42
Wetland Sources and Their Contributions to Arctic Methane Emissions Patrick Crill Dept of Geological Sciences Bolin Centre for Climate Research Stockholm University patrick.crill @geo.su.se Stordalen Mire

Wetland Sources and Their Contributions to Arctic Methane Emissions · 2017. 5. 23. · Ben Woodcroft 2017, in prep Genome-centric analysis of whole community carbon metabolism across

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Wetland Sources and Their Contributions to Arctic Methane Emissions

    Patrick CrillDept of Geological SciencesBolin Centre for Climate ResearchStockholm University

    patrick.crill @geo.su.seStordalen Mire

  • Methane Formationgeneralities

    • Metabolic product of methanogenic Archaea

    • The main substrates are acetate or CO2+H2:CH3COOH CH4 + CO2CO2 + 4H2 CH4 + 2H2O

    (There are a few “non-competitive” subtrates (demethylation of osmotic regulators, e.g. glycine betaine, trimethylamine, DMSP))

    • Formed at low Eh: < -200mV(very low O2, SO42- and NO3- concentrations)

    Methanogenesis is strictly an ANAEROBIC process

  • Methane oxidation

    • Catalyzed by methanotrophic or methylotrophic bacteria and archaea

    • The main substrates are CH4 and O2:CH4 + 2O2 CO2 + 2H2O

    Methane oxidation is mostly an AEROBIC process

    (marine sediments, metalliferous and hypersaline environments are the exceptions)

  • Some Points about Tropospheric CH4

    1. Its mixing ratio is increasing in troposphere, with a rate that appears to have become variable in recent years.

    2. The reason for the increasing trend is not clearly established, but both natural and anthropogenic sources appear to be important.

    3. Its mixing ratio is larger by 5 – 10% in NH compared to SH.

    4. Its seasonality is similar to that of CO2.

    5. Its principal removal mechanism from the troposphere is chemical decomposition by OH attack. Its lifetime is thought to be 8 to 11 years.

  • Loulergue et al. Nature, 2008

    ~350 ppb ≈ 975 Tg

  • Global Methane Budget 2003‐2012

    http://www.globalcarbonatlas.org

  • Provided by: Michel, White CU INSTAAR; Dlugokencky NOAA ESRL

  • Geological Sources

  • Global Vegetation C 650 PgGlobal Soil C (1m) 1500 PgAtmosphere 777+ Pg

    Permafrost Zone Soil CPeatlands (several m) 277 PgMineral Soil (3m) 747 PgSiberian Deep C (~25m)  407 PgAlluvial Deep C (~25m) 241 Pg

    1672 Pg

    Global Carbon Pools

    [Jobaggy 2000, Field et al. 2007, Zimov et al. 2006, Tarnocai et al. 2009, Schuur et al. 2008] 

  • Bartlett and Harriss 1993

    32 – 80 Tg3 – 17 Tg34 – 65 Tg

    80 – 115 Tg

  • McGuire et al. 2010

    Terrestrial areas of the Arctic were a net source of 41.5 Tg CH4 yr−1 that increased by 0.6 Tg CH4 yr−1during the decade of analysis (1997‐2006).

  • Hugelius et al. 2013; Schuur et al. 2015

  • Euskirchen etal. 2007 in Hinzman et al. Ecol Appl 2013

    1970-2000

    Timing of snowmelt

    Shifting Trends in the Arctic

    1910-1940

    Timing of snow return

    Surface energy flux due to snow cover

  • CH4 + 2O2 → CO2 + 2H2O

    CH3COOH → CH4 + CO2CO2 + 4H2 → CH4 + 2H2O

    Drained or Dry Peatlands and PermafrostPalsa, Heath

    Drains to Local HydrologyWoody Plants and Shrubs

    Wet Peat or Corg AccumulatingBogs, Sediments

    OmbrotrophicPerched above Regional Hydrology

    Lower Rates of Production

    Very Wet Productive SystemsFens, Swamps, Littoral

    MinerotrophicLinked to Regional HydrologySignificant Annual Production

  • Palsa (n=3)

    Eriophorum (n=3)

    Sphagnum (n=3)

  • Day of Year0 100 200 300

    mo

    l CO

    2 m

    -2s-

    1

    -4

    -3

    -2

    -1

    0

    1

    Stordalen Mire, 2012-16

    0 100 200 300

    mg

    CH

    4 m

    -2d

    -1

    0

    50

    100

    150

    200

    250

    300

    FenBogPalsa

    PARavg

    100 200 300 400 500

    mol

    CO

    2 m

    -2 s

    -1

    -4

    -3

    -2

    -1

    0

    1

    Jan - MarApr - JunJul - SepSep - Dec

    MethaneAccum Fen Fluxes g m-2

    EC AC

    Winter 4.23 4.27Spring 2.14 1.13Growing 20.67 21.48

  • Megonigal et al. 2004

  • Ben Woodcroft2017, in prep

    Genome-centric analysis of whole community carbon metabolism

    across the thaw gradient and by depth

  • Mean 13C = -65‰

    Mean:13C = -79‰

    … and archaeal communities from CO2 reductive towards acetoclastic clades

    bacteria

    ‐50

    ‐60

    ‐70

    ‐80

    ‐90

    ‐100

    13 C  o

    f  CH

    4flu

    x  

    0 20 40 60 80 1000 10 20 30 40 5060Frequency

    P E RMA F RO S T   T H AW

    Thaw shifts methane isotopically heavier…

    Concordant responses of

    isotope geochemistry

    and microbial

    communities

    Spaghnum(thawing)

    Eriophorum(thawed)

    more

    CO2redu

    ction

    more

    Acetate

    Ferm

    entatio

    n

    McCalley et al., (2014) Nature

  • Simulated daily CH4 production partitioned into hydrogenotrophic & acetotrophic production

    2011

    2012

    2013

    Sphagnum Eriophorum

    6/1/2011 7/1/2011 8/1/2011 9/1/2011 10/1/2011 11/1/20110.0

    0.2

    0.4

    0.6

    0.8

    1.0

    60

    0

    0

    0

    0

    6/1/2012 7/1/2012 8/1/2012 9/1/2012 10/1/2012 11/1/20120.0

    0.2

    0.4

    0.6

    0.8

    1.0

    60

    0

    0

    0

    0

    6/1/2013 7/1/2013 8/1/2013 9/1/2013 10/1/2013 11/1/20130.0

    0.2

    0.4

    0.6

    0.8

    1.0

    60

    0

    0

    0

    0

    Frac

    tion

    of H

    M

    0.0

    0.5

    1.0

    1.5

    2.0

    a

    b

    0.0

    0.5

    1.0

    1.5

    2.0

    Frac

    tion

    of H

    M

    c

    Frac

    tion

    of H

    M

    0.0

    0.5

    1.0

    1.5

    2.0

    Date (month/day/year)

    16/1/2011 7/1/2011 8/1/2011 9/1/2011 10/1/2011 11/1/20110.0

    0.2

    0.4

    0.6

    0.8

    1.0

    26/1/2012 7/1/2012 8/1/2012 9/1/2012 10/1/2012 11/1/20120.0

    0.2

    0.4

    0.6

    0.8

    1.0

    36/1/2013 7/1/2013 8/1/2013 9/1/2013 10/1/2013 11/1/20130.0

    0.2

    0.4

    0.6

    0.8

    1.0

    d

    0

    2

    4

    6

    CH

    4 pro

    duct

    ion

    (kg

    C h

    a-1 d

    ay-1

    )

    e

    CH

    4 pro

    duct

    ion

    (kg

    C h

    a-1 d

    ay-1

    )

    0

    1

    2

    3

    4

    5

    6

    f

    0

    1

    2

    3

    4

    5

    6

    Date (month/day/year)

    CH

    4 pro

    duct

    ion

    (kg

    C h

    a-1 d

    ay-1

    )

    hydrogenotrophic

    acetotrophic

    total

    hydrogenotrophicfraction

    Deng et al. JAMES, 2017

  • 6/1/2011 7/1/2011 8/1/2011 9/1/2011 10/1/2011 11/1/2011-90

    -80

    -70

    -60

    -50

    -40

    6/1/2012 7/1/2012 8/1/2012 9/1/2012 10/1/2012 11/1/2012-90

    -80

    -70

    -60

    -50

    -40

    6/1/2013 7/1/2013 8/1/2013 9/1/2013 10/1/2013 11/1/2013-90

    -80

    -70

    -60

    -50

    -40

    Eriophrum: Modeled Measured Sphagnum: Modeled Measured

    d13 C

    -CH

    4 (0 / 0

    0)

    Date (month/day/year)

    2011

    2012

    2013

    Simulated and observed δ13C of daily CH4 fluxes 

    Deng et al. JAMES, 2017

  • Bubier et al. 2005

    Hydrology affects CH4 flux from Wetlands

  • Water Table Depth, cm-50 -40 -30 -20 -10 0 10

    mg

    CH

    4 m

    -2 d

    -1

    0

    200

    400

    600

    800

    1000

    1200

    1400

    Wz vs Javg

    Change from Previous Day's Water Table Depth, cm-3 -2 -1 0 1 2

    mg

    CH

    4 m

    -2 d

    -1

    0

    200

    400

    600

    800

    1000

    1200

    1400

    daily average fluxJune - October

    Though not always in the way you expect

  • Bartlett and Harriss 1993

    Temperature affects CH4 flux from Northern Wetlands

  • Stordalen Mire Fen

    Tair

    -15 -10 -5 0 5 10 15 20

    mg

    CH

    4 m

    -2d

    -1

    0

    50

    100

    150

    200

    250

    300

    Jan - MarApr - JunJul - SepSep - Dec

    1234 5 67 89

    1011121314

    15 1617 18 19

    2021

    222324

    25 26

    27

    28

    29

    30

    31

    3233

    34 3536

    37

    38

    39

    4041

    42

    4344454647

    48 49505152

    1

    Though not always in the way you expect

  • Sweeney et al. GRL 2016

  • Saunois et al. ESSD 2016

  • Thornton et al. GRL, 2016

  • High Latitude CH4 Emissions

    inverse models (top-down):23 Tg yr-1

    measurement-based (bottom-up):59.7 Tg yr-1

    Are some sources double-counted in bottom-up accounting,

    or are top-down inverse models wrong,or we don’t understand the sinks??

  • 1. shallow lakes look like wetlands

    wetlands definitions generally include most shallow Arctic lakes:

    < 2 m depth, < 0.1 km2 = wetland

  • 2. higher resolution surveys now resolve small lakes/ponds

  • 3. small lakes don’t emit CH4 like wetlands

    small lakes and ponds emit more CH4 per unit area

  • Thornton et al. GRL, 2016

    4. Pixilation loses area of open water

    Stordalen Mire, Sweden

    49% loss of estimated openwater area when decreasing from2 m to 350 m pixel resolution

  • Thornton et al. GRL, 2016

    Can δ13C-CH4 help us?

  • Fisher et al. Arctic Methane Sources. GRL, 2012

  • Atmospheric δ13C-CH4 above Laptev, East Siberian, Chukchi Seas (2014)

  • Some Challenges

    • Driving Data Sets are Poor in High Latitude Regions

    • Need more data for isotopologues for source apportionment in mixing models δD-CH4

    • Representation of Hydrology/Methane Dynamics

    • Effects of Permafrost Dynamics on Hydrology

    • Representation of Lakes/Ponds, Disturbance andBiological Community Change

    • Report model output in consistent latitude ranges: >50°N, >60°N, above Arctic Circle

  • photo by  Tyler Logan

    Thanks to the Stockholm UniversityTrace Gas Biogeochemistry Lab:

    Brett ThortonMartin Wik

    Joachim JansenKristian Andersson

    Abisko Scientific Research StationAbisko summer field crews

    I/B Oden crewThe IsoGenie Team

    I will be happy to answer questions about this [email protected]

    And/or put you in contact with those members of the team who can best address your questions