29
1 WETTING AND NON-WETTING Avi Marmur Chemical Engineering Department Technion – Israel Institute of Technology Haifa, Israel

WETTING AND NON-WETTING

  • Upload
    biana

  • View
    269

  • Download
    3

Embed Size (px)

DESCRIPTION

WETTING AND NON-WETTING. Avi Marmur Chemical Engineering Department Technion – Israel Institute of Technology Haifa, Israel.  . NON-WETTING In Air. Low Sliding/Roll-Off Angle Under A Liquid Stable Air Film. THE LOTUS EFFECT. Barthlott & Neinhuis (1997) University of Bonn. - PowerPoint PPT Presentation

Citation preview

Page 1: WETTING AND NON-WETTING

1

WETTING AND NON-WETTING

Avi Marmur

Chemical Engineering Department

Technion – Israel Institute of Technology

Haifa, Israel

Page 2: WETTING AND NON-WETTING

2

NON-WETTINGIn Air

Low Sliding/Roll-Off Angle

Under A Liquid

Stable Air Film

Page 3: WETTING AND NON-WETTING

3

THE LOTUS EFFECT

Barthlott & Neinhuis (1997) University of Bonn

Page 4: WETTING AND NON-WETTING

4

THE LOTUS EFFECT

Barthlott & Neinhuis (1997) University of Bonn

Page 5: WETTING AND NON-WETTING

SELF-CLEANING SURFACES?

5

Page 6: WETTING AND NON-WETTING

BIOFOULING PREVENTION?

6

Biofouling of a ship hull by barnacles (photo courtesy International Paint Ltd).

Page 7: WETTING AND NON-WETTING

HOW TO INDUCE NON-WETTING?

• Minimize Solid-Liquid Contact Area

• Minimize Contact Angle Hysteresis

7

Need to Understand Wetting Fundamentals

Page 8: WETTING AND NON-WETTING

MINIMIZE CONTACT AREA

Decrease Solid-Liquid Contact Area

By Increasing the Contact Angle (CA)

8

LIQUID

AIR

SOLID

Page 9: WETTING AND NON-WETTING

WETTING ON ANIDEAL SOLID SURFACE

THE YOUNG EQUATION (1805)

9

5.8

5.9

6.0

6.1

6.2

6.3

6.4

20 25 30 35 40

Contact Angle, deg

Dim

en

sio

nle

ss F

ree

En

erg

y

1773-1829

lf

slsfY

cos

In NatureY < ~120o

SOLID

LIQUID

FLUID

Page 10: WETTING AND NON-WETTING

10

WETTING ON ROUGH SURFACES

The Wenzel Equation (1936)for Homogeneous Wetting

YW r coscos

Roughness Ratio = Actual areaNominal area

Page 11: WETTING AND NON-WETTING

11

IMPLICATIONS OF THETHE WENZEL EQUATION

cos cosW Yr

r =Actual areaNominal area

r = 1.1

1.4

2.0

0

30

60

90

120

150

180

0 30 60 90 120 150 180

Y

W

Wenzel, R. N. J. Ind. Eng. Chem. 1936, 28, 988

Page 12: WETTING AND NON-WETTING

WHEN IS THE WENZEL EQ. CORRECT?

3-d, General Proof

ap W when drop is -large

An -large drop is symmetrical

Wolansky, G., Marmur, A., Coll. Surf. A 156, 381 (1999).

12

Page 13: WETTING AND NON-WETTING

Is WenzelGood Enough

for non-wetting?

13

Page 14: WETTING AND NON-WETTING

A SIMPLE EXAMPLE OF HOMOGENEOUS WETTING• 110o 150o

requires r ~ 2.5 !

• Contact area may not be small enough

14

r = 1.5: 110°120°r = 2: 110° 133°

Page 15: WETTING AND NON-WETTING

15

WETTING ON ROUGH SURFACES

• Homogeneous Wetting

Wenzel (1936)

• Heterogeneous Wetting

Chemical heterogeneity

Cassie-Baxter (1944)

Page 16: WETTING AND NON-WETTING

17

HETEROGENEOUS WETTING ON SMOOTH SURFACES

The Cassie Equation

for the Most Stable CA

Weighted Average of CA Cosines

Cassie, A.B.D., Disc. Faraday Soc. 3, 11 (1948).

2211 coscoscos YYC xx

Page 17: WETTING AND NON-WETTING

18

THE CASSIE EQUATION IS CORRECT ONLY FOR

LARGE DROPS3-D Simulation

Brandon, S., Haimovich, N., Yeger, E., and Marmur, A., J. Coll. Int. Sci. 263, 237-243 (2003)

1V 10V 100V 1000V

Page 18: WETTING AND NON-WETTING

19

THE CASSIE-BAXTER (CB) EQ.Heterogeneous Wetting: Air Pockets

f – fraction of projected wet area: 0   f   1

rf ( f ) – local roughness ratio

(1-f) – fraction of entrapped air in pores

)1(coscos ffr YfCB

Y

f

rf

Page 19: WETTING AND NON-WETTING

20

WETTED AREA(Lotus Leaf Simple Model)

ACB < AW

For the same CA

A - wetted area

Page 20: WETTING AND NON-WETTING

21

TRANSITION BETWEENWENZEL AND CB

Johnson & Dettre, Adv. In Chemistry Series 43, ACS, Washington, D.C. 1964

•Stability vs. Metastability

The lower angle - stable

•Dependence on r only?

Page 21: WETTING AND NON-WETTING

22

TRANSITION BETWEENWENZEL AND CB

Wenzel & Cassie-Baxter theories predict CA corresponding to the global minimum of the free energy

Johnson & Dettre predicted

- many metastable configurations and the actual CA can differ from one corresponding to the global minimum one

- the heigths of the energy barriere are app. directly proportional to the heigth of aspirities

- a sharp transition from Wenzel to Cassie-Baxter regime with increasing roughness (critical roughness)

- CA hysteresis until the critical roughness reached, then

Page 22: WETTING AND NON-WETTING

23

TO BE HETEROGENEOUS OR NOT TO BE?

Local Minima of G*(f,

1)(cos)( Y

f

df

frd

0*

f

G

)1(coscos ffr YfCB

CB EQUATION

0*

G

f – fraction of projected wet arearf ( f ) – local roughness ratio(1-f) – fraction of entrapped air in pores

Y

f

rf

Page 23: WETTING AND NON-WETTING

24

TO BE HETEROGENEOUS OR NOT TO BE?

AC – B2 > 0

d2(rf f )/df 2 > 0

 Overrides CB

Marmur, A. Langmuir 19, 8343-8348 (2003)

2

2*

f

GA

f

GB

*2

2

2*

G

C

Dependence on specific

topography!

Feasibility Condition

Page 24: WETTING AND NON-WETTING

25

Minimize CA Hysteresis?

Page 25: WETTING AND NON-WETTING

26

REAL SURFACES: CA HYSTERESIS

Experimental Observations

• Multiple CAs

• Advancing CA

• Stick-Slip

• Receding CA

Page 26: WETTING AND NON-WETTING

27

GIBBS ENERGY ON REAL SURFACES

• Multiple Minima

• Metastable & Stable CAs

• Energy Barriers

• Theoretical & Practical ACA and RCA

5.8

5.9

6.0

6.1

6.2

6.3

6.4

20 30 40Apparent Contact Angle

Gib

bs

En

ergy

TRCA

PRCA

GlobalMinimum

EnergyBarrier

PACA

TACA

MetastableEquilibrium

Page 27: WETTING AND NON-WETTING

28

max

min

SLIDING ON A TILTED PLANE

min and max differ

• Hysteresis prevents sliding

Krasovitski & Marmur, Langmuir 1, 3881-3885 (2005)

Page 28: WETTING AND NON-WETTING

MINIMIZE CA HYSTERESIS

Two Ways:

Produce Ideal Surfaces (not Practical) Induce Heterogeneous Wetting (Air!)

29

Page 29: WETTING AND NON-WETTING

PRACTICAL CONCLUSION

Min contactArea Min hysteresis

Heterogeneous Wetting (CB)

30