Ws01a_normalmodes

Embed Size (px)

Citation preview

  • 8/6/2019 Ws01a_normalmodes

    1/18

    WS1a-1

    WORKSHOP 1A

    NORMAL MODES ANALYSIS

    NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

  • 8/6/2019 Ws01a_normalmodes

    2/18

    WS1a-2NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

  • 8/6/2019 Ws01a_normalmodes

    3/18

    WS1a-3NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    NORMAL MODES ANALYSIS

    Problem Description For this problem, we use the Lanczos method to find the first ten

    natural frequencies and mode shapes of a flat rectangular plate.

    Below is a finite element representation of the rectangular plate. It

    also contains the geometric dimensions and the loads and

    boundary constraints. Table 1 contains the necessary parameters

    to construct the input file (see next page).

  • 8/6/2019 Ws01a_normalmodes

    4/18

    WS1a-4NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    NORMAL MODES ANALYSIS

    Problem Description (cont.) Table1

    en t (a) in

    Hei t (b) in

    T ic ness .1 in

    ei t Densit . 8 lbs/in

    ass/ ei t actor . 9E sec /in

    Elastic o l s . E6 lbs/in

    Poissons Ratio .

  • 8/6/2019 Ws01a_normalmodes

    5/18

    WS1a-5NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    NORMAL MODES ANALYSIS

    Suggested xercise Steps1. Create a geometry surface using the given dimensions.

    2. Mesh the surface with Quad elements using Global dge Length of

    0.5.

    3. Assign the boundary conditions to the model.

    4. Create the appropriate material properties and call it mat_1.

    5. Assign the appropriate element properties to the model and call itprop_1.

    . Submit the model to MSC.Nastran for analysis.

    7. Attach the .XDB results file.

    . Post Process results create a quick plot for each of the 10 mode

    shapes.

  • 8/6/2019 Ws01a_normalmodes

    6/18

    WS1a-NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    CREATE NEW DATABASE

    Create a new database calledws1.db.

    a. File New.

    b. nter ws1a as the file name.

    c. Click OK.

    d. Choose Default Tolerance.

    e. Select MSC.Nastran as theAnalysis Code.

    f. Select Structural as theAnalysis Type.

    g. Click OK.

    a

    b c

    d

    e

    f

    g

  • 8/6/2019 Ws01a_normalmodes

    7/18

    WS1a-7NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Step 1. Geometry: Create / Surface / XYZ

    Create a 5 x 2 surface.

    a. Geometry: Create SurfaceXYZ.

    b. nter as the VectorCoordinates List.

    c. Turn offAuto Execute.

    d. Click Apply.

    a

    d

    c

    b

  • 8/6/2019 Ws01a_normalmodes

    8/18

    WS1a-NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Step 2. Elements: Create / Mesh / Surface

    Create the finite elements onthe surface.

    a. lements: Create MeshSurface.

    b. Select Quad for lemShape and IsoMesh forMesher.

    c. Screen pick Surface 1

    for the Surface List.

    d. Uncheck the Automatic

    Calculation option.

    e. Change the Global dgeLength value to 0.5.

    f. Click Apply.

    a

    b

    c

    d

    e

    f

  • 8/6/2019 Ws01a_normalmodes

    9/18

    WS1a-NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Step 3. Loads/BCs: Create / Displacement / Nodal

    Assign the boundaryconstraints to the finiteelement model.

    a. Loads BCs: CreateDisplacement Nodal

    b. nter constraint forthe New Set Name.

    c. Click Input Data.

    d. Input the value for theTranslation and for the otation

    e. Click OK.

    f. Click on SelectApplication Region.

    g. Change the GeometryFilter to FEM.

    h. Select all the nodeson the left edge of theplate.

    i. Click Add and OK.

    j. Click Apply.

    a

    b

    c

    d

    e

    f

    g

    h

    i

    i

    j

  • 8/6/2019 Ws01a_normalmodes

    10/18

    WS1a-10NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Step 4. Materials: Create / Isotropic / Manual Input

    Create the material properties.

    a. Materials: Create IsotropicManual Input.

    b. nter mat_1 for the Material

    Name.

    c. Click Input Properties.

    d. nter 3e7 for the lastic

    Modulus and 0.3 forPoissonatio.

    e. nter 0.282 for the Density.

    f. Click OK.

    g. Click Apply.

    a

    b

    c

    d

    e

    fg

  • 8/6/2019 Ws01a_normalmodes

    11/18

    WS1a-11NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Step 5. Properties: Create / 2D / Shell

    Assign element properties to themodel.

    a. Properties: Create 2D Shell.

    b. nter prop_1 for the Material

    Name.

    c. Click Input Properties.

    d. Click in the Material Name

    icon, and select mat_1 fromthe Select Material box.

    e. nter 0.1 for the Thickness.

    f. Click OK.

    g. Select Surface 1 in the SelectMembers box.

    h. Click Add and click Apply.

    a

    b

    c

    e

    fg

    h

    h

    d

  • 8/6/2019 Ws01a_normalmodes

    12/18

    WS1a-12NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Step 6. Analysis: Analyze / Entire Model / Full Run

    Submit the model for analysis.

    a. Analysis: Analyzentire Model Full un.

    b. Click on Solution Type.

    c. Select Normal Modes.

    d. Click on Solution

    Parameter.e. nter 0.00259 for Wt-

    Mass Conversion.

    f. Click OK.

    g. Click OK.

    a

    b

    c

    d

    e

    fg

  • 8/6/2019 Ws01a_normalmodes

    13/18

    WS1a-13NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Step 6. Analysis: Analyze / Entire Model / Full Run (Cont.)

    Submit the model for analysis(cont.).

    a. Click on Subcases.

    b. Select Default inAvailable Subcases

    c. Click on Subcase

    Parameters.d. Select Lanczos

    xtraction Method.

    e. nter 10 as the Numberof Desired oots.

    f. Select Mass forNormalization Method.

    g. Click OK.

    h. Click Apply.

    i. Click Cancel.

    j. Click Apply.

    a

    i

    c

    d

    e

    f

    g

    hj

    b

  • 8/6/2019 Ws01a_normalmodes

    14/18

    WS1a-14NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Step 7. Analysis: Access Results / Attach XDB / Result Entities

    Attach the XDB result file.

    a. Analysis: Accessesults Attach XDBesult ntities.

    b. Click on Select ResultsFile.

    c. Select ws1a.xdb.d. Click OK.

    e. Click Apply.

    a

    b

    c

    d

    e

  • 8/6/2019 Ws01a_normalmodes

    15/18

    WS1a-15NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Step 8. Results: Create / Quick Plot

    Create a Quick Plot of the firstmode shape.

    a. esults: Create Quick Plot.

    b. Click on A1:Mode1.

    c. Select Eigenvector,Translational in both Fringe

    and Deformation resultboxes.

    d. Click Apply.

    a

    b

    c

    d

    c

  • 8/6/2019 Ws01a_normalmodes

    16/18

    WS1a-1NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Step 8. Results: Create / Quick Plot

  • 8/6/2019 Ws01a_normalmodes

    17/18

    WS1a-17NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation

    Summary

    Summary of Frequencies and Modes for project _______________

    Mode Freq

    (Hz)

    Description

  • 8/6/2019 Ws01a_normalmodes

    18/18

    WS1a-1NAS122, Workshop 1a, August 2005Copyright 2005 MSC.Software Corporation