.39 0.07 -0.98 0.08 0.01 12.46 0.39 0.07 -0.98 0.08 0.01-1.77 0.13 0.01 19.01 0.67 0.18 -1.79 0.13 0.01 19.01 0.67 0.18 -1.79 0.13 0.012.71 0.69 -0.05 34.96 1.45 0.43 2.64 0.69 -0.05 34.96 1.45 0.43 2.64 0.69 -0.0513.24 1.59 0.03 42.92 1.67 0.59 13.03 1.59 0.03 43.21 1.70 0.59 12.74 1.55 0.03498.11 19.90 1.19 710.30 25.66 14.81 493.59 19.49 0.78 746.83 26.48 14.81 457.06 18.67 0.782.93 0.24 0.05 0.57 0.00 -0.01 2.88 0.23 0.04 0.63 0.01 -0.01 2.82 0.23 0.04

530.63 23.39 1.69 717.00 25.88 14.73 525.88 22.95 1.69 754.16 26.74 14.73 488.72 22.09 1.69535.90 23.53 2.13 718.28 25.60 14.82 530.69 23.53 1.70 755.23 26.47 14.82 493.74 22.66 1.70541.39 24.10 2.15 769.34 29.69 17.97 485.41 19.73 -1.35 806.52 30.13 17.97 448.23 19.29 -1.35541.49 24.11 2.15 769.48 29.69 17.97 485.50 19.74 -1.35 806.66 30.13 17.97 448.31 19.30 -1.35542.21 24.12 2.15 769.45 29.27 17.55 486.19 20.18 -0.92 806.65 30.15 17.98 448.99 19.31 -1.35543.48 24.15 2.15 769.45 29.31 17.57 487.39 20.21 -0.92 806.27 30.19 17.57 450.58 19.33 -0.92

Present total demand as a % of baseline Future total demand as a % of baseline Future total demand as a % of baseline(incl 10 % incr in forestry)

mean Sep-Mean Sep-dry mean Sep-Mean Sep-dry mean Sep-Mean Sep-dryCUR%_D_MN CUR%_D_SEPMN CUR%_D_SEPDR FUT%_D_MN FUT%_D_SEPMN FUT%_D_SEPDR FFT%_D_MN FFT%_D_SEPMN FFT%_D_SEPDR

33.7 21.1 23.9 33.8 21.9 25.7 38.0 25.9 25.734.4 22.0 23.9 34.6 22.9 25.7 38.8 26.4 27.634.5 22.1 23.9 34.6 22.1 25.9 38.7 25.9 28.034.2 22.1 21.8 34.3 22.1 23.9 38.2 25.9 23.933.7 21.6 25.3 33.8 22.0 25.3 37.2 25.6 33.933.5 21.8 20.6 33.7 21.8 22.2 37.5 26.0 25.634.6 22.5 27.7 34.8 23.2 29.7 38.9 27.3 31.634.1 21.9 23.9 34.2 22.7 25.9 38.2 26.7 27.935.6 24.9 32.0 35.9 24.9 34.7 41.2 29.6 37.437.3 32.1 56.4 37.6 33.1 56.4 42.1 36.7 58.934.2 22.0 23.9 34.5 23.7 25.7 38.4 27.1 25.748.7 59.9 >100 49.1 60.9 >100 53.5 64.0 >10039.5 34.6 51.9 39.9 35.4 53.9 42.4 37.1 55.935.5 26.1 35.9 35.8 26.9 37.9 39.5 30.2 39.926.1 20.4 6.7 26.5 21.9 3.9 31.3 25.7 1.134.4 22.8 18.5 34.7 23.6 21.2 39.4 27.8 26.642.0 34.6 54.2 42.5 35.7 57.2 46.0 38.0 60.336.3 26.3 30.4 36.5 27.2 32.6 40.1 30.6 34.836.7 27.1 30.4 37.0 28.0 32.6 40.4 30.5 34.845.1 32.2 43.5 45.5 33.2 46.7 45.5 33.2 46.750.6 37.8 57.2 51.0 38.8 60.3 51.0 38.8 60.359.5 45.6 69.2 59.9 46.6 72.6 59.9 46.6 72.6 Smithfield Dam influence line60.2 81.6 >100 60.5 81.6 >100 64.8 85.1 >10059.4 79.5 >100 59.7 80.4 >100 64.0 83.1 >10054.9 61.1 >100 55.4 61.7 >100 55.4 61.7 >10062.8 66.9 >100 63.2 67.6 >100 63.2 67.6 >10058.6 75.2 >100 58.9 75.2 >100 62.7 77.8 >10057.7 71.4 >100 58.0 71.4 >100 61.7 73.9 >10050.3 47.3 87.5 51.0 48.4 87.5 51.0 48.4 87.579.6 58.3 95.9 79.7 58.3 95.9 79.7 58.3 95.957.9 69.3 >100 58.2 70.2 >100 61.6 71.9 >10057.9 69.3 >100 58.2 70.2 >100 61.6 71.9 >10086.7 60.6 >100 87.0 60.6 >100 87.0 60.6 >10053.4 32.1 45.8 54.1 33.2 45.8 55.0 34.2 45.861.1 62.7 >100 61.4 63.6 >100 64.6 65.3 >10058.7 60.1 99.4 59.1 61.0 >100 62.3 62.7 >10060.6 59.7 99.1 61.0 59.7 99.1 64.0 62.3 99.18.0 2.4 36.6 8.7 1.4 30.4 13.2 1.5 30.425.2 8.9 5.4 26.0 10.0 0.9 30.7 13.4 7.193.6 77.6 88.4 93.9 77.6 88.4 93.9 77.6 88.4>100 82.8 86.1 >100 82.8 86.1 >100 82.8 86.1>100 83.9 95.7 >100 83.9 95.7 >100 83.9 95.792.8 67.6 >100 93.0 67.6 >100 93.0 67.6 >10076.3 51.2 95.7 76.7 51.2 95.7 77.2 52.3 95.758.6 55.9 92.3 59.0 56.8 95.0 62.0 58.7 95.015.1 0.6 74.1 16.6 1.6 55.4 18.4 3.7 55.457.3 52.1 89.7 57.7 53.0 89.7 60.7 54.8 89.757.1 52.1 87.1 57.5 52.1 89.7 60.5 53.9 89.756.9 51.2 87.1 61.3 60.1 >100 64.3 61.0 >10056.9 51.2 87.1 61.3 60.1 >100 64.3 61.0 >10056.8 51.2 87.1 61.3 59.2 >100 64.2 61.0 >10056.8 51.2 87.1 61.2 59.2 >100 64.2 61.0 >100