Wireline and Perforating Service_Hallibuton

  • Upload
    zdq02

  • View
    527

  • Download
    25

Embed Size (px)

Citation preview

  • Knowledge and Data Transfer

    Reservoir Evaluation Services

    Open-Hole Wireline Services

    Cased-Hole Wireline Services

    Perforating Solutions

    Downhole Video

    SlicSlickline Service Equipment and Services

    Mobilization

    Mnemonics

  • Table of Contents i

    Table of Contents

    Knowledge and Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1Real-Time Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1Real-Time Data/Solution Delivery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1HalLink Satellite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2InSite Anywhere Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3

    Reservoir Evaluation Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1Petrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1

    MRI Petrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1MRIL Simultaneous T1 and T2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1MRIAN Magnetic Resonance Imaging Analysis . . . . . . . . . . . . . . . . . . . . . . . . . .2-2Time Domain Analysis (TDA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-4Diffusion Analysis (DIFAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-5Enhanced Diffusion Method (EDM) Technique . . . . . . . . . . . . . . . . . . . . . . . .2-6Heavy Oil MRIANSM Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-7StiMRIL Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-8

    Volumetric Petrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-10Chi Modeling Computation Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-10ULTRA Module Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-12SASHA Shaly Sand Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-14CORAL Complex Lithology Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-15LARA Laminated Reservoir Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-16

    Reservoir Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-17Borehole Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-17

    AutoDip and TrendSetter Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-17AutoDip Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-18TrendSetter Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-18ReadyView Open-Hole Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-20Facies Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-22

    Net2Gross Sand Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-24ImagePerm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-25Borehole Geophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-26

    Wellbore Seismic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-26High Resolution Seismic Imaging(Near Offset VSP, Fixed Offset VSP,Walkaways, 3D VSP, Salt Proximity Surveys, Microseismic Surveys) . . . . . . . . .2-26

    Reservoir Geophysics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-27Long Array Multi-Component Acquisition Tools . . . . . . . . . . . . . . . . . . . . . . . . . .2-27GeoChain VSP Downhole Receiver Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-27Synthetic Seismic and Sonic Log Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-27Vertical Incidence Vertical Seismic Profiling (VIVSP) Analysis . . . . . . . . . . . . . .2-28ExactFrac Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-29

    Acoustics and Rock Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-30

  • ii Table of Contents

    Anisotropy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-30RockXpert2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-32FracXpert Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-34AcidXpert Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-36

    Reservoir and Production Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-38Reservoir Testing Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-38

    RTS Reservoir Testing Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-38Pressure Time Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-38Exact Buildup Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-39Exact Anisotropy Analysis Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-39FasTest Buildup Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-40Horner Time Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-40Log-Log Derivative Analysis Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-41PVT Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-42Formation Test Summary Program (FTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-42

    Well Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-44Well Test Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-44Well Test Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-46Multi-Layered Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-47

    Reservoir Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-48SigmaSat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-48CarbOxSat Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-49TripleSat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-50

    Production Logging Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-51Production Logging Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-51

    FloImager Analysis Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-54FloImager 3D Software Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-54

    Open-Hole Wireline Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1Resistivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1

    ACRt Array Compensated Resistivity Tool System . . . . . . . . . . . . . . . . . . . . . . . . . .3-1HRAI High Resolution Array Induction Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3HRI High Resolution Induction Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4

    DLL Dual Laterolog Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-6MSFL Micro-Spherically Focused Log and Microlog (ML) . . . . . . . . . . . . . . . . . . . .3-7HFDT High Frequency Dielectric Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-8

    Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-9EMI Electrical Micro Imaging Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-9XRMI X-Tended Range Micro Imager Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-11OMRI Oil-Based Micro-Imager Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-13CAST-V Circumferential Acoustic Scanning Tool-Visualization. . . . . . . . . . . . . . .3-15SED Six Arm Dipmeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-16

    Nuclear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-17SDL Spectral Density Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-17

  • Table of Contents iii

    DSN Dual-Spaced Neutron Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-19DSEN Dual-Spaced Epithermal Neutron Log Tool . . . . . . . . . . . . . . . . . . . . . . . . . .3-21CSNG Compensated Spectral Natural Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . .3-22

    Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-24BSAT Borehole Compensated Sonic Array Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-24WaveSonic Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-25FWS Full Wave Sonic Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-27

    NMR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-29MRIL-XL and MRIL-Prime Magnetic Resonance Image Logging Tools . . . . . . .3-29MRILab Magnetic Resonance Image Fluid Analyzer . . . . . . . . . . . . . . . . . . . . . . . . .3-31

    Borehole Geophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-33Wellbore Seismic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-33

    High Resolution Seismic Imaging(Near Offset VSP, Fixed Offset VSP,Walkaways, 3D VSP, Salt Proximity Surveys, Microseismic Surveys) . . . . . . . . .3-33

    Reservoir Geophysics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-34Long Array Multi-Component Acquisition Tools . . . . . . . . . . . . . . . . . . . . . . . . . .3-34GeoChain VSP Downhole Receiver Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-34Synthetic Seismic and Sonic Log Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-34Vertical Incidence Vertical Seismic Profiling (VIVSP) Analysis . . . . . . . . . . . . . .3-35ExactFrac Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-36

    Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-37RDT Reservoir Description Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-37

    DPS Dual Probe Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-39Oval Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-39Straddle Packer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-39FPS Flow-Control Pump-Out Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-39QGS Quartz Gauge Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-39MRILab Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-40MCS Multi Chamber Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-40CVS Chamber Valve Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-40

    SFT-IV Sequential Formation Tester IV Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-41SFTT Sequential Formation Test Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-42RSCT Rotary Sidewall Coring Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-43SWC Side Wall Coring Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-45HRSCT Hostile Rotary Side Wall Coring Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-46

    Hydraulic Valve Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-46Motor Drive Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-46Mandrel Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-46

    HostileSlimhole Formation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-47HEAT Hostile Environment Applications Tool Suite . . . . . . . . . . . . . . . . . . . . . . . .3-47

    HEDL Hostile Environment Dual Laterolog Tool . . . . . . . . . . . . . . . . . . . . . . . .3-48HFWS Hostile Full Wave Sonic Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-49HSDL Hostile Spectral Density Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-51HDSN Hostile Dual-Spaced Neutron Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-53

  • iv Table of Contents

    HNGR Hostile Natural Gamma Ray Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-55HSFT Hostile Sequential Formation Tester Tool. . . . . . . . . . . . . . . . . . . . . . . . .3-56

    Auxiliary Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-57Multi-Conductor LockJar* System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-57Borehole Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-58RWCH Releaseable Wireline Cable Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-59Toolpusher Logging (TPL) Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-60CTL Coiled Tubing Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-62BHPT Borehole Properties Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-63FIAC Four Independent Arm Caliper Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-65SDDT Stand-Alone DITS Directional Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-67

    Cased-Hole Wireline Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1Formation Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1

    TMD-L Thermal Multigate Decay-Lithology Logging Tool. . . . . . . . . . . . . . . . . . . .4-1RMT Elite Reservoir Monitor Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3Spectra Flow Logging Service (SpFl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-5DSN Dual-Spaced Neutron Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7FCMT Formation Compaction Monitoring Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-9CASE Casing Evaluation and Inspection Software . . . . . . . . . . . . . . . . . . . . . . . . . .4-10

    Through Casing Acoustic Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-12WaveSonic Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-12FWS Full Wave Sonic Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-14HFWS Hostile Full Wave Sonic Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-16

    Production Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-18Production Logging Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-18

    Memory Production Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-18Electric Line Production Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-18

    FloImager Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-21GHT Gas Holdup Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-23MPL Memory Production Logging Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-24Quartz Pressure Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-27

    Casing and Tubing Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-28MAC Multi-Arm Caliper Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-28CAST-V Circumferential Acoustic Scanning Tool-Visualization. . . . . . . . . . . . . . .4-29The FASTCAST Fast Circumferential Acoustic Scanning Tool . . . . . . . . . . . . . . . .4-31

    Cement Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-33Cement Bond Log (CBL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-33Radial Cement Bond Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-35ACE Advanced Cement Evaluation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-37

    Mechanical Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-39Pipe Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-39Chemical Cutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-39Tubing Cutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-42

    *LockJar is a registered trademark of Evans Engineering, Inc.

  • Table of Contents v

    Super Tubing Cutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-44Coiled Tubing Cutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-46Casing and Drillpipe Cutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-48C-4 Casing Cutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-50Drill Collar Severing Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-51Junk Shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-53

    Plug Setting Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-54EZ Drill Bridge Plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-54Fas Drill Bridge Plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-55

    Perforating Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1Shaped Charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1

    MaxForce Shaped Charges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1Dominator Shaped Charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-2Mirage Shaped Charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-3Maxim Shaped Charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-5KISS Low-Damage Perforating Charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-6

    Gun Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-10VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-101 9/16 in. to 7 in. and 4 SPF to 21 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-10VannGun Phasing and Shot Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-11

    0 Phasing 4 and 5 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1160 Phasing 4, 5, and 6 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1190 Phasing 4 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-12180 Phasing 4 and 8 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1260 Phasing 6 SPF Two Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1345/135 Phasing 5, 6, 8, 12, and 18 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-13140/160 Phasing 11 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1451.4/154.3 Phasing 12 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1430/150 Phasing 12 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1425.7/128.5 Phasing 14 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1560/120 Phasing 18 and 21 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-15138 Phasing 14 SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-15

    Tensile Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-161 9/16-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-162-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-172 1/2-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-182 3/4-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-192 7/8-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-203 3/8-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-214-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-234 1/2-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-244 5/8-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-254 3/4-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-285-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-29

  • vi Table of Contents

    5 1/8-in. Premium VannGun Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-315 3/4-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-336-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-336 1/2-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-346 1/2-in. High-Pressure Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . .5-357-in. Premium VannGun Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-36

    Capsule Gun Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-41Dyna-Star Capsule Gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-41Deep Star Capsule Gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-421.6875-in. and 2.125-in. Deep Star Debris Fill Data . . . . . . . . . . . . . . . . . . . . . . . .5-43

    Ported Gun Perforating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-44Firing Heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-45

    Detonation Interruption Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-45Mechanical Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-46Model II-D Mechanical Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-47Model III-D Mechanical Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-48Pressure-Actuated Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-49Model K and K-II Firing Heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-50Model KV-II Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-51Time-Delay Firer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-52Multiaction-Delay Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-53Annulus Pressure Firer-Control Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-54Annulus Pressure Transfer Reservoir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-55Slimhole Annulus Pressure FirerInternal Control . . . . . . . . . . . . . . . . . . . . . . . . . . .5-565-in. Annulus Pressure Transfer Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-563 1/8-in. Internal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-563 1/8-in. Annulus Pressure Transfer ReservoirInternal Control . . . . . . . . . . . . . . . .5-56Differential Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-57Hydraulic Actuator Firing Head and Swivel-Type Hydraulic ActuatorFiring Head. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-58Mechanical Metering Hydraulic-Delay Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . .5-59Slickline-Retrievable Mechanical Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-60Slickline-Retrievable Time-Delay Firer Firing Head. . . . . . . . . . . . . . . . . . . . . . . . . . .5-62Extended Delay Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-63Modular Mechanical Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-64Side-Pocket Mandrel Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-66Annulus Pressure Crossover Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-67EZ Cycle Multi-Pressure Cycle Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-68Pump-Through Firing Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-70

    Ancillary Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-71Fill Disk Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-71Balanced Isolation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-72Ratchet Gun Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-74AutoLatch Release Gun Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-75

  • Table of Contents vii

    Isolation Sub-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-76Quick Torque Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-77Detach Separating Gun Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-79Rathole Length Restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-79Rigless Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-79EZ Pass Gun Hanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-80Automatic-Release Gun HangerRotational Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-82Automatic-Release Gun HangerAutomatic-J Mandrel . . . . . . . . . . . . . . . . . . . . . . .5-84Explosive Transfer Swivel Sub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-86Shearable Safety Sub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-87Roller Tandem Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-88Centralizer Tandem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-89Emergency Release Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-90Annular Pressure-Control Line Vent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-91Annular Pressure-Control Line Swivel Sub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-92Annular Pressure-Control Line Tubing Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-93Bar Pressure Vent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-94Below-Packer Vent Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-95Maximum Differential Bar Vent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-96Pressure-Operated Vent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-97Vann Circulating Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-98Automatic Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-99Mechanical Tubing Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-101Pressure-Actuated Tubing Release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-103DPU Downhole Power Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-104SmartETD Advanced Electronic Triggering Device . . . . . . . . . . . . . . . . . . . . . . . . .5-105Y-Block Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-106

    Non-Ported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-106Ported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-106

    Gun Guides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-107Hydraulic Metering Release Tool for the Single Trip System(STPP-GH) Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-108Fast Gauge Recorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-110Gamma Perforator Logging Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-112

    Detonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-113Capsule RED Detonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-113RED GO-Style Thermal Igniter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-114Block RED Detonators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-115Top Fire RED Detonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-116

    Dynamic Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-117PerfPro Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-117

    PerfPro ProcessPredicting In-Situ Charge Performance . . . . . . . . . . . . . . . . . . .5-117Near-Wellbore Stimulation and PulsFrac Software . . . . . . . . . . . . . . . . . . . . . . . . .5-120

    EOB - Energized Fluid Stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-120

  • viii Table of Contents

    Propellant Stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-121ShockProSM Shockload Evaluation Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-125

    Near-Wellbore Stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-127StimGun* Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-127Propellent Stimulation Tool Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-130POWR*PERFSM Perforation/Stimulation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-132PerfStim Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-133

    Oriented Perforating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-134G-Force Precision Oriented Perforating System . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-134Oriented Perforating with Modular Guns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-136Finned Orienting Tandem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-137Eccentric Orienting Tandem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-138

    Special Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-139Modular Gun System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-139

    The Modular Gun System Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-140Rathole Length Restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-140Rigless Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-140

    Select Fire Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-141Coiled Tubing Conveyed Perforating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-142DrillGun Perforating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-143Setting Tools for the Auto-Release Gun Hanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-145

    Running and Retrieving Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-145Downhole Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-1

    Downhole Video Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-1Hawkeye Camera System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-2Fiber-Optic Camera System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-3EyeDeal Camera System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-4

    Slickline Service Equipment and Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-1Subsurface Service Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-2

    Slickline Service Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-2Slickline Toolstring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-2

    Otis Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-3Slickline Detent Jars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-4Otis Quick Connect Toolstring Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-5Auxiliary Tools For Use with Slickline Toolstring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-6

    Otis Gauge Cutter and Swaging Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-6Otis Impression Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-6Otis Tubing Broach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-6Otis M Magnetic Fishing Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-6Otis G Fishing Socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-7Otis P Wireline Grab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-7

    *StimGun is a trademark of Marathon Oil Company.

  • Table of Contents ix

    Otis Go-Devil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-7Expandable Wirefinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-7

    Running Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-8Otis X and R Running Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-8Otis RXN Running Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-8Otis UP Running Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-8Otis MR Running Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-8

    Pulling Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-9Internal Fishing Necks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-9External Fishing Necks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-9

    Test Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-11Otis Non-Selective Test Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-11

    Positioning Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-12Tubing Perforators and Bailers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-13

    Slickline Skid Units and Trucks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-14Surface Service Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-15Advanced Slickline Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-16

    Advanced Slickline Service System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-18DPU Tubing Punch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-22

    CollarTrak Slickline Collar Locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-23Advanced Measurement System (AMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-25

    Electronic Advanced Measurement System (Portable) . . . . . . . . . . . . . . . . . . . . . . . . .7-26SmartETD System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-27JobTrak Data Job Logger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-28Standard Mounted Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-28Memory Production Logging (MPL) Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-29LineTrak Slickline Inspection Device and Wire Management Program . . . . . . . . . . .7-31Wire Management Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-31Deepwater Riserless Subsea Light Well Intervention System . . . . . . . . . . . . . . . . . . . .7-33

    Mobilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-1LOGIQ Logging Truck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-1LOGIQ Modular Skid Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-3

    Cabin Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-4Winch Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-5Power Pack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-6

    Mnemonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-1Wireline and Perforating Services Mnemonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-2

    Log Header Mnemonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-44

  • x Table of Contents

  • Kn

    owledge an

    d Data Tran

    sferKnowledge and Data Transfer

    Real-Time Operations

    Real-Time Data/Solution Delivery

    Various methods are used to deliver data in real time from wellsites to offsite locations. The three main methods are:

    InSite Anywhere service

    Collaborative formation evaluation and reservoir monitoring

    Real-time monitor and control (RTMC)

    InSite Anywhere service moves data from the logging tools onto a secured website, where it can be viewed in real time as it is acquired. InSite Anywhere service is also a drop box for data files and viewing DHV images in real time.

    With collaborative formation evaluation and reservoir monitoring, it is possible to deliver data to environments where experts can discuss any issues dealing with geology, operations, or the reservoir, thereby influencing the ongoing services at the wellsite immediately.

    Real-time monitor and control (RTMC) is an internal tool that provides both operational and technical support along with ability to control remote wellsite locations.

    Features Scalable, from simple operations to the most

    sophisticated

    Halliburton expertise available

    Provides instant access and support from non-wellsite locations

    Personnel can participate in multiple operations

    Expand personnel capabilitiesKnowledge and Data Transfer 1-1

  • HalLink Satellite Systems

    Three systems are available: land (tripod), skid (compensating), and vessel (permanent). HalLink systems allow transmission of data and video at high speeds through a secure network supporting all Halliburton real-time operations. With last mile connectivity to the location, real-time support and decisions can be made more easily.

    Features Fully scalable to client needs, simple point-to-point

    network through full mesh (point-to-many)

    Deployment can be expanded per client needs

    System is flexible, which enables the system to be part of the Halliburton or client network

    Two phone lines for operational support

    Improved reliability for wellsite connectivity

    Bandwidth scalable to local/client needs

    Services Enabled by HalLink Systems Immediate data transfer for:

    QuikLook reservoir fluid management services

    Applied formation evaluation processing

    InSite Anywhere service

    Downhole video

    MRILab downhole measurement service

    RDT reservoir description tool

    Standard logging suite

    Collaborative formation evaluation and reservoir monitoring

    Real-time monitor and control

    Video conferencing Connectivity Anywhere1-2 Knowledge and Data Transfer

  • InSite Anywhere Service

    InSite Anywhere service is a next-generation, web-based data delivery system that gives you the flexibility of the industrys most robust database structurewithout the need to install special software. Using our advanced satellite communications technology or any other network, InSite Anywhere service moves data from the logging tools onto a secured web site, where you can view it in real time as it is acquired.

    When an unplanned event arises, the InSite Anywhere web delivery system provides needed facts to command the situation. Whatever solution directed will be based on complete up-to-the-minute information. The system allows you to participate in multiple wellsite operations from one location. With all the travel time saved, capabilities are stretched furtherand make the most of company resources.

    Features

    View and print logging and tester data in real time from any PC

    Access offset well data from nearby wells

    Download logging data, answer products, and more

    Configure display to individual preference by manipulating logging or test data

    View and print numerous display types:

    Log plots

    Pressure tests and samples

    Streaming downhole video (view only or save/print to screen capture)

    Cross-plots

    MRILab service results (view only or save/print as screen capture)

    Efficient gauges, LEDs, and other indicators

    Expand personnel capabilities

    Speed decision-making

    Participate in multiple operations

    Optimize logging passes

    Deploy expertise and resources more efficiently

    Save travel expenses

    Avoid travel risk

    Requirements for Service

    Internet or intranet access

    Uses standard web browsers

    User name, password, and URL

    Uses the security protections of the HalLink commuciations network or any other secure networkKnowledge and Data Transfer 1-3

    No special hardware or software required

  • 1-4 Knowledge and Data Transfer

  • Reservoir Evalu

    ation Services Reservoir Evaluation Services

    Petrophysics

    MRI Petrophysics

    MRIL Simultaneous T1 and T2 Measurements Both the MRIL-XL and MRIL-Prime tools acquire NMR data in several modes of operation. Simultaneous T1 and T2 log acquisition is a robust technique to acquire NMR reservoir information faster and simpler. T1 has made its wireline debut to join MRIL-WD (MRI while drilling) and MRILab service (MRI fluid analysis during wireline formation sampling). In both the MRIL-WD and MRILab applications, the preference of T1 over T2 has been its insensitivity to motion as T1 measurements eliminate the detrimental effects from tool motion or fluid flow.

    Simultaneous T1 and T2 wireline acquisition is now done in a single log pass. Micro-porosity, capillary bound water, free fluid index, effective porosity, and total NMR porosity acquired during T1 logging may be used in MRIAN analysis as described on page 2-2.

    T1 logging offers a simplified NMR measurement composed of only two of the three decay mechanisms associated with NMR. Only surface and bulk relaxation mechanisms contribute to the T1 response. There is no diffusion effect in T1 data, so many fluid identification applications are simplified as in tight gas identification in water-based mud systems. For simple and faster NMR reservoir information, T1 offers a reliable alternative to T2.

    Features Robust reservoir quality measurements of NMR

    Total and effective porosity and bound fluid volumes

    Light hydrocarbon identification

    Faster logging speeds

    Simplified NMR interpretation (no diffusion effects)

    Simultaneous T1 and T2 acquisition (single log pass)

    Real-time permeability calculations

    This T1 MRIAN analysis example depicts the long T1 gas signal in the upper zone, green waveforms on far right in Track 4. The free water T1 values are much shorter as can be seen in Track 4 in the lower zone.Reservoir Evaluation Services 2-1

  • MRIAN Magnetic Resonance Imaging AnalysisMRIAN analysis is a technique that combines MRIL and conventional data to identify potential hydrocarbon zones. MRIAN analysis uses the dual-water model technique to estimate the volume of formation fluids in a virgin zone. Using the dual-water model within the MRIAN program allows identification of free water volume. When the computed effective volume of water equals the MRIL data irreducible volume of water, then production is water free. Both T1 and T2 distributions and permeability calculations are provided to indicate reservoir quality.

    MRIL stand-alone analyses, such as time domain analysis (TDA), diffusion analysis (DIFAN), and Enhanced Diffusion Method (EDM) technique provide hydrocarbon typing interpretation within the depth of investigation of the MRIL measurements. When MRIL data is combined with other logs, analysis can furnish even more information about the reservoir. MRIAN analysis is one of the interpretation models that use this data combination.

    FeaturesMRIAN analysis combines MRIL analysis and deep-resistivity data from any induction tool. MRIL data is used to provide two important parameters needed in the dual-water model: the clay-bound water porosity (MCBW) and total porosity (MPHIT).

    Additional features include the following:

    Provides enhanced permeability calculations

    Indicates zones of potential water production

    Identifies hydrocarbon-water contacts

    Calculates water saturation in the uninvaded zone

    Provides a solution for low-resistivity pay reservoirs

    Confirms dual-water Rw by reconstructing spontaneous

    potential (SP)

    Uses a robust implementation of the dual-water resistivity model to provide improved water saturation (Sw) calculations, especially in shaly reservoirs

    This MRIAN analysis indicates an oil/water contact at X940. The MRI T2 distribution in Track 3 demonstrates a change in relaxation times verifying the MRIAN analysis.

    HA

    L911

    12-2 Reservoir Evaluation Services

  • This MRIAN analysis example demonstrates the effectiveness of this model to identify oil/water contact as well as zones of potential water production (Track 4). Enhanced permeability calculations are presented in Track 2 (red curve).

    HA

    L911

    2

    InputsMRIL porosity data. The main data requirements for MRIAN processing are true formation resistivity (Rt), total porosity (t), and clay-bound-water saturation (Swb). Density, neutron, and/or sonic porosity are optional inputs. MRIL activation planning is critical for successful interpretation.

    Outputs Permeability, effective porosity, total porosity, water saturation, free water volume, irreducible water volumeReservoir Evaluation Services 2-3

  • Time Domain Analysis (TDA)MRIL data can be analyzed independently or in combination with conventional logs. When MRIL data is processed independently, it can provide formation porosity and permeability information as well as complete information on fluid types and fluid saturation within the depth of investigation of the MRIL tool. Time domain analysis (TDA) is an interpretation technique that utilizes only MRIL data.

    Time domain analysis operates on the principle that different fluids have different rates of polarization or different T1 relaxation times. The T1 of both gas and light oil (viscosity less than 5 cp) is normally much higher than that of water. TDA is very effective in evaluating gas and light oil reservoirs.

    TDA is very different from other techniques available because it uses only MRIL data in the interpretation process; no conventional data is needed in the processing.

    Features TDA analysis provides an alternative to the differential spectrum method for processing dual-Tw echo trains data. Interpretation is performed in the time domain rather than in the T2 spectra domain. Key features of TDA analysis include:

    Subtraction of the two echo trains from one another

    Processing echo differences in the time domain using predicted or measured oil, gas, and water relaxation times and hydrogen-index values

    Additional TDA features include the following:

    Provides accurate formation porosity in gas and light oil reservoirs

    Allows complete fluid volume analysis within the depth of investigation of the MRIL tool using only MRIL tool data

    Provides hydrocarbon typing

    Recognizes direct pay

    Improves permeability calculations in light hydrocarbon environment

    Clearly identifies pay zones vs. tight zones

    Estimates free fluid volume and type in thinly laminated reservoirs

    Indicates the best possible producing zones in carbonate formation

    This MRIAN analysis example demonstrates the effectiveness of this model to identify oil/water contact as well as zones of potential water production (Track 4). Enhanced permeability calculations are presented in Track 2 (red curve).

    HA

    L911

    3

    InputsMRIL data only from dual-wait time acquisition which can be acquired using MRIL-XL, MRIL -Prime and/or MRIL-WD tools

    Outputs Volumetric calculation of gas, oil, and water; formation total and effective porosity; permeability estimation2-4 Reservoir Evaluation Services

  • Diffusion Analysis (DIFAN)Diffusion analysis (DIFAN) is a stand-alone NMR technique for quantitative diffusion analysis of intermediate oil viscosity range of 2 to 30 cp and has been applied successfully in many fields. DIFAN was developed specifically for situations where TDA cannot be applied because of insufficient T1 contrast. Variations in molecular diffusion will manifest themselves as variations in the observed T2 distributions. These can be used to quantify water-filled and oil-filled porosity, respectively.

    Features Diffusion analysis is an interpretation technique utilizing dual-TE measurements. DIFAN relies on the diffusion contrast between water and medium viscosity oil to quantify oil volume within the depth of investigation of the tool. The data for DIFAN is acquired through single-TW (wait time), dual-TE (echo spacing) logging.

    Other features of diffusion analysis include:

    Calculates hydrocarbon and water saturation in freshwater environments

    Stand-alone analysis does not need resistivity logs

    Works in low to moderate viscosity oils (typically 2 to 30 cp at reservoir conditions)

    Works in areas of unknown or variable Rw

    This log contains results from the application DIFAN to MRIL data from an Indonesian well. Track 1 includes conventional gamma ray, spontaneous potential, and caliper curves. Track 2 presents deep, medium, and shallow resistivity data and MRIL permeability. Track 3 contains the long-TE T2 distribution. Track 4 contains the short-TE T2 distribution. Track 5 displays answer products from DIFAN calculations.

    HA

    L911

    4

    Inputs MRIL data (dual-TE activation) from MRIL-XL or MRIL-Prime tools

    Outputs Porosity, Sw, diffusion ratios, permeability, watercut (if relative permeabilities are known)Reservoir Evaluation Services 2-5

  • Enhanced Diffusion Method (EDM) TechniqueEnhanced Diffusion Method (EDM) NMR technique utilizes the contrast in molecular diffusion between water and oil to identify and potentially quantify oil accumulations. The diffusion properties of water, combined with tool parameters (TE, magnetic field gradient) and the temperature of the logging environment, define the slowest relaxation time possible for water to be observed: T2DW. Consequently, any NMR signal observed beyond this value can only be associated with oil. This offers a simple way to interpret the presence of oil and to differentiate pay from non-pay zones.

    The EDM technique can also be used to quantify residual oil. The advantage it has over conventional techniques such as pressure-coring and/or sponge-coring is that oil is measured at in-situ conditions. Hence, gas expansion or fluid expulsion need not be taken into account. As with any residual oil determination technique, controlling fluid loss from the mud system to the formation is critical to the overall success of the EDM technique.

    Features EDM interpretation methodology is based on the contrasts in molecular diffusion between different fluids. Enhancement of the diffusion effect, by increasing the inter-echo spacing TE during data acquisition, separates water and

    oil in the T2 domain.

    For typing medium-viscosity oils with this method, standard CPMG T2 data recorded with a long TE is sufficient.

    Quantitative application of the EDM technique requires either dual-TW data recorded with a long TE, or dual-TE data

    recorded with a long TW.

    Additional features include:

    Independent confirmation of oil-bearing zones and identification of oil/water contacts

    Stand-alone determination of (residual) oil saturation with no need to dope drilling fluids

    Sensitive to oil in the viscosity range from 1 cp to 50 cp

    Works in areas of unknown or variable Rw

    Enhanced Diffusion Method technique can differentiate pay from non-pay zones. Track 5 indicates an oil/water contact near the bottom and the oil column continues to the top of the zone. This finding is supported by the resistivity curves in Track 2.

    HA

    L911

    5

    Inputs MRIL data (dual-TE activation) from MRIL-XL, MRIL-Prime, or MRIL-WD tools

    Outputs Residual oil saturation, porosity, permeability, viscosity, flushed zone Sw2-6 Reservoir Evaluation Services

  • Heavy Oil MRIANSM ServiceThe heavy oil MRIANSM service improves reservoir evaluation in areas where oil viscosity exceeds 100 cp at formation conditions, and the oil gravity is less than 20 API. The heavy oil MRIAN service combines dual-echo spacing MRIL logs with conventional porosity and resistivity logs to provide improved:

    Determination of bulk volume irreducible (BVI)

    Measurement of movable water

    Quantification of viscous oil reserves

    Estimation of permeability in water-wet reservoirs

    By themselves, NMR responses to viscous oils are not readily distinguishable from those of capillary-bound and clay-bound water. The heavy oil model is able to differentiate these fluids by using MRIL data to quantify movable water in the formation. This volume, when subtracted from the effective water volume derived from conventional logs, gives the irreducible water volume. In addition, this comparison is useful for recognizing mixed or oil-wet reservoir conditions, which can often occur in viscous-oil reservoirs.

    Good candidates for application of the heavy oil MRIAN service are heavy oil producing areas in Venezuela, Canada, Alaska, Russia, and smaller heavy oil provinces throughout the world. This service has been successfully applied in both sandstone and carbonate reservoirs.

    Features An integrated NMR and conventional log heavy oil

    interpretation model

    Movable water determination in heavy oil-bearing formations using the Enhanced Diffusion Method (EDM)

    Comparison of NMR and conventional porosity responses to estimate in-situ oil viscosity

    Improved BVI determination compared to traditional interpretation of NMR measurements in heavy-oil reservoirs

    Can provide a complete analysis of pore fluids, including clay-bound and capillary-bound pore fluids, movable water volume, and hydrocarbon volumes

    Direct measurement of movable water

    Aid improved water saturation evaluation

    Indication of moved hydrocarbons in the near-wellbore region

    Determination of in-situ oil viscosity from MRIL signal-loss in heavy oil-bearing formations

    Indication of formation wettability conditions

    The log above shows results from a heavy oil MRIAN analysis of data collected from an area of the United Kingdom continental shelf. These results show the reservoir is mostly water-wet through the transition zone. The absence of capillary bound water above the transition zone indicates an oil-wet condition.

    HA

    L911

    6

    Inputs MRIL data acquired with dual-TE and conventional data

    Outputs Corrected BVI, clay porosity, total porosity, improved permeability estimates, effective porosity, water saturations, viscosityReservoir Evaluation Services 2-7

  • StiMRIL ProcessThe StiMRIL process is an integrated stimulation process built upon a reservoir performance model created from a combination of MRIL magnetic resonance imaging logging analyses and reservoir simulations. This model allows the stimulation design engineer to develop optimum completion/stimulation plans and accurately predict the outcome of production enhancement efforts. Identification of hydrocarbon type and accurate determinations of porosity, free fluid, and bound fluid volumes from MRIL logging measurements provide operators with answers to critical questions by providing:

    The location of oil, gas, or water in the zone

    The potential for water production

    The net present value (NPV) of the zone

    The rate at which the well will produce oil, gas, or water can then be predicted by carrying this information forward in the reservoir simulation step of the StiMRIL process.

    The MRIL tool is used to perform high-quality measurements and collect the data required to make a thorough reservoir evaluation in a single logging pass. In addition to saving rig time, the resulting calculations of permeability, water saturation, and effective porosity are better than those derived from other lithology-dependent methods.

    FeaturesThe reservoir modeling capabilities included in the StiMRIL process use the results of the MRIL analysis to provide a relatively complete representation of the reservoir's production characteristics. An integrated stimulation design process allows operators to accurately predict reservoir performance and to optimize their financial investment based on the economics of the fracturing treatment for the reservoir. For example, in a tight-gas sand (low permeability formation), the completion design usually centers around a hydraulic treatment.

    Other features include:

    Increased focus on the reservoir through the integration of well logging, reservoir performance, and stimulation design

    Logging data and reservoir simulations used in combination to increase reservoir understanding

    Built-in stimulation design capabilities to help operators develop the best completion strategies

    Here is an example of a layered sandstone reservoir which indicates a high clay, low porosity interval in the lower section of the well, cleaner zones with higher movable hydrocarbons in the middle, and an extremely high perm zone in the top, which contains a large amount of oil.

    HA

    L911

    72-8 Reservoir Evaluation Services

  • MRIL logging has revolutionized the logging industry through its ability to directly and accurately measure the fluids in the reservoir. This results in the accurate determination of:

    Porosity and permeability

    Fluid type and viscosity changes

    Irreducible water volume and free fluid volume

    In other words, MRIL logs indicate not only whether there is oil or gas in a zone but also where it is located within the zone. These logs also show how much water is present in the zone, how it is distributed throughout the zone, and whether it is free to move to the wellbore and interfere with

    hydrocarbon production. Before the StiMRIL process was developed, fracturing designs relied on lithological volumes from quad-combo logging data to provide the information to qualitatively evaluate zones and calculate fracture geometry. With the StiMRIL process, engineers are able to incorporate MRIL logging data into the design to predict productivity results. Quad-combo logs still provide the lithology information, while MRIL logs provide the fluid dynamics information.

    The result is optimized treatment designs for maximum, predictable well productivity and improved profitability for the operator.

    Inputs Pore-size distribution, permeability, effective porosity, total porosity, water saturation, gas indicator

    Outputs Initial production rate, time of recovery, porosity, permeability, Young's modulus, Poisson's ratio optimum NPV for the wellReservoir Evaluation Services 2-9

  • Volumetric Petrophysics

    Chi Modeling Computation ServiceSome open-hole wells have difficult logging conditions that may result in missed zones of open-hole information, or in extreme conditions, even the loss of the entire open-hole logging run. Halliburton now provides Chi Modeling computation post-processing service will help the user to better evaluate their reservoir when they have missing data due to borehole conditions, missing LWD sections, old wells, etc. Chi Modeling computation service is able to predict triple-combo or even quad-combo open-hole data with a very high degree of accuracy by using the input data obtained from a capture pass of a pulsed neutron tool and a known triple-combo or quad-combo data set from a neighboring well. Under some conditions, missing or incorrect data caused by tool pulls or intermittent sensor failure can be correctly generated using only the triple-combo data. Chi Modeling computation is also able to:

    Fill in data gaps where the original data is missing from either wireline or LWD data

    Replace poor quality data that occurred due to poor borehole conditions

    Generate reliable open-hole logs when none are available

    Chi Modeling computation service uses associations made in one well between an existing open-hole triple-combo and a cased-hole pulsed neutron tool. It does this by looking at data from a reference well and assigning a processing weight to each input variable.

    If the predicted values do not match the actual value in the reference well adequately, the weights are changed, and the model is re-computed. These associations are then used, along with pulsed neutron data from an offset well, to model a triple-combo or quad-combo response in an offset well. These associations may be confidently used as long as:

    The formation geology remains similar

    The formations geology is adequately sampled and represented in the reference well

    When the formation geology from the reference well changes, a new set of open-hole data is required to create a new set of associations. This method retains the variability of the original data and does not over predict mean statistical values.

    A root mean square (RMS) statistical analysis is performed on each curve generated in the base well to confirm the

    and predict the offset triple-combo or quad-combo data. Normal accuracy results are as follows:

    Density .034 gm/cc = 2PU

    Neutron 2PU

    Resistivity .1 decade

    Figure 1 indicates that Chi Modeling software uses training data from the reference well in conjunction with weights for each input variable to generate predictions. The weights are then applied to the entire reference well to generate predictions. The values obtained are validated and tested against the original open-hole data. If they do not match, new weights are used until a match is obtained.

    50%

    25%

    25%

    Train

    Validate

    Test

    HA

    L128

    922-10 Reservoir Evaluation Services

    reliability of the data associations that will be used to project

  • Figure 2 shows the normal input data going into the Chi Modeling software. The weights used for data prediction are refined until a reasonable match is obtained with the open-hole data from the reference well. These relationships are used to predict and construct triple-combo data on offset wells that have only pulsed neutron data available.

    Figure 3 shows a comparison between the original neutron/density porosity data (Track 3) and the predicted neutron/

    Chi

    HA

    L128

    93

    HA

    L128

    94Reservoir Evaluation Services 2-11

    density porosity data for a reference well (Track 4) as well as the original (black) and predicted (red) 90-in. resistivity data (Track 2). Track 1 is the open-hole gamma ray.

  • ULTRA Module SuiteULTRA products are a suite of interactive and non-interactive modules which process well log data to make comprehensive formation evaluation computations determining mineral volumes and fluid saturations. The ULTRA tool uses a weighted least-squares error optimization technique to determine fractional lithology constituents (clay, sandstone, limestone, and other minerals) and the percent of saturation of individual fluid components which occupy total pore space.

    PREPARE is a query-based module that leads the user through the basic parameter entries necessary for later use in other modules of ULTRA data. It is obligatory to use either PREPARE or JOBVAR before proceeding with the processing of modules in the ULTRA suite.

    LOGQUAL calculates the uncertainty or quality of each log using all levels. These log uncertainties are used as weighting factors in the minimization process in CORINV, ULFE, and AUTOMOD. The log curve names in the CLS file must be properly mapped into generic curve names used in the ULTRA suite via the group NAMLOG under JOBVAR. LOGQUAL must be run prior to any quantitative evaluation done under the routines CORINV, ULFE, and AUTOMOD.

    DATRED is used to square or block the logs. It provides nine different levels of squaring, ranging from coarse to fine, any of which may be selected during interactive processing to reduce the processing time. This routine must be run before CORINV, ULFE, or AUTOMOD.

    CORINV is designed to compute Rt, Rxo, and Di using any combination of resistivity logs. It has distinct advantages over the chart book approach when more than three resistivity logs are available and one or more logs in the suite have different degrees of reliability. The technique is based on a constrained weighted least squares error optimization using the inverse approach, wherein maximum likelihood values of Rt, Rxo, and Di are computed. Graphical comparisons of theoretical and measured log curves are used to determine the reliability of measurements.

    An interactive part of CORINV allows the log analyst to test hypotheses and to try various options to use weight multipliers and constraints. When the analyst is satisfied with the results, noninteractive option is used during which all data points in the zone selected are processed and computed results are written into the CLS file.

    This ULTRA log presents a light hydrocarbon indicator and water saturation in Track 1; volumes of residual hydrocarbons, movable hydrocarbons, and water in Track 2; and lithology analysis in Track 3.

    ULFE is used to perform log analysis involving the evaluation of constituent volume fractions of the rock and estimation of fluid saturations in the pore. A weighted least squares error optimization technique, using the inverse approach is employed. The analyst inputs the lithology, selects the response equations, enters the clay and mineral parameters, and geological constraints, etc. via the alpha-numeric edit screen. The data is then processed to obtain the statistically most probable results.

    The output is presented as graphical display of computed results, including formation bulk volume analysis and pore volume analysis, and a display of measured logs overlain by the theoretical or reconstructed logs. Theoretical logs are obtained by back computing the log values from the computed results. The degree of fit between the two sets of logs is a measure of the validity of the assumptions implicit in the model used.

    HA

    L9862-12 Reservoir Evaluation Services

  • Output can also be presented as a statistical display on an alphanumeric screen. The arithmetic average and the variance of the difference between each of the measured and theoretical logs over the zone processed is individually displayed. Also the total error, which represents the summation of the errors for each of the constituent logs over the zone, is displayed. If the fit between the measured and the theoretical logs is poor, the analyst can modify the lithology, vary the clay and mineral parameters and try out the different response equations until a satisfactory fit is obtained, and results correspond to geological expectations. Results are computed and displayed on the screen but are not written to the disk in the interactive ULFE. Non-interactive processing is the next step where all data points are processed, and all computed results are written to the disk.

    The AUTOMOD primary objective is to provide optimized values for parameters or constants. In addition to the weighted least squares error optimization in ULFE for computing the variables like Sw, Vcl, Phi etc., the AUTOMOD routine also performs a zone wide optimization on a set of constants or parameters to provide optimized values for the constants. The constants that can be optimized include all parameters associated with sand, lime, dolomite, minerals 1 through 9, clay, formation water resistivity, hydrocarbon density, cementation factor, and saturation exponent. The parameters to be optimized are set to the variable status. The log analyst furnishes an initial value and minimum and maximum values within which parameters are to be optimized. Computations are then made over the entire interval selected for analysis using various values of the parameters to be optimized. The incoherence between the measured logs and the logs reconstructed from computed variables is then analyzed. The parameters' values that yield

    the least incoherence between the measured and reconstructed logs over the interval selected for analysis are considered to be the optimized values of the parameters.

    AUTOMOD is the automatic modeling to optimize unknown parametersan especially useful feature in exploration wells where data is scarce.

    Features Provides the analyst with statistically optimum

    computations of:

    Porosity

    Water saturation

    Multi-mineral volumes

    Hydrocarbon density

    Uses all available log data simultaneously

    Provides powerful quality control features

    Cross-checks final interpretation results

    Validates tool calibration and performance

    Validates interpretive model and zone constants

    Interactive testing and refinement of interpretation parameters and models

    Allows combination of core analysis information with log measurements to help ensure accurate results

    Allows the analyst to use zoned constants and interpretive model selection in multiple wells to facilitate field study applications

    Inputs Minimum: at least one porosity measurement, resistivity, and GR or SP for shale volume ideal: all minimum inputs, plus caliper, Rxo-resistivity device, additional porosity sensors, MRIL, Spectral GR, and Sonic

    Outputs Sw, Sxo, Vsh, eff, lithology, hydrocarbon weight, permeability, plus volumetric percent of selected mineralsReservoir Evaluation Services 2-13

  • SASHA Shaly Sand AnalysisSASHA analysis provides volumetric evaluation of gas, oil, and water in shaly sands and uses traditional density/neutron crossplot as the basis of its volumetric analysis. A variety of water saturation and permeability models are available to optimize the petrophysical analysis to the reservoir.

    The oil and gas company can use conventional wireline or LWD log data to evaluate potential hydrocarbon production from predominately shaly/sand depositional environments by using the results of this analysis. SASHA analysis produces a summary of the lithology in terms of percent volume shale, sandstone silt, dispersed clay, coal, and salt. It includes logic for detection and correction for salt, rugosity, and gas. It also computes water saturation (Sw), lithology, effective porosity (eff), hydrocarbon density, and relative permeabilities in shaly/sand reservoirs.

    A number of different water saturation models may be chosen. Input from the client as to previous analysis or model preferences could avoid unnecessary guessing.

    SASHA analysis can also produce a summary table of net pay, porosity feet, and hydrocarbon feet for each potential zone of interest.

    Environmental corrections for the resistivity and porosity devices should be done prior to running SASHA analysis.

    Applications Formation lithology analysis

    Porosity, saturation, and hydrocarbon flags

    Overview of potential pay zones over the well

    Features Robust, traditional cross-plot approach

    Multiple saturation and permeability models

    Calculation of hydrocarbon density

    Summary table of each pay interval

    Example SASHA analysis showing (l-r) shale/sand volumetric analysis; hydrocarbon weight analysis with oil (red) and gas (pink) volumes and pay flag (black); saturation analysis; relative permeability analysis

    HA

    L912

    0

    Inputs Minimum: at least one porosity measurement, resistivity, and GR or SP for shale volumeIdeal: All minimum inputs, plus caliper, additional porosity, Spectral GR, and Sonic

    Outputs Sw, Sxo, Vsh, eff, lithology, hydrocarbon weight, permeability2-14 Reservoir Evaluation Services

  • CORAL Complex Lithology AnalysisCORAL complex lithology analysis helps evaluate the potential production from complex or mixed lithology reservoirs using wireline or LWD log data.

    CORAL analysis computes water saturation (Sw), lithology, effective porosity (eff) and relative permeabilities in carbonates and complex lithology reservoirs.

    CORAL analysis produces an analysis of the lithology in terms of percent volume shale, limestone, dolomite, sandstone, coal, and salt. It includes logic for detection and correction for salt, rugosity, and gas.

    CORAL analysis uses a traditional crossplot-based formation evaluation approach to determine shale volume, effective porosity, and water saturation. CORAL analysis also estimates relative permeabilities from several different models.

    A number of different water saturation models may be chosen. Input from the client as to previous analysis or model preferences could avoid unnecessary guessing.

    CORAL analysis also can produce a summary table of net pay, porosity feet, and hydrocarbon-feet for each potential zone of interest.

    Environmental corrections for the resistivity and porosity devices should be done prior to running CORAL analysis.

    Applications Formation lithology analysis

    Porosity, saturation, and gas flags

    Pay zone evaluation summary

    Overview of potential pay zones over the well

    Features Robust, traditional crossplot-based approach

    Flexibility for almost all lithology mixtures

    Multiple saturation and permeability models

    Summary table of each pay interval

    Example of CORAL log analysis in late Pennsylvanian carbonates and sands.

    HA

    L912

    1

    InputsMinimum: Neutron, Density, Resistivity, and GR or SP.Ideal: All minimum inputs, plus Caliper, Spectral GR, Sonic, and Pe.

    Outputs Sw, Sxo, Vsh, eff, Lithology volume percent, permeabilityReservoir Evaluation Services 2-15

  • LARA Laminated Reservoir AnalysisMany highly-laminated reservoirs have been missed in existing wells due to the coarse vertical resolution of older logging tools and the inadequate analysis techniques of traditional interpretation programs. To better detect and study thin-bed reservoirs, it has been necessary to develop new logging tools, post-processing techniques, and data analysis methods.

    High-resolution shale indicators allow separation of the sand and shale components but still require thin bed resolution of true formation resistivity and porosity. The measurements produced by high resolution shale indicators are used with those from conventional or resolution-enhanced porosity logging tools to improve the saturation analysis of the laminated reservoir. This is the basis of LARA laminated reservoir analysis.

    To determine shale volume, the high-resolution shale device data is first integrated to the vertical resolution of the porosity device. Then two medium-resolution shale volumes are calculatedone from the integrated high-resolution data and one from the porosity data. Device-specific shale parameters are automatically adjusted until the two volumes are equal. Then LARA analysis calculates the conventional total and effective porosities. It also determines the mode of clay distribution, i.e., dispersed or laminated.

    The high-resolution shale volumes are then used with the known shale resistivity to generate high resolution resistivity expressions that involve shale and non-shale volumes and resistivities. These expressions are integrated to the vertical resolution of the resistivity device. The integrated resistivity is equated to the measured resistivity, and the resulting equation solved to give the non-shale resistivity, which is essentially a shale-corrected true formation resistivity (Rt).

    Finally, the calculated effective porosity and true formation resistivity are used in a modified Waxman-Smits equation to calculate Sw.

    Applications Resolving gross shale volume percent to high resolution

    laminated and dispersed clay content

    Detection of thin-bed reservoirs

    Improve saturation analysis of the laminated reservoir

    Features High-resolution shale indicator generally yields

    significantly more accurate analysis in laminated reservoirs than standard shaly sand models

    Helps with the reliable quantitative interpretation of thinly laminated reservoirs

    Helps identify potential hydrocarbon production often missed by conventional analysis

    Thinly laminated hydrocarbon bearing zones above the main clean sand pay zones would have been overlooked with conventional log analysis. In this case, high resolution data from the EMI image tool was integrated into the LARA analysis. Note the gas effect density-neutron crossover in the clean sands and lack of crossover in the thinly laminated zone above the clean sand zone.

    HA

    L912

    3

    Inputs

    In addition to the minimum of a GR, resistivity and porosity measurement, one or more of the following thin-bed shale indicator inputs is required for LARA analysis: SED, Pe (unfiltered), Microresistivity (ML, MSFL), CAST, EMI, XRMI, OMRI, EVR-GR. The best high-resolution shale indicators are six-arm dipmeter or EMI, XRMI, OMRI, but alternatives include all of the above. LARA program requires only a single porosity device but yields better results when more than one is used.2-16 Reservoir Evaluation Services

    Outputs Sw, Sxo, VSH, eff, lithology hydrocarbon weight (oil, gas), permeability

  • Reservoir Characterization

    Borehole Image Analysis

    AutoDip and TrendSetter ServicesAutoDip and TrendSetter services automate dip and dip trend analysis of EMI, XRMI, and OMRI borehole data. These services save time and provide high-quality data that can help spot hidden features in sedimentary beds and laminates.

    AutoDip service automates high-resolution dip detectiona vast improvement on tedious manual dip picking. Unlike traditional dip computation methods, AutoDip service does not simply correlate raw resistivity data. This method operates independently of often inappropriate correlation parameters, such as correlation length, step length, and search angle.

    TrendSetter service augments AutoDip functionality by taking dip data and automatically sorting it into categories:

    Constant dip with depth

    Increasing dip with depth

    Decreasing dip with depth

    TrendSetter service helps characterize geologic features based on dip trends. AutoDip and Trendsetter services provide a continuous plot with a break out of dip trends and constant dips. These dips and trends can be easily recognized and incorporated into a geological model.

    AutoDip and TrendSetter services differentiate themselves by selecting bedding features more quickly and consistently than hand picking. This provides more time to view the results and interpret the data.

    Slumping and soft sediment deformation are evident in this section of log. The AutoDip program does a good job of capturing the changing dips.

    HA

    L763

    5Reservoir Evaluation Services 2-17

  • AutoDip ServiceAutoDip service uses data from all resistivity buttonsnot just 4, 6, or 8to more accurately determine dips. By using more data, more accurate dip readings are possible.

    AutoDip service translates the human visual experience of event corr