35
Towards the QoS Internet Wojciech Burakowski and Halina Tarasiuk EURO-VIEW 2007, Wuerzburg, July 23-24, Germany Telecommunication Network Technologies Group Warsaw University of Technology, Poland tnt.tele.pw.edu.pl

Wojciech Burakowski and Halina Tarasiuk - AAI Teamaai.tele.pw.edu.pl/Artikuly/Presentation_Burakowski.pdf · Wojciech Burakowski and Halina Tarasiuk EURO-VIEW 2007, ... Configuration

  • Upload
    lamngoc

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Towards the QoS Internet

Wojciech Burakowski and Halina Tarasiuk

EURO-VIEW 2007, Wuerzburg, July 23-24, Germany

Telecommunication Network Technologies Group

Warsaw University of Technology, Poland

tnt.tele.pw.edu.pl

Plan

� Vision of QoS Internet

� QoS mechanisms, algorithms and protocols

� Tested approaches for IP QoS

� AQUILA: single domain DiffServ

� EuQoS: end-to-end QoS over heterogeneous networks

� Summary

Vision of QoS Internet (1)

� Evolution steps of the Internet� best effort networks

� DiffServ architecture

� PHB mechanisms in commercial routers (schedulers, classifiers, markers, policers..)

� MPLS technology

� IP Premium in GEANT and some NRENs

� prototype solutions, as developed e.g. in European projects (EuQoS, Daidalos, MUSE, NETQOS, AQUILA TEQUILA, CADENUS, etc...)

Vision of QoS Internet (2)

� Why we need QoS ?

� to open new market – QoS Internet

� natural step of evolution

� new applications for users

� real business

� QoS is really required for new challenges as

� e-health systems

– for transferring life-critical information

Vision of QoS Internet (3)

� Target QoS Internet : multi-service QoS network

� areas

� multi-domain

� heterogeneous networks

� supporting a set of QoS Classes of Services

� providing absolute QoS

� in the future

� user-oriented, e.g. QoS negotiations...

IETF Recommendations� RFC2474

� K. Nichols, et al., Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers, December 1998.

� RFC2475

� S. Blake, et al., An Architecture for Differentiated Services, December 1998.

� RFC2597

� J. Heinanen, et al., Assured Forwarding PHB Group, June 1999.

� RFC2638

� K. Nichols, et al., A Two-bit Differentiated Services Architecture for the Internet, July 1999.

� RFC3246

� B. Davie, et al., An Expedited Forwarding PHB (Per-Hop-Behavior), March 2002.

� RFC3260

� D. Grossman, New Terminology and Clarifications for Diffserv, April 2002.

� RFC3290

� Y. Bernet, et al., An Informal Management Model for Diffserv Routers, May 2002.

� RFC4594

� J. Babiarz, et al., Configuration Guidelines for DiffServ Service Classes, Internet RFC 4594, August 2006.

ITU-T QoS Standards for NGN

� ITU-T Rec. Y.1540

� IP Packet Transfer and Availability Performance Parameters, December 2002.

� ITU-T Rec. Y.1541

� Network Performance objectives for IP-based services, 2002.

� ITU-T Rec. Y.2001

� General Overview of NGN, 2004.

� ITU-T TR Q-Series Supplement 51 (12/04)

� Signalling requirements for IP QoS.

� ITU-T Rec. Y.2111

� Resource and Admission Control Functions in Next Generation Networks, 2006.

Vision of QoS Internet (4)

user user

codec codec

Additional mechanisms

Additional mechanisms (e.g. playback buffer)

Network interface

Network interface

Application level

Application level

ITU G.1010

ITU Y.1541

Subjective assessment

Network level

Network level

User level User level

User satisfaction of using given application

For guarantying appropriate level of packet losses, delays etc.

Offered a number of Classes of Service

End-to-end CoSs: in the last Recommendation (RFC4594 )

UUULow-Priority Data

UUUStandardElastic

U1 s not critical 10-3High Throughput Data

U400 ms10-3OAM

U400 ms10-3Low Latency Data

U1 s

non critical

10-3MM StreamingNon-Real Time/Assured elastic

50 ms100 ms10-3Broadcast Video

50 ms100/350 ms (local/long distance10-3RT Interactive

50 ms100 ms10-3MM Conferencing

U100 ms10-3Signalling

50 ms100/350 ms (local/long distance)10-3TelephonyReal Time

50 ms100 ms10-3Network ControlCTRL

IPDVMean IPTDIPLR

QoS ObjectivesEnd-To-End Service

ClassTreatment aggregate

Plan

� Vision of QoS Internet

� QoS mechanisms, algorithms and protocols

� Tested approaches for IP QoS

� AQUILA: single domain DiffServ

� EuQoS: end-to-end QoS over heterogeneous networks

� Summary

QoS mechanisms, algorithms and protocols

� What do we need for providing QoS ?

� At the Packet level

� QoS mechanisms for handling packets

� Connection Admission Control

� QoS aware applications – for sending QoS Request to the network containing information about

� Type of CoSs

� Required bandwidth

� QoS path - QoS routing for inter- and intra- domains

Control mechanisms in the network

Timescale

Packet scheduling mechanisms

To regulate the access to the transmission line for streams belonging to different CoSs

Mechanisms for policing traffic

Traffic policing at the network entry point

ρ

pakiet zgodny

σ

pakiet niezgodny

Setup

Call Proceeding

Signalling

For setting the connection and for sending the QoS requirements

Control

Data transfer

Admission Control

For controlling the traffic in the network

Connect

Monitoring and measurements

To support network functionalities

To get information about network state – load, anomalies detection

Traffic EngineeringResource allocation Network dimensioning Setting routing paths i

Charging

For encourage users in using the network in a rational way

Network management

For operator to make control on the network

Plan

� Vision of QoS Internet

� QoS mechanisms, algorithms and protocols

� Tested approaches for IP QoS

� AQUILA: single domain DiffServ

� EuQoS: end-to-end QoS over heterogeneous networks

� Summary

(IST-1999-10077)

Adaptive Resource Control forAdaptive Resource Control for QoSQoSUsing an IPUsing an IP --based Layered Architecturebased Layered Architecture

AQUILA(IST-1999-10077)

Adaptive Resource Control forAdaptive Resource Control for QoSQoSUsing an IPUsing an IP --based Layered Architecturebased Layered Architecture

AQUILA

2000-2003

Types of trafficTypes of traffic

StreamingStreaming ElasticElastic

CBRCBR VBRVBR Long live TCPLong live TCP Short live TCPShort live TCP

Premium Premium CBRCBR

Premium Premium VBRVBR

Premium Premium MultiMulti mmediaedia

Premium MissionPremium MissionCritiacalCritiacal

NETWORK SERVICESNETWORK SERVICES

Types of trafficTypes of traffic

StreamingStreaming ElasticElastic

CBRCBR VBRVBR Long live TCPLong live TCP Short live TCPShort live TCP

Premium Premium CBRCBR

Premium Premium VBRVBR

Premium Premium MultiMulti mmediaedia

Premium MissionPremium MissionCritiacalCritiacal

NETWORK SERVICESNETWORK SERVICES

AQUILA architecture and concepts

� Network services:

� Premium CBR for IP Telephony and Voice Trunking

� very low delay and jitter, very low loss, hard bandwidth guarantee.

� Premium VBR for Video Streaming and Teleconferencing

� low delay and jitter, low loss, bandwidth guarantee.

� Premium Multimedia for adaptive applications (TCP), e.g. ftp

� bandwidth guarantee, moderate delay.

� Premium Mission Critical for interactive games, online banking

� very low loss, non-greedy flows and rather small packets.

� Standard

� classical best effort traffic.

AQUILA architecture and concepts

Core Router

Core Router

Core Router

AccessNetwork

Resource Control Layer

AccessNetwork

Admission ControlAdmission

Control AgentAdmission

Control AgentEnd-userApplication

Toolkit

Resource Control Agent

Resource Control

Edge Router

Edge Router

Set

tings

QoS Request

QoSRequest

resources resources

QoSRequest

Set

tings

Core Router

Core Router

Core Router

AccessNetwork

Resource Control Layer

AccessNetwork

Admission ControlAdmission

Control AgentAdmission

Control AgentEnd-userApplication

Toolkit

Resource Control Agent

Resource Control

Edge Router

Edge Router

Core Router

Core Router

Core Router

AccessNetwork

Resource Control Layer

AccessNetwork

Admission ControlAdmission

Control AgentAdmission

Control AgentEnd-userApplication

Toolkit

Resource Control Agent

Resource Control

Edge Router

Edge Router

Set

tings

Set

tings

QoS RequestQoS Request

QoSRequestQoSRequest

resources

resources resources

resources

QoSRequestQoSRequest

Set

tings

Set

tings

QoS mechanisms, algorithms and protocols

� Conclusions from AQUILA

� It was proved and tested that providing QoS was possible

�We needed new functionalities

� QoS aware applications

� CAC

End-to End QoS over Heterogeneous Networks

Exhibitions: Brussels CER 2005, Helsinki IST 2006

2004-2007

EuQoS Network General Overview

� 12 different testbedsconnected via GEANT based in 10 different locations in 6countries/NRENs on 4different access networks technologies :

� XDSL

� LAN

� WiFi

� UMTS

� MPLS

� Countries

� France

� Italy

� Poland

� Portugal

� Spain

� Switzerland

� Flexible architecture with private BGP sessions

� Independent of GEANT BGP routing� A path can be established through as

many different ASs as required� Extensible testbeds possible :

addresses pools of /16 size with private addressing for each partners

� Full meshed � 131 GRE (BE) tunnels

Current status: Where there is / will be soon any QoS solution, it:- is technology dependent - does not have end-to-end significance

Static “SLA”

Static “SLA”ISP1 ISP2 ISP3

Off-line process

xDSLWiFi Core IP network

Off-line process

“QoS” connection “QoS” connection “QoS” connection

Sign. Proxy

Integrated, technology independent resource management plane

Sign. Proxy

Sign. Proxy

End-to-end QoS connection

On-lineQoS sign.function

On-lineQoS sign.function

EuQoS solution:- technology-independent layer added - QoS signalling capabilities added to the applications (terminals)

Technology-specific resource managers

USER 1 USER 2

EQ-SDP

EQ-SIPSignaling

EQ-SIPSignaling

Network technology Independent sub-layer

Network technology dependent sub-layer

EQ-SDP in

End-to-end QoS EQ-SIP signaling

AccessNetwork

1

QoSDomain

i

AccessNetwork

2

QoSDomain

k

QoSDomain

j

RA1 RAkRAjRAiRAn

RM1 RMi RMj RMk RM2n

Virtual Network Layer

Application Application

EuQoS Architecture: Physical View

EQEQ--pathpath

EQ-SDP

EQ-ETP

Protocols

EQ-ETP

Protocols

EQ-NSIS EQ-NSISEQ-NSIS EQ-NSIS

EQ-SIPproxy

EQ-SIPproxy

USER 1 USER 2

EQ-SDP

EQ-SIPSignaling

EQ-SIPSignaling

Network technology Independent sub-layer

Network technology dependent sub-layer

EQ-SDP in

End-to-end QoS EQ-SIP signaling

AccessNetwork

1

QoSDomain

i

AccessNetwork

2

QoSDomain

k

QoSDomain

j

RA1 RAkRAjRAiRAn

RM1 RMi RMj RMk RM2n

Virtual Network Layer

Application Application

EQ-SDP

EQ-ETP

Protocols

EQ-ETP

Protocols

EQ-NSIS EQ-NSISEQ-NSIS EQ-NSIS

EQ-SIPproxy

EQ-SIPproxy

USER 1 USER 2

EQ-SDP

EQ-SIPSignaling

EQ-SIPSignaling

Network technology Independent sub-layer

Network technology dependent sub-layer

EQ-SDP in

End-to-end QoS EQ-SIP signaling

AccessNetwork

1

QoSDomain

i

AccessNetwork

2

QoSDomain

k

QoSDomain

j

RA1 RAkRAjRAiRAn

RM1 RMi RMj RMk RM2n

Virtual Network Layer

Application Application

EQ-SDP

EQ-ETP

Protocols

EQ-ETP

Protocols

EQ-NSIS EQ-NSISEQ-NSIS EQ-NSIS

EQ-SIPproxy

EQ-SIPproxy

Software mapping over architecture

A-SSN

ASIG ASIG

A-SSN

QCM QCM

TERO

MMFM

APP APP

ETP

XQOS

ETP

XQOS

MCAST MCAST

Application Application

CallControl

RA-SSN

Q-S

SN

CA

C

CallControl

CA

C

CA

C

CallControl

CA

C

CallControl

Q-S

SN

CA

C

RA-SSN

Call ControlR

M-S

SN

RM

-SS

N

RM

-SS

N

RM

-SS

N

RM

-SS

N

RM

-SS

N

RM

-SS

N

RM

-SS

N

RARA RA RA

RA

TERO

MMFM

TERO

MMFM

TERO

MMFM

TERO

MMFM

MMSMMS MMS MMS

MMS

RA-SSN RA-SSNRA-SSN

SAAACHAR SAAA CHAR

Selected problems from EuQoS (1)

� QoS BGP: QoS Border Gateway Protocol

� To add QoS objectives to BGP

� QoS objectives:

� Classes of Services and the values of the parameters IPTD, IPTV and IPLR

� In the source domain to perform e2e CAC – checking if there exists QoS path between source-destination domains

� Solution implemented and tested in the EuQoS testbeds

Selected problems from EuQoS (2)

� QoS Framework implementation

� To define end-to-end Classes of services

� To implement end-to-end Classes of Services in particular network technologies:

� WiFi, LAN/Ethernet, xDSL, UMTS and inter-domain links

� Solution implemented and tested

Provisioning and call handling processes

End-to-end QoS path

QoS domain path QoS domain pathQoS domain pathQoS inter-domain path

QoS inter-domain path

QoS signalling

QoS routing – qBGP (path)

QoS Request

QoS Request

QoS Request

QoS Request

QoS Request

QoS Request

End-to-end CoSs in EuQoS

UUULow-Priority Data

UUUStandardElastic

U1 s not critical 10-3High ThruPut Data

U400 ms10-3OAM

U400 ms10-3Low Latency Data

U1 s

non critical

10-3MM StreamingNon-Real Time/Assured elastic

50 ms100 ms10-3Broadcast Video

50 ms100/350 ms (local/long distance)10-3RT Interactive

50 ms100 ms10-3MM Conferencing

U100 ms10-3Signalling

50 ms100/350 ms (local/long distance)10-3TelephonyReal Time

50 ms100 ms10-3Network ControlCTRL

IPDVMean IPTDIPLR

QoS ObjectivesEnd-To-End Service

ClassTreatment aggregate

Implementation of CoS concept

Selected problems from EuQoS (3)

� Signalling system including scalability assessment

� Signalling: for transferring QoS request along the QoS path – for resource reservations

� Signalling in the system:

� At different levels: application, technology independent and in particular domains

� Evaluation of performances of signalling system

Signalling system – call handling

A-SSN

RA RA RA RA

COPS COPS COPS COPS

SOAP

RM RM RM RM

Signalling CoS

A-SSN

NSISNSIS NSIS

NSIS NSIS

Client-QCM Client-QCM

SOAP

telnet telnet

Ingress/Egress Domain

Ingress/Egress DomainTransit Domain Transit Domain

App Layer

TI/TD Layer

Network Layer

A-SSN

RA RA RA RA

COPS COPS COPS COPS

SOAP

RM RM RM RM

Signalling CoS

A-SSN

NSISNSIS NSISNSIS

NSIS NSIS

Client-QCM Client-QCM

SOAP

telnet telnet

Ingress/Egress Domain

Ingress/Egress DomainTransit Domain Transit Domain

Ingress/Egress Domain

Ingress/Egress DomainTransit Domain Transit Domain

App Layer

TI/TD Layer

Network Layer

Call scenario for two domains (TI/TD layer)

Ingress domainA-SSN

E2E CAC

DomainCAC

RA-SSN

RM-DB

RM

Devices

RA

RA-SSN

RA Controller

RA-DB

RM-SSNRM-SSN

CCCC

E2E CACRM-DBRM-DB

DomainCAC

RM-DB

DomainCAC

RA-SSN

RA-SSN

1

23

45

7

7

8

RA Controller

9

10

RA-DB

1112

13

RA Controller

RA-DB

14

RA Controller

15

RA-DB

17RA-SSN

17

18

DomainCAC

19

22CC

RM-SSN22

24 RA-SSN

24

CAC algorithms

20

RM-DB

25

RA Controller

26

RA-DB

27 RA Controller

28

29

Devices

30

31RA-DB

32

UN modules

33RA Controller

34

RA-DB

35 RA Controller

36RA-SSN

3637

DomainCAC

38

CC39

RM-DB 1RM-SSN

1

CC2

RM-DBRM-SSN

3

23Domain

CAC

3CC

RM-RA link (7)

RA Procesor (5)

RA Database (6)

Devices (8)

RM Procesor (1)

RM Database (2)

RM-RM link (4)

RM-RA link (3)

RM

RA

16RA Controller

21CC

1,1 ( 1 )1,1 ( 1 )

1,2 ( 1 )

1,3 ( 2 )

1,4 ( 1 )

1,5 ( 2 )

1,6 ( 1 )

1,2 ( 1 )

1,3 ( 2 )

1,4 ( 1 )

1,5 ( 2 )

1,7 ( 3 )

1,9 ( 6 )

1,8 ( 5 )

1,6 ( 1 )

1,7 ( 3 )

1,10 ( 5 )

1,11-1 ( 5 )

1,12-1 ( 6 )

1,13-1 ( 5 )

1,14 ( 5 )

1,15 ( 6 )

1,16 ( 5 )

1,17 ( 7 )

1,8 ( 5 )

1,9 ( 6 )

1,10 ( 5 )

1,11-1 ( 5 )

1,12-1 ( 6 )

1,13-1 ( 5 )

1,14 ( 5 )

1,15 ( 6 )

1,16 ( 5 )

1,17 ( 7 )

1,25 ( 5 )

1,26 ( 6 )

1,27 ( 5 )

1,28 ( 5 )

1,29 ( 8 )

1,30 ( 5 )

1,31 ( 6 )

1,32 ( 5 )

1,33 ( 5 )

1,34 ( 6 )

1,35 ( 5 )

1,36 ( 7 )

1,25 ( 5 )

1,26 ( 6 )

1,27 ( 5 )

1,28 ( 5 )

1,29 ( 8 )

1,30 ( 5 )

1,31 ( 6 )

1,32 ( 5 )

1,33 ( 5 )

1,36 ( 7 )

1,34 ( 6 )

1,35 ( 5 )

1,18 ( 1 )

1,20 ( 2 )

1,21 ( 1 )

1,22 ( 4 )

1,23 ( 1 )

1,24 ( 3 )

1,37 ( 1 )

1,38 ( 1 )

1,39 ( 2 )

4,1 ( 1 )

4,2 ( 2 )

4,3 ( 1 )

1,18 ( 1 )

1,19 ( 1 )1,19 ( 1 )

1,20 ( 2 )

1,21 ( 1 )

1,22 ( 4 )

1,23 ( 1 )

1,24 ( 3 )

1,37 ( 1 )

1,38 ( 1 )

1,39 ( 2 )

4,1 ( 1 )

4,2 ( 2 )

4,3 ( 1 )

Exemplary results referring to setup delay

� Preliminary conclusions about signalling:

� we can expect the same performances as for signalling system in PSTN

� rather to shift network complexity to the access while maintain simply core

� handling signalling in access looks that is not so critical

average set-up delay

01234567

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

call/sec

dela

y [s

]

ingress domain

Plan

� Vision of QoS Internet

� QoS mechanisms, algorithms and protocols

� Tested approaches for IP QoS

� AQUILA: single domain DiffServ

� EuQoS: end-to-end QoS over heterogeneous networks

� Summary

Summary

� There is a lot of activities in ITC area based on the assumption that QoS at the network level is solved (but is not solved)

� Some of unsolved problems related to QoS;� End-to-end Classes of Services are quite well defined but

not direct mapping to the Classes of Services defined for each technology

� Not available QoS-aware applications

� Not fully tested solutions� Signalling for resource reservations

References

� X. Masip-Bruin, et al., The EuQoS System: A solution for QoS Routing in Heterogeneous Networks, IEEE Communications Magazine, Vol.45 No.2, February 2007.

� J. Mongay Batalla and R. Janowski, Provisioning dedicated class of service for reliable transfer of signaling traffic, ITC20, Canada, June 2007.

� W. Burakowski, et al., On Multi-Domain Connection Admission Control in the EuQoS System, In Proc. of 15th IST Mobile Summit, Greece 2006.

� O. Dugeon, et al., End to End Quality of Service over Heterogeneous Networks (EuQoS), In Proc. of NetCon'05, France, November 2005.

� H. Tarasiuk, R. Janowski, W. Burakowski, Admissible traffic load of real time class of service for inter-domain peers, In Proc. of ICAS/ICNS 2005, October 2005.