14
Wittig Reaction - Phosphorous Ylides O R H + Ph 3 P CHCH 3 H 3 C R ylide •Stereoselectivity increases as the size of R increases •cis-olefin is derived from non-stabilized ylides Mechanism: Irreversible [2+2] cycloaddition O R H PPh 3 H 3 C H + P H 3 C H Ph 3 O R H R group of aldehyde far away from ylide CH 3 ! " ! 2!a + 2!s cycloaddition Ph 3 P O H 3 C R H H H 3 C R + Ph 3 PO PPh 3 NaHMDS O O OMe H O OMe Chem Ber. 1976, 1694.

Wittig Reaction - Phosphorous Ylides

  • Upload
    others

  • View
    24

  • Download
    0

Embed Size (px)

Citation preview

Wittig Reaction - Phosphorous Ylides

O

R H

+Ph3P CHCH3

H3C R

ylide

•Stereoselectivity increases as the size of R increases•cis-olefin is derived from non-stabilized ylides

Mechanism: Irreversible [2+2] cycloaddition

O

R H

PPh3

H3C H

+

P

H3C H

Ph3

OR

H

R group of aldehyde

far away from ylide

CH3

!" !

2!a + 2!s cycloaddition

Ph3P O

H3C R

HH H3C R+ Ph3PO

PPh3

NaHMDS

O O

OMeH

O

OMe

Chem Ber. 1976, 1694.

E-selective Wittig ReactionsO

R2 H

Ph3P CHR1

ylide

O PPh3

R1R2

PhLiLiO PPh3

R1R2

1 eq. HCl O PPh3

R1R2

equilibrates to the morestable oxaphosphetane

R1

R2

ACIEE, 1966, 126R1 R2 E:Z

CH3 C5H11 99:1

C5H11 CH3 96:4

CH3 Ph 99:1

Stabilized Ylides are much less reactive than alkyl ylides; the react with aldehydes, but only slowly with ketones

Br

O

OR

PPh3

Ph3P

O

OR

Na2CO3

Ph3P

O

OR

A

A + R1CHO

slow

reversible

O PPh3

CO2RR1

minor kinetic

fast

R1

CO2R

+O PPh3

CO2RR1

major kinetic

R1 CO2R

thermodynamicproduct:

slow

Stabilize ylides thus formE alkenes as major products

major minor

"Schlosser" Wittig

Horner-Wadsworth-Emmons Wittig: E-selectivePhosphonate esters are easily deprotonated and are more basic/nucleophilic than stabilized ylides; they react withboth ketones and aldehydes

Br

O

OR

POEt)3

P

O

OR

NaO P(OEt)2

CO2EtR1

fast

R1

CO2R

+

R1 CO2R

thermodynamicproduct:

slow

major minor

O

EtO

EtOArbuzov reaction

P CH3

O

EtO

EtO

1. LDA

2.

R'

O

OEt

P

H3C

O

EtO

EtO

O

R'

Claisen Condensation:Synthesis:

Mechanism of Olefin Formation:

P

O

OEt

O

EtO

EtO

NaH

P

O

OEt

O

EtO

EtO

Reversible

O

NaO P(OEt)2

CO2EtR1

O

O P(OEt)2

CO2EtR1

O-

O P(OEt)2

CO2EtR1

O-

R1CHO

HO P(OEt)2

O

+

water solublephosphate can beremoved in aqueousworkup

RDS

JOC, 1961, 1733

TL, 1976, 2829

Good for:

P W

O

EtO

EtO

W= CN, CO2R,

COR, CHO

SO2Ph, Ph

Modifications to the Horner-Emmons Wittig

Masamune and Roush: for Base-sensitive substrates, use LiCl/tertuary amine (Et3N, DBU, iPr2NEt)

O

H

BzCHN

CH3

P

O

EtO

EtO

O

LiCl, iPr2NEt

CH3CN, 23°C

BzCHN

CH3

O

TL, 1984, 2183

JOC, 1989, 896

P

O

EtO

EtO

Ometal ion coordination lowers pKa further: M

HHNR3

Both hindered phosphonates and hindered aldehydes increase E-selectivity:

BnO

O

H

CH3

BnO

CH3

CO2R

PPh3=CHCO2Et 7 :1 E:Z

(iPrO)2POCH2CO2Et/KOtBu 95:5 E:Z

(MeO)2POCH2CO2Me/KOtBu 1:3 E:Z

+

TL, 1981, 3873.

Modifications to the Horner Emmons Wittig, continued

Z-selective olefin synthesis: Still modified phosphonate: TL, 1983, 4407

R1

O

HP

O

F3CH2CO

F3CH2CO

O

OCH3

R

+ KHMDS,

18-crown-6

R'

CO2Me

R

O

H

P

O

F3CH2CO

F3CH2CO

O

OCH3

KHMDS, 18-c-6 CO2Me

Z:E >10:1

BnO

O

CH3

H

P

O

F3CH2CO

F3CH2CO

CO2Me

KH, THFBnO

CH3CO2Me

BnO

CH3

CO2Me

P

O

EtO

EtO

CO2Me

NaH, THF

83%, 12:1 E:Z

84%, 11:1 Z:ETetrahedron, 1987, 2369

R1

O

HP

O

F3CH2CO

F3CH2CO

O

OCH3

CH3

+KHMDS,

18-crown-6

R1

CO2Me

CH3

Z:E >10:1

R1 Z:E

>50:1

>50:1

>50:1

Trisubstituted Olefins:

Ph

O

H

CH3

P

O

R1O

R1O

O

OR2

tBuOK, THF

Ph

CH3 CH3

CO2R2+

CH3 Ph

CH3 CO2R2

CH3

R1 R2 E:Z

CH3 CH3 5:95

CH3 Et 10:90

Et Et 40:60

iPr Et 90:10

iPr iPr 95:5

TL, 1983, 4403

Peterson Olefination: An alternative to the Wittig Reaction

Me3Si

M

M=Li, Mg

Me3Si

R1

Li

R2CHO

non-diastereoselective

Me3Si OH

R1 R2

+

Me3Si OH

R1 R2

Isolate and separate silanol diastereomers

Elimination Step is Stereospecific:

Me3Si OH

R1 R2

H3O+

Me3Si

OH2R1

R2

H

H

R1 R2

control geometry of olefin with conditions for elimination!

Me3Si ONa

R1 R2

NaH Me3Si O

R1 R2R1

R2

syn elimination trans

anti elimination

cis

(base)

irreversible

2-step procedure: Addition to aldehyde (non-stereoselective) and silanol elimination (stereospecific)

JOC, 1968, 781

Elimination Step is Stereospecific:

tBuPh2Si OH

Ph R

anti elimination

Stereoselective Additions in the Peterson Olefination:

threo product favored by small SiR3 (Me3Si)

erythro product favored by large SiR3 (t-BuPh2Si)

O

R

H

H

R3Si

Ph

R3Si O-

H

HR

Ph

threo

O

R

H

H

Ph

R3Si

R3Si O-

R

HH

Ph

erythro

maintain an anti relationship between aldehyde R and largest substitutent on the silicon reagent

small SiR3

large SiR3

3.0 KH

Ph R

R Z:EMe 92:8Ph 85:15vinyl 95:5

tBuPh2Si OH

Ph Bu

BF3•OEt2

Ph

Bu

E:Z = 99:1

Synthesis, 2000, 1223

Julia Olefination: E-selective synthesis

R1

O

H

+

R2

SO2R

Non stereoselective

R1

R2

SO2R

OH

mixture of diastereomers:

Ac2OR1

R2

SO2R

OAc

R1

R2

Na/Hg

reductivefragmentation

R1

R2

OAc

H

radical intermediate

prefers R1 and R2 trans

major

TL 1973, 4833.

O

TBSO

PhO2S

OMe

BuLi

C5H11CHO

O

TBSO

PhO2S

OMe

OH

C5H11

1. MsCl, Et3N

2. Na/Hg

O

TBSO

OMe

C5H11

76%

N

NO2S

R2BuLi

R1CHO

N

NO2S

R2

OH

R1SmI2

THF

R1

R2

TL, 1990, 7105see also:JOC, 1995, 3194Org. Lett. 2005, 2373.

Tebbe Reagent: Cp2Ti AlMe2

Cl

Reacts with aldehydes, ketones, esteres, lactones, amides to give methylene compounds:

O

X

Tebbe CH2

X

JACS, 1978, 3611

Ph

O

OEt

Ph

CH2

OEt

Ph

O

NPh

CH2

N

O

O

O

CH2

see also: Petasis reagent: Cp2TiMe2 JACS, 1990, 6392.

O CH2

Tebbe

Tebbe

Tebbe

Tebbe

Corey-Winter Reaction: Vicinal Diol Elimination

HO OH

R

H H

R'

S

Cl Cl

O O

R

H H

R'

S

P(OEt)3

heat

O O

R

H H

R'

+ (EtO)3PS

R R'

-CO2

synelimination

JACS, 1963, 2677JACS,1965, 934

Shapiro Reaction:

H

O TsNHNH2

H

N

NH

Ts 2 MeLiN

N

Ts N

N

vinyl anion

R-I

R

H3O+HTL, 1975, 1811.

Carbene:

O

TsNHNH2

NNHTs

2 BuLi

Li

BuBr

H3O+

H

Shapiro Reaction:

Acc. Chem. Res. 1983, 55.

Dehydration of alcohols to form alkenes

Burgess Reagent:

O

O N

S

O O

NEt3

R

OH

R'

Burgess

Exothermic R

O

R'

S

OO

N

S

O O

NEt3

H

H

H

cis elimination

for 2° and 3° alcohols only

R

R'

JACS, 1970, 5224JOC, 1973, 26

Ph

OH

Ph

HD

Ph

OH

Ph

DH

Burgess

Burgess

Ph

Ph

Ph

Ph

D

H

CH3

HO

Burgess

CH3

JACS, 1990, 8433

Martin Sulfurane:

R

OH

R'

Martin Sulfurane

R

O

R'

S

Ph OR

Ph

for 2° and 3° alcohols only

R

R'

JACS, 1971, 4327JOC, 1973, 26S

Ph

Ph

OC(CF3)2Ph

OC(CF3)2Ph

H

R

O

R'

S

Ph

Ph

H

OR

Eliminations for 1° alcohols: Grieco method

OHMsCl

Et3N

OMs

NO2

SeCN

NaBH4

Se

NO2

H2O2

Se

NO2O-H

retro-hetero-enereaction

JOC, 1975, 1450.

Other selenide eliminations:

see JACS, 1973, 5813JOC, 1975, 542.