36
DIESEL STORAGE PLATFORM LIFTING ANALYSIS 0 APPROVED FOR CONSTRUTION B ISSUED FOR APPROVAL A 02/02/12 ANA ISSUED FOR CLIENT COMMENTS CHECK APPR. APPR. APPR. REV. DATE BY DESCRIPTION ENGINEER APPROVAL CONTRACTOR COMPANY STATUS CODE : A = Issued for comments - B = Issued for approval - C = Approved TOTAL OR PARTIAL REPRODUCTION AND/OR UTILIZATION OF THIS DOCUMENT ARE FORBIDDEN WITHOUT PRIOR WRITTEN AUTHORIZATION OF THE OWNER CLASS REVISION STATUS DOCUMENT NUMBER AG-03-002 1 A A

[Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

Embed Size (px)

Citation preview

Page 1: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

0 APPROVED FOR CONSTRUTION

B ISSUED FOR APPROVAL

A 02/02/12 ANA ISSUED FOR CLIENT COMMENTS

CHECK APPR. APPR. APPR. REV. DATE BY DESCRIPTION

ENGINEER APPROVAL CONTRACTOR COMPANY

STATUS CODE : A = Issued for comments - B = Issued for approval - C = Approved

TOTAL OR PARTIAL REPRODUCTION AND/OR UTILIZATION OF THIS DOCUMENT ARE FORBIDDEN

WITHOUT PRIOR WRITTEN AUTHORIZATION OF THE OWNER

CLASS REVISION STATUS DOCUMENT NUMBER AG-03-002

1 A A

Page 2: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 2 of 31

TABULATION OF REVISED PAGES ATTACHMENTS

REVISIONS REVISIONS PAGE

A B C D E

REMARKS APP PAGES

A B C D E

REMARKS

1 X A 8 X X

2 X B 22 X X

3 X C 2 X X

4 X D 2 X X

5 X E 16 X X

6 X F 10 X X

7 X G 2 X X

8 X

9 X

10 X

11 X

12 X

13 X

14 X

15 X

16 X

17 X

18 X

19 X

20 X

21 X

22 X

23 X

24 X

25 X REVISIONS

26 X EXHI. PAGES

A B C D E REMARKS

27 X

28 X

29 X

30 X

31 X

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 47

48

Page 3: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 3 of 31

TABLE OF CONTENTS

1 INTRODUCTION ................................................................................................................ 6

1.1 OBJECTIVE OF THE ANALYSIS.............................................................................. 6

2 SUMMARY OF CONCLUSION........................................................................................... 7

2.1 WEIGHT SUMMARY ................................................................................................ 7

2.2 CENTRE OF GRAVITY............................................................................................. 7

2.3 MAXIMUM SLING LOAD .......................................................................................... 8

2.4 API/AISC MEMBER STRESS RATIOS ..................................................................... 9

2.5 API/AISC JOINT PUNCHING SHEAR STRESS RATIOS ....................................... 13

2.6 API/AISC JOINT MINIMUM REQUIRED STRENGTH RATIOS............................... 13

2.7 JOINT DEFLECTION .............................................................................................. 14

3 DESIGN PREMISES......................................................................................................... 15

3.1 REFERENCE DOCUMENTS .................................................................................. 15

3.2 MATERIAL.............................................................................................................. 15

3.3 COMPUTER PROGRAM ........................................................................................ 16

3.4 UNIT SYSTEM........................................................................................................ 16

4 COMPUTER MODEL........................................................................................................ 18

4.1 METHOD OF ANALYSIS ........................................................................................ 18

4.1.1 GENERAL ..................................................................................................................... 18

4.1.2 ALLOWABLE STRESS................................................................................................. 18

4.1.3 CONTINGENCY FACTOR............................................................................................ 18

4.1.4 DYNAMIC AMPLIFICATION FACTOR......................................................................... 19

4.1.5 CONSEQUENCE FACTOR .......................................................................................... 19

4.1.6 SKEW EFFECT............................................................................................................. 19

4.1.7 RIGGING ARRANGEMENT.......................................................................................... 19

4.1.8 COG VARIATION.......................................................................................................... 20

4.2 STRUCTURAL MODEL .......................................................................................... 22

4.2.1 GENERAL VIEW........................................................................................................... 22

4.2.2 DESCRIPTION.............................................................................................................. 23

4.3 GLOBAL AXIS SYSTEM......................................................................................... 23

4.4 LOCAL AXIS SYSTEM............................................................................................ 23

4.5 BOUNDARY CONDITIONS..................................................................................... 23

4.5.1 HOOK POINT................................................................................................................ 23

Page 4: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 4 of 31

4.5.2 SLINGS ......................................................................................................................... 23

4.5.3 MODEL GLOBAL STABILITY....................................................................................... 23

5 LOADING ......................................................................................................................... 25

5.1 ELEMENTARY LOAD DEFINITION ........................................................................ 25

5.2 COG SHIFT FORCE CALCULATION ..................................................................... 25

5.3 LOADING COMBINATIONS.................................................................................... 27

5.3.1 PRE-LOADING COMBINATION................................................................................... 27

5.3.2 LOADING COMBINATION WITHOUT CONSEQUENCE FACTOR ............................ 28

5.3.3 LOADING COMBINATION FOR MEMBER CONNECTING TO PADEYE................... 28

5.3.4 LOADING COMBINATION FOR MEMBER NOT CONNECTING TO PADEYE .......... 29

6 ANALYSIS RESULTS....................................................................................................... 30

6.1 LOADING SUMMARY............................................................................................. 30

6.1.1 ELEMENTARY LOAD................................................................................................... 30

6.1.2 PRE-LOADINGS AND LOADING COMBINATION....................................................... 30

6.1.3 LOADING SUMMARY AND COG................................................................................. 31

6.2 DEFLECTION PLOTS............................................................................................. 33

6.3 SLINGS LOAD ........................................................................................................ 33

6.4 MEMBER CODE CHECKS ..................................................................................... 33

6.4.1 MEMBER CONNECTED TO PADEYE......................................................................... 33

6.4.2 MEMBER NOT CONNECTED TO PADEYE ................................................................ 34

6.5 REACTION ............................................................................................................. 34

6.6 CONNECTION CODE CHECKS ............................................................................. 36

ATTACHMENTS

APPENDIX A PADEYE DESIGN AND CALCULATION

APPENDIX B STRUCTURAL GEOMETRY

APPENDIX C JOINT DEFLECTION PLOTS

APPENDIX D UNITY CHECK RATIO PLOTS

APPENDIX E SACS INPUT FILE

APPENDIX F SACS OUTPUT FILE

Appendix F1 Maximum Joint Deflection List

Page 5: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 5 of 31

Appendix F2 Member Unity Check Summary

APPENDIX G REFERENCES DRAWING

Page 6: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 6 of 31

1 INTRODUCTION

1.1 OBJECTIVE OF THE ANALYSIS

The purpose of this calculation is to check the adequacy of DIESEL STORAGE to sustain the loads that may occur during the lifting conditions, which comprise of :

• The dead weight of Diesel Storage Platform

• The dynamic amplification due to offshore site.

• The lifting sling load distribution accounting for CoG variation and sling length inaccuracy.

• The design of lifting padeyes

The calculation is based on the design data and the requirements in the Structural Design Basis , General Specification, General Specification for Design of Offshore Topside Structure (Ref. 7), General Specification for Load-out, Sea-fastening, Transportation and Installation of Offshore Structures (Ref. 10) & API RP2A-WSD 21

st – 2000 Edition (Ref. 11).

Page 7: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 7 of 31

2 SUMMARY OF CONCLUSION

2.1 WEIGHT SUMMARY

The detail weight summary of DIESEL lifting condition without contingency as well as with contingency is given in the following table. Definition and detail of the loading condition is given in chapter 5.1.

Unit : kN

Structure Loading Condition Actual Weight Cont's

Actual Weight with

Contingencies

Main Structure Self Weight 250.760 1.15 288.374

DIESEL Structural Appurtenance 121.691 1.20 146.030

STORAGE Diesel Storage Tanks Opt. 403.081 1.20 483.697

Diesel Fuel Transfer Pump 9.808 1.20 11.770

Piping Dry 29.200 1.20 35.040

Electrical/Instrumentations 45.112 1.25 56.390

2.2 CENTRE OF GRAVITY

The centre of gravity and origin co-ordinates are shown below :

11.75 m

DIESEL STORAGE

Deck Center

(-0.000, 0.000)

PL12

PL03

8.40 m

Y

X

PL09

PL06

DIESEL CoG

(3.30,6.21)

Platform North

B

A

1

2

Diesel Storage

Page 8: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 8 of 31

The centre of gravity from SACS calculation are as follow :

CoG (m)

Structure x y

DIESEL STORAGE 3.30 6.21

2.3 MAXIMUM SLING LOAD

The maximum sling loads is performed with considering the 1.20 dynamic amplification factor and shifted of centre of gravity location. The slings angles are measured between slings and the horizontal plane (degree) see sketch below.

Diesel Storage

Point No. Point Member

Vertical Angle(α)α)α)α)

Degree

1 PL03 PL03-PL14 60

2 PL06 PL06-PL14 56.58

3 PL09 PL09-PL15 62.10

4 PL12 PL12-PL15 58.27

3

1

4

2

HOOK POINT

Page 9: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 9 of 31

The maximum sling loads are shown in the table below:

Padeye on the DIESEL STORAGE:

Lifting Point Type Attached to: Load Case Member Load (kN)

Padeye PL03 LPA1 PL03-PL14 707.30

Padeye PL06 LPA2 PL06-PL14 523.20

Padeye PL09 LPA3 PL09-PL14 742.50

Padaye PL12 LPA4 PL12-PL14 574.97

From the above member sling load table, the maximum sling load DIESEL STORAGE is 742.50 kN. Thus, this load will be used for pad-eyes design. The pad-eye design and calculation will be explained in Appendix A in this report.

2.4 API/AISC MEMBER STRESS RATIOS

Maximum stress ratios obtained for members are :

Members connected to padeye :

The maximum interaction ratio below is checked with the consequence factor of 1.35.

Location Member Properties Load Case UC

D006-D007 WPG01 NLP2 0.162

DIESEL D007-D008 WPG01 NLP2 0.225

STORAGE D008-D009 WPG01 NLP2 0.279

D009-D010 WPG01 NLP3 0.331

D009-D034 WPG01 NLP3 0.366

D010-D011 WPG01 NLP3 0.260

D011-D012 WPG01 NLP2 0.218

D012-D013 WPG01 NLP2 0.189

D013-D014 WPG01 NLP2 0.158

D014-PL06 WPG01 NLP3 0.147

D034-D048 WPG01 NLP3 0.437

D040-D054 WPG01 NLP2 0.389

D044-PL09 WPG01 NLP3 0.497

D048-D061 WPG01 NLP3 0.303

D054-PL12 WPG01 NLP2 0.360

D058-D059 WPG01 NLP4 0.208

D059-D060 WPG01 NLP4 0.279

D060-D061 WPG01 NLP3 0.315

Page 10: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 10 of 31

D061-D062 WPG01 NLP3 0.377

D062-D063 WPG01 NLP3 0.321

D063-D064 WPG01 NLP3 0.259

D064-D065 WPG01 NLP4 0.208

D065-D066 WPG01 NLP3 0.176

D066-PL12 WPG01 NLP3 0.162

PL03-D006 WPG01 NLP1 0.168

PL06-D040 WPG01 NLP2 0.375

PL09-D058 WPG01 NLP3 0.178

D030-D044 WPG01 NLP3 0.574

PL03-D030 WPG01 NLP3 0.528

D005-PL03 W10X22 NLP3 0.34

Members not connected to padeye :

These member below are not connected to the lift points. These members are checked with the consequence factor of 1.15.

Location Member Properties Load Case UC

D003-D027 W10X22 FLP3 0.242

DIESEL D004-D028 W10X22 FLP3 0.035

STORAGE D005-D029 W10X22 FLP4 0.034

D006-D015 W10X22 FLP3 0.156

D007-D016 W10X22 FLP3 0.090

D008-D017 W10X22 FLP1 0.135

D010-D018 W10X22 FLP3 0.113

D011-D019 W10X22 FLP3 0.036

D012-D020 W10X22 FLP1 0.093

D013-D038 W10X22 FLP1 0.031

D014-D039 W10X22 FLP2 0.063

D015-D016 W10X22 FLP3 0.043

D015-D021 W10X22 FLP3 0.167

D016-D017 W10X22 FLP3 0.038

D016-D022 W10X22 FLP3 0.144

D017-D023 W10X22 FLP3 0.151

D018-D019 W10X22 FLP3 0.060

D018-D024 W10X22 FLP1 0.079

D019-D020 W10X22 FLP3 0.067

Page 11: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 11 of 31

D019-D025 W10X22 FLP3 0.075

D020-D026 W10X22 FLP3 0.086

D021-D022 W10X22 FLP3 0.058

D021-D031 W10X22 FLP3 0.226

D022-D023 W10X22 FLP3 0.089

D022-D032 W10X22 FLP3 0.203

D023-D033 W10X22 FLP3 0.224

D024-D025 W10X22 FLP3 0.075

D024-D035 W10X22 FLP3 0.153

D025-D026 W10X22 FLP3 0.118

D025-D036 W10X22 FLP3 0.147

D026-D037 W10X22 FLP3 0.163

D027-D041 W10X22 FLP3 0.450

D028-D042 W10X22 FLP1 0.054

D029-D043 W10X22 FLP3 0.049

D031-D045 W10X22 FLP1 0.117

D032-D046 W10X22 FLP3 0.049

D033-D047 W10X22 FLP3 0.089

D035-D049 W10X22 FLP1 0.079

D036-D050 W10X22 FLP3 0.049

D037-D051 W10X22 FLP3 0.057

D038-D052 W10X22 FLP3 0.049

D039-D053 W10X22 FLP2 0.095

D041-D055 W10X22 FLP1 0.191

D042-D056 W10X22 FLP1 0.020

D043-D057 W10X22 FLP4 0.024

D045-D058 W10X22 FLP1 0.058

D046-D059 W10X22 FLP3 0.017

D047-D060 W10X22 FLP3 0.040

D049-D062 W10X22 FLP1 0.035

D050-D063 W10X22 FLP3 0.017

D051-D064 W10X22 FLP3 0.021

D052-D065 W10X22 FLP3 0.017

D053-D066 W10X22 FLP2 0.044

D058-D070 W10X22 FLP3 0.094

D059-D071 W10X22 FLP4 0.072

D060-D072 W10X22 FLP3 0.160

D062-D074 W10X22 FLP1 0.096

Page 12: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 12 of 31

D063-D075 W10X22 FLP3 0.042

D064-D076 W10X22 FLP3 0.049

D065-D077 W10X22 FLP1 0.054

D066-D078 W10X22 FLP3 0.088

D069-D070 W10X22 FLP3 0.329

D070-D071 W10X22 FLP3 0.251

D071-D072 W10X22 FLP4 0.145

D073-D074 W10X22 FLP1 0.423

D074-D075 W10X22 FLP4 0.331

D075-D076 W10X22 FLP4 0.406

D076-D077 W10X22 FLP3 0.438

D077-D078 W10X22 FLP1 0.359

D078-D079 W10X22 FLP2 0.381

D006-D007 WPG01 FLP2 0.138

D007-D008 WPG01 FLP2 0.191

D008-D009 WPG01 FLP2 0.238

D009-D010 WPG01 FLP3 0.283

D009-D034 WPG01 FLP3 0.312

D010-D011 WPG01 FLP3 0.223

D011-D012 WPG01 FLP2 0.185

D012-D013 WPG01 FLP2 0.161

D013-D014 WPG01 FLP2 0.135

D014-PL06 WPG01 FLP3 0.126

D030-D044 WPG01 FLP3 0.489

D034-D048 WPG01 FLP3 0.372

D040-D054 WPG01 FLP2 0.331

D044-PL09 WPG01 FLP3 0.423

D048-D061 WPG01 FLP3 0.258

D054-PL12 WPG01 FLP2 0.307

D058-D059 WPG01 FLP4 0.164

D059-D060 WPG01 FLP4 0.219

D060-D061 WPG01 FLP3 0.269

D061-D062 WPG01 FLP3 0.321

D062-D063 WPG01 FLP3 0.274

D063-D064 WPG01 FLP3 0.221

D064-D065 WPG01 FLP4 0.177

D065-D066 WPG01 FLP3 0.150

D066-PL12 WPG01 FLP3 0.138

Page 13: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 13 of 31

PL03-D006 WPG01 FLP1 0.143

PL03-D030 WPG01 FLP3 0.450

PL06-D040 WPG01 FLP2 0.294

PL09-D058 WPG01 FLP3 0.151

D030-D031 WPG02 FLP3 0.179

D031-D032 WPG02 FLP3 0.123

D032-D033 WPG02 FLP3 0.133

D033-D034 WPG02 FLP3 0.163

D034-D035 WPG02 FLP3 0.192

D035-D036 WPG02 FLP3 0.213

D036-D037 WPG02 FLP3 0.215

D037-D038 WPG02 FLP3 0.192

D038-D039 WPG02 FLP3 0.174

D039-D040 WPG02 FLP3 0.154

D044-D045 WPG02 FLP4 0.128

D045-D046 WPG02 FLP4 0.119

D046-D047 WPG02 FLP3 0.134

D047-D048 WPG02 FLP3 0.160

D048-D049 WPG02 FLP3 0.208

D049-D050 WPG02 FLP3 0.228

D050-D051 WPG02 FLP3 0.228

D051-D052 WPG02 FLP3 0.204

D052-D053 WPG02 FLP3 0.183

D053-D054 WPG02 FLP3 0.163

D072-D073 W10X22 FLP3 0.518

All member have satisfied the API RP2A WSD – 21st

Edition / AISC 9th Edition code checking

requirements in lifting condition.

2.5 API/AISC JOINT PUNCHING SHEAR STRESS RATIOS

No tubular intersection is found during structure lifting analysis. Therefore, punching shear check is not performed in the analysis.

2.6 API/AISC JOINT MINIMUM REQUIRED STRENGTH RATIOS

No tubular intersection is found during structure lifting analysis. Therefore, joint minimum required strength ratios is not resulted in the analysis.

Page 14: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 14 of 31

2.7 JOINT DEFLECTION

The maximum joint deflection occurred on the lifting analysis (included lifting in shifted position) are shown below :

Displacements given are relative displacements with regard to the extremities of span (mm).

Location Member Span

(l) Properties

Deflection Relative (d)

Load Case

d/l

DIESEL

STORAGE

D030-D027 2.55 W21 X 62 1.6676 NLP3 0.00326

All deflections are acceptable, which are less than 1/360 for main beam and 1/300 for other beam (for cantilever “l” design value is twice the cantilever length).

Page 15: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 15 of 31

3 DESIGN PREMISES

3.1 REFERENCE DOCUMENTS

The present analysis is carried out based on the design criteria described in the following documents

1) Document no. Design of Offshore Topside Structure

2) Document no. MTO -Structural

3) Document no. Equipment List

4) Drawings References:

a. DIESEL STORAGE Platform Deck Framing Sheet 1

b. DIESEL STORAGE Platform Deck Framing Sheet 1

3.1.1 Project Specification and Reports

1) Document No. Structural Design Basis

2) Document No. Platforms Weight Control Report

3.1.2 Company General Specification

3) Document No. Weight Monitoring and Weighing Offshore Units, Rev. 02.

4) Document No. Design of Offshore Topsides Structures, Rev. 02.

5) Document No. Material for Offshore Steel Structures, Rev. 01.

6) Document No. Fabrication of Offshore Steel Structures, Rev. 02.

7) Document No. Load-out, Sea-Fastening, Transportation and Installation of Offshore Structures, Rev.01.

3.1.3 Codes and Standards

8) API RP2A-WSD. 21st Edition, Recommended Practice for Planning, Designing and Construction

Fixed Offshore Platforms – 2000.

9) AISC 9th Edition/ASD, American Institute of Steel Construction/Allowable Stress Design – 1989.

3.2 MATERIAL

All structures will be made of steel, using the following properties:

Steel density : 7.850 t/m3

Elastic modulus : 205000 MPa

Poisson's ratio : 0.3

Page 16: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 16 of 31

Steel grades are per basic engineering drawings with the following corresponding yield stresses:

for grade S355 Fy = 355 MPa thk ≤ 16 mm

Fy = 345 MPa 16 mm < thk ≤ 40 mm

Fy = 335 MPa 40 mm < thk

for grade S235 Fy = 235 MPa thk ≤ 16 mm

Fy = 225 MPa 16 mm < thk ≤ 40 mm

Fy = 215 MPa 40 mm < thk

Material strength refer to general COMPANY specification of reference GS-STR-201.

See hereunder the steel category specification and yield stress.

SPECIAL CATEGORY FIRST CATEGORY SECOND CATEGORY

S 1 2

Piles S355 Tubular OD < 12” S235

Deck leg S355 Tubular OD > 12” S355 Tubular S235

WPG S355 (Web height > 600mm) (*)

WPG S235 (Web height > 600mm) (*)

Padeyes S355 Rolled section S235 (Web height < 600mm) (*)

Rolled section S235

Plates S355 Plates S235 Plates S235

(*) Welded plate girder shall be preferred for web height is superior to 600mm, else rolled section shall be used.

3.3 COMPUTER PROGRAM

The following software will be used for modelling and designing of structures :

� SACS version 5.2.

This software is developed and produced by EDI (Engineering Dynamics Inc.)

The analysis uses the following co-ordinates :

X : Plant east Y : Plant north Z : Vertical up

3.4 UNIT SYSTEM

The following unit system shall be adopted in the SACS analysis files and design documents:

- Great length : in meter (member length, joint co-ordinates)

- Small length : in mm or inches (tube diameter, tube wall thickness, etc)

- Forces and moments : in kN or kNm

Page 17: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 17 of 31

- Masses : in kg or metric tons

- Stresses : in kN/cm2

- Angles : in degree

Page 18: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 18 of 31

4 COMPUTER MODEL

4.1 METHOD OF ANALYSIS

4.1.1 General

The lifting analysis to be carried out are classical static linear analysis of a three dimensional space frame computer model comprising the Diesel Storage main structure.

Each loading case, an equivalent linear stiffness matrix simulating the behaviour of the structure automatically computed by the software before the structural analysis of the whole frame proceeds.

The lift arrangement is based on a hook position above the deck CoG and such that the minimum sling angle with the horizontal is 60° (+/-) 5°.

In addition to the nominal CoG position, 2 extreme positions of the CoG are investigated in a variation along X ans 2 other positions in a variation along Y, which are equal to 10% of the Diesel Storage dimensions, but not less than within a 2.0 m.

Member stress checking and joint check are performed according to API RP2A – WSD 21st edition

4.1.2 Allowable Stress

Code checking is done using basic allowable stresses

4.1.3 Contingency Factor

4.1.3.1 Provisions

Gravity loads : - equipment dry weights, - piping dry weight, - structural dead weight, - Instrumentation & Electrical bulk, - live loads,

are calculated based upon the Loading Diagrams, Equipment List and also taking into account the

latest up-dated equipment weight including the following provision:

10 % provision on equipment dry weight is accounted for supporting structure accesses & walkways,

15 % provision on piping dry weight is accounted for pipe supports,

5 % provision on structural weight is accounted for stiffening & welding,

5 % provision on pile weight is accounted for welding,

Page 19: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 19 of 31

4.1.3.2 Weight Contingencies

Contingencies are covered by applying where appropriate in the load combinations the following contingency factors.

15 % on main structural weight,

15 % on secondary structural weight,

25 % on mechanical weight,

20 % on dry piping weight,

25 % on bulk electrical weight,

25 % on bulk instrumentation weight,

25 % on itemised electrical weight,

25 % on itemised instrumentation weight,

25 % for safety items,

0 % on environmental loads,

0 % on live loads.

The weight contingency factor as specified above are applied on “dry weight plus provision”.

4.1.4 Dynamic Amplification Factor

The dynamic amplification factor is 1.20 for lifted weight more and equal than 100 tonnes.

4.1.5 Consequence Factor

A consequence factor of 1.35 is applied for the code checking of any member attached to lifting points, as well as joints to which these members are connected for punching shear verification.

A consequence factor of 1.15 is applied for the other members and joints.

4.1.6 Skew Effect

The skew effect is applied to take into account shortening or stretching of slings. The load is factored by 1.33 as a skew load factored (SKL) for flexible object (module) as per GS-STR-401 Section 6.2.2.5 skew load distribution for Single Hook Lifts and 1.15 skew load factored for lifting using spreader bar

4.1.7 Rigging Arrangement

Diesel Storage is lifted with 4-off slings from a single hook point to padeyes, however Adjacent Bridge is lifted with 2 slings from a single hook point to spreader bar and 4-off sling from spreader bar to padeye on main deck. The hook point is managed to locate above the centre of gravity of structure. The slings are modeled by tubular 3”ODX1.45”WT with a Young’s modulus of 100000 Mpa, in order to take into account slings stiffness for analysis. The minimum angle for the all slings is 60 (+/-) 5 degree. The slings arrangement is shown below.

Page 20: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 20 of 31

4.1.8 CoG Variation

The effect of the variation of the position of the centre of gravity is investigated. The 4-off positions are investigated in a variation along X and Y equal to 10% of the structure dimensions, but not less than within a 2.0 m. The minimum 2.0 m CoG variations along X and Y to be used for this lifting analysis.

CoG positions are given in the table :

Diesel Storage

CoG shifts Longitudinal

X (m)

Transversal

Y (m)

Deck dimension

Shift +/- (%) 5% 5%

Shifts +/- (m) 0.42 < 1.00 0.5875 < 1.00

Shifts to be used 1.00 1.00

COG THEORITICAL POSITION

CoG Original 3.30 6.21

COG SHIFTED POSITIONS

CoG 1 (-,-) 2.30 5.21

CoG 2 (+,-) 4.30 5.21

CoG 3 (-,+) 2.30 7.21

CoG 4 (+,+) 4.30 7.21

Page 21: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 21 of 31

The sketch showing the variation of CoG are shown in figure below :

The shifts of centre of gravity are obtained by applying dummy forces with zero resultant at four joints. Dummy forces calculations are presented in Section 5.2 CoG Shift Force Calculation.

The loaded joints at Diesel Storage are node PL02, PL05, PL08 and PL11. Those loaded joints are located at pile heads of the structures.

This is illustrated by figure below :

Diesel Storage – SHIFT X

CoG shifted (4 Location) 2 m x 2 m Box

3

1

4

2

CoG

4

2 1

3

Platform North

Page 22: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 22 of 31

Diesel Storage – SHIFT Y

4.2 STRUCTURAL MODEL

The computer structural model plot are shown in the Appendix B.

4.2.1 General View

The following plot shows the general model of the Diesel Storage

Page 23: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 23 of 31

4.2.2 Description

The different elements included in the structural model are defined here below:

- Structural part

Primary and secondary structures together with flooring (including the deck plating, grating, handrail, stringers and joists) are in the structural section. Only the main structure is modelled in this report, the other structural components will be input as uniform member load or joint load.

4.3 GLOBAL AXIS SYSTEM

Nodes of the structural model are described in a global axis system defined as follows:

- The origin of the global axis system is taken at the Chart Datum/LAT and comes up to the centre of the main deck legs.

- Z is vertical from the Chart Datum/LAT

- Y is horizontal parallel to the platform north

- X is horizontal parallel to the platform east

4.4 LOCAL AXIS SYSTEM

Each member of the structural model has its own local axis system in which calculated internal forces and moments are expressed. It can also be used to introduce loads on the members.

4.5 BOUNDARY CONDITIONS

4.5.1 Hook Point

The hook point is modelled using 1-off node, as explained in section 4.1.6 Skew Effect. Basically, this node is fixed for the 6 degrees of freedom.

4.5.2 Slings

All slings are released in local moment Y and Z at hook end point an in moment X, Y, and Z at the other end, to present the shear force and moment generation.

4.5.3 Model Global Stability

To avoid the numerical instability, joint PL02 of Diesel Storage is fixed in horizontal X and Y-axis displacement, however, joints PL11 of Diesel Storage is fixed in horizontal X-axis displacement. Hook point is fixed in 6 degree of freedom. See figure below.

Page 24: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 24 of 31

Page 25: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 25 of 31

5 LOADING

The loading diagram shown in the Appendix A has been used to establish the loading.

5.1 ELEMENTARY LOAD DEFINITION

Elementary loads to be considered are summarised in the table below. Description of each loading type is detailed thereafter.

Structure Discipline of loads

Loading name

Description

1 Structural Self Weight

Structural

2 Structural Appurtenance

Diesel Storage 4 Diesel Storage Tank Operation

6 Diesel Fuel Transfer Pump

7 Piping Dry Equipment

8 Electrical/Instrumentations

+X Enforce loads along X direction

Balancing Forces (couple) +Y Enforce loads along Y direction

5.2 COG SHIFT FORCE CALCULATION

Diesel Storage Platform

The CoG shift forces are applied at the joints connecting slings to boat landing. Those forces allow for enforced shifting of CoG.

The load ‘+X’ causes the shift of the CoG along X :

2 x F+x x Lx = Fz x ∆x

F+x = (Fz x ∆x) / (2 x Lx)

F+x = (1021.30 x 1.00) / (2 x 8.4) = 60.79 kN

Page 26: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 26 of 31

These load are applied at :

Node PL05 -60.79 kN Node PL11 -60.79 kN Node PL02 60.79 kN Node PL08 60.79 kN The load ‘+Y’ causes the shift of the CoG along Y:

2 x F+y x Ly = Fz x ∆y

F+y = (Fz x ∆y) / (2 x Ly)

F+y = (1021.30 x 1.00) / (2 x 11.75) = 43.46 kN

These load are applied at :

Node PL08 -43.46 kN Node PL02 43.46 kN Node PL11 -43.46 kN Node PL05 43.46 kN

This is illustrated by figure below :

Load Condition +X Enforce Loads along X Direction

Page 27: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 27 of 31

Load Condition +Y Enforce Loads along Y Direction

The resultants of these forces are equal to zero in order to keep the same weight of the boat landing.

5.3 LOADING COMBINATIONS

5.3.1 Pre-loading Combination

Prior to make a load combination, the pre-loading combination is required to easier to make load combination.

The pre-loading combination definition are shown below:

Load Label Description

WGHT Lift weight with contingencies

DAF Lift weight with contingencies and dynamic amplification factor

NLP Lift weight with contingencies, DAF and 1.35 consequence factor

FLP Lift weight with contingencies, DAF and 1.15 consequence factor

The pre-loading combination factor are shown in the table below:

Loading Description WGHT

1 Structural Self Weight 1.1500

2 Structural Appurtunances 1.1500

Page 28: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 28 of 31

Loading DAF

WGHT 1.20

Loading PAD NPAD

DAF 1.350 1.150

The loading combination for CSF (common solution file) module will be explained below:

The loading definition:

Loading Type Definition

Loading 0 Origin position with 1.33 skew load factor

Loading 1 Shift 1 with 1.33 skew load factor

Loading 2 Shift 2 with 1.33 skew load factor

The final result will be a combination of all shifted condition and origin position both for 1.15 consequence factor, 1.35 consequence factor and no consequence factor.

5.3.2 Loading Combination without Consequence Factor

The load factors to be used in the load combination are as follows:

Diesel Storage module

Loading LPA0 LPA1 LPA2 LPA3 LPA4

DAF 1.330 1.330 1.330 1.330 1.330

+X -1.330 1.330 -1.330 1.330

+Y -1.330 -1.330 1.330 1.330

5.3.3 Loading Combination for Member Connecting to Padeye

Diesel Storage module

The corresponding factors to be applied for maximum slings load are:

For +X = 1.33 x 1.35

= 1.7955

For +Y = 1.33 x 1.35

= 1.7955

Page 29: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 29 of 31

Loading combination with contingencies, DAF, consequence factor have 1.35 and skew effect

Loading NLP0 NLP1 NLP2 NLP3 NLP4

DAF 1.330 1.330 1.330 1.330 1.330

+X -1.7955 1.7955 -1.7955 1.7955

+Y -1.7955 -1.7955 1.7955 1.7955

5.3.4 Loading Combination for Member not Connecting to Padeye

Diesel Storage module

The corresponding factors to be applied for maximum slings load are:

For +X = 1.33 x 1.15

= 1.5295

For +Y = 1.33 x 1.15

= 1.5295

Loading combination with contingencies, DAF, consequence factor of 1.15 and skew effect

Loading FLP0 FLP1 FLP2 FLP3 FLP4

DAF 1.330 1.330 1.330 1.330 1.330

+X -1.5295 1.5295 -1.5295 1.5295

+Y -1.5295 -1.5295 1.5295 1.5295

Page 30: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 30 of 31

6 ANALYSIS RESULTS

6.1 LOADING SUMMARY

6.1.1 Elementary Load

****** SEASTATE BASIC LOAD CASE SUMMARY ******

RELATIVE TO MUDLINE ELEVATION

LOAD LOAD FX FY FZ MX MY MZ DEAD LOAD BUOYANCY

CASE LABEL

(KN) (KN) (KN) (KN-M) (KN-M) (KN-M) (KN) (KN)

1 1 0.000 0.000 -270.806 -1646.483 958.230 0.000 270.806 0.000

2 2 0.000 0.000 -121.691 -824.616 298.242 0.000 0.000 0.000

3 4 0.000 0.000 -403.081 -2511.194 1370.475 0.000 0.000 0.000

4 6 0.000 0.000 -9.808 -10.789 15.693 0.000 0.000 0.000

5 7 0.000 0.000 -29.200 -171.551 111.103 0.000 0.000 0.000

6 8 0.000 0.000 -45.112 -286.236 156.214 0.000 0.000 0.000

7 +X 0.000 0.000 0.000 0.000 1021.272 0.000 0.000 0.000

8 +Y 0.000 0.000 0.000 -1021.310 0.000 0.000 0.000 0.000

6.1.2 Pre-Loadings and Loading Combination

G0 – Position

***** SEASTATE COMBINED LOAD CASE SUMMARY *****

RELATIVE TO MUDLINE ELEVATION

LOAD LOAD FX FY FZ MX MY MZ

CASE LABEL

(KN) (KN) (KN) (KN-M) (KN-M) (KN-M)

7 WGHT 0.000 0.000 -1021.301 -343.823 -914.429 0.000

8 DAF 0.000 0.000 -1225.561 -412.588 -1097.315 0.000

9 PAD 0.000 0.000 -1654.507 -556.994 -1481.375 0.000

10 NPAD 0.000 0.000 -1409.395 -474.476 -1261.912 0.000

11 FLP0 0.000 0.000 -1874.495 -631.053 -1678.343 0.000

12 NLP0 0.000 0.000 -2200.494 -740.802 -1970.229 0.000

13 LPA0 0.000 0.000 -1629.996 -548.742 -1459.429 0.000

Dari saclst.cog0ta , keyword : combined load

G1 – Position

***** SEASTATE COMBINED LOAD CASE SUMMARY *****

RELATIVE TO MUDLINE ELEVATION

LOAD LOAD FX FY FZ MX MY MZ

CASE LABEL

(KN) (KN) (KN) (KN-M) (KN-M) (KN-M)

9 WGHT 0.000 0.000 -1044.353 -5451.721 2430.575 0.000

10 DAF 0.000 0.000 -1253.224 -6542.066 2916.690 0.000

11 PAD 0.000 0.000 -1691.852 -8831.789 3937.532 0.000

12 NPAD 0.000 0.000 -1441.208 -7523.376 3354.194 0.000

13 FLP1 0.000 0.000 -1916.806 -10006.090 4461.078 0.000

14 LPA1 0.000 0.000 -1666.788 -8700.947 3879.198 0.000

15 NLP1 0.000 0.000 -2250.164 -11746.279 5236.917 0.000

G2 – Position

***** SEASTATE COMBINED LOAD CASE SUMMARY *****

RELATIVE TO MUDLINE ELEVATION

LOAD LOAD FX FY FZ MX MY MZ

CASE LABEL

(KN) (KN) (KN) (KN-M) (KN-M) (KN-M)

9 WGHT 0.000 0.000 -1044.167 -5450.696 4493.386 0.000

10 DAF 0.000 0.000 -1253.000 -6540.836 5392.063 0.000

11 PAD 0.000 0.000 -1691.550 -8830.129 7279.286 0.000

12 NPAD 0.000 0.000 -1440.950 -7521.961 6200.873 0.000

13 FLP2 0.000 0.000 -1916.463 -10004.209 8247.161 0.000

14 LPA2 0.000 0.000 -1666.490 -8699.312 7171.444 0.000

15 NLP2 0.000 0.000 -2249.761 -11744.071 9681.450 0.000

Page 31: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 31 of 31

G3 – Position

***** SEASTATE COMBINED LOAD CASE SUMMARY *****

RELATIVE TO MUDLINE ELEVATION

LOAD LOAD FX FY FZ MX MY MZ

CASE LABEL

(KN) (KN) (KN) (KN-M) (KN-M) (KN-M)

9 WGHT 0.000 0.000 -1044.416 -7513.909 2430.776 0.000

10 DAF 0.000 0.000 -1253.299 -9016.691 2916.932 0.000

11 PAD 0.000 0.000 -1691.954 -12172.533 3937.858 0.000

12 NPAD 0.000 0.000 -1441.294 -10369.195 3354.472 0.000

13 FLP3 0.000 0.000 -1916.921 -13791.029 4461.447 0.000

14 LPA3 0.000 0.000 -1666.888 -11992.199 3879.519 0.000

15 NLP3 0.000 0.000 -2250.299 -16189.469 5237.352 0.000

G4 – Position

***** SEASTATE COMBINED LOAD CASE SUMMARY *****

RELATIVE TO MUDLINE ELEVATION

LOAD LOAD FX FY FZ MX MY MZ

CASE LABEL

(KN) (KN) (KN) (KN-M) (KN-M) (KN-M)

9 WGHT 0.000 0.000 -1044.230 -7512.673 4493.654 0.000

10 DAF 0.000 0.000 -1253.076 -9015.209 5392.386 0.000

11 PAD 0.000 0.000 -1691.652 -12170.532 7279.721 0.000

12 NPAD 0.000 0.000 -1441.037 -10367.490 6201.244 0.000

13 FLP4 0.000 0.000 -1916.580 -13788.762 8247.654 0.000

14 LPA4 0.000 0.000 -1666.591 -11990.228 7171.873 0.000

15 NLP4 0.000 0.000 -2249.898 -16186.808 9682.028 0.000

6.1.3 Loading Summary and CoG

G0 – Position

************* SEASTATE LOAD CASE CENTER REPORT *************

RELATIVE TO STRUCTURAL ORIGIN

LOAD LOAD ********* X - DIRECTION ********* ********* Y - DIRECTION ********* ********* Z - DIRECTION *********

CASE LABEL FORCE X Y Z FORCE X Y Z FORCE X Y Z

(KN) (M) (M) (M) (KN) (M) (M) (M) (KN) (M) (M) (M)

1 1 0.00 0.00 -270.67 3.57 6.11 7.84

2 2 0.00 0.00 -121.69 2.45 6.78 7.48

3 4 0.00 0.00 -403.08 3.40 6.23 7.30

4 6 0.00 0.00 -9.81 1.60 1.10 7.67

5 7 0.00 0.00 -29.20 3.80 5.88 7.33

6 8 0.00 0.00 -45.11 3.46 6.35 7.49

7 WGHT 0.00 0.00 -1044.19 3.32 6.21 7.50

8 DAF 0.00 0.00 -1253.03 3.32 6.21 7.50

9 PAD 0.00 0.00 -1691.59 3.32 6.21 7.50

10 NPAD 0.00 0.00 -1440.99 3.32 6.21 7.50

11 FLP0 0.00 0.00 -1916.51 3.32 6.21 7.50

12 NLP0 0.00 0.00 -2249.82 3.32 6.21 7.50

13 LPA0 0.00 0.00 -1666.53 3.32 6.21 7.50

G1 – Position

************* SEASTATE LOAD CASE CENTER REPORT *************

RELATIVE TO STRUCTURAL ORIGIN

LOAD LOAD ********* X - DIRECTION ********* ********* Y - DIRECTION ********* ********* Z - DIRECTION *********

CASE LABEL FORCE X Y Z FORCE X Y Z FORCE X Y Z

(KN) (M) (M) (M) (KN) (M) (M) (M) (KN) (M) (M) (M)

1 1 0.00 0.00 -270.81 3.54 6.08 7.85

2 2 0.00 0.00 -121.69 2.45 6.78 7.48

3 4 0.00 0.00 -403.08 3.40 6.23 7.30

4 6 0.00 0.00 -9.81 1.60 1.10 7.67

5 7 0.00 0.00 -29.20 3.80 5.88 7.33

6 8 0.00 0.00 -45.11 3.46 6.35 7.49

7 +X 0.00 0.00 COUPLE 0.02 0.03 0.03

8 +Y 0.00 0.00 COUPLE 0.02 0.03 0.03

9 WGHT 0.00 0.00 -1044.35 2.33 5.22 7.50

10 DAF 0.00 0.00 -1253.22 2.33 5.22 7.50

11 PAD 0.00 0.00 -1691.85 2.33 5.22 7.50

12 NPAD 0.00 0.00 -1441.21 2.33 5.22 7.50

13 FLP1 0.00 0.00 -1916.81 2.33 5.22 7.50

14 LPA1 0.00 0.00 -1666.79 2.33 5.22 7.50

15 NLP1 0.00 0.00 -2250.16 2.33 5.22 7.50

Page 32: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 32 of 31

G2 – Position

************* SEASTATE LOAD CASE CENTER REPORT *************

RELATIVE TO STRUCTURAL ORIGIN

LOAD LOAD ********* X - DIRECTION ********* ********* Y - DIRECTION ********* ********* Z - DIRECTION *********

CASE LABEL FORCE X Y Z FORCE X Y Z FORCE X Y Z

(KN) (M) (M) (M) (KN) (M) (M) (M) (KN) (M) (M) (M)

1 1 0.00 0.00 -270.64 3.61 6.08 7.84

2 2 0.00 0.00 -121.69 2.45 6.78 7.48

3 4 0.00 0.00 -403.08 3.40 6.23 7.30

4 6 0.00 0.00 -9.81 1.60 1.10 7.67

5 7 0.00 0.00 -29.20 3.80 5.88 7.33

6 8 0.00 0.00 -45.11 3.46 6.35 7.49

7 +X 0.00 0.00 COUPLE 0.02 0.03 0.03

8 +Y 0.00 0.00 COUPLE 0.02 0.03 0.03

9 WGHT 0.00 0.00 -1044.17 4.30 5.22 7.50

10 DAF 0.00 0.00 -1253.00 4.30 5.22 7.50

11 PAD 0.00 0.00 -1691.55 4.30 5.22 7.50

12 NPAD 0.00 0.00 -1440.95 4.30 5.22 7.50

13 FLP2 0.00 0.00 -1916.46 4.30 5.22 7.50

14 LPA2 0.00 0.00 -1666.49 4.30 5.22 7.50

15 NLP2 0.00 0.00 -2249.76 4.30 5.22 7.50

G3 – Position

************* SEASTATE LOAD CASE CENTER REPORT *************

RELATIVE TO STRUCTURAL ORIGIN

LOAD LOAD ********* X - DIRECTION ********* ********* Y - DIRECTION ********* ********* Z - DIRECTION *********

CASE LABEL FORCE X Y Z FORCE X Y Z FORCE X Y Z

(KN) (M) (M) (M) (KN) (M) (M) (M) (KN) (M) (M) (M)

1 1 0.00 0.00 -270.86 3.54 6.14 7.85

2 2 0.00 0.00 -121.69 2.45 6.78 7.48

3 4 0.00 0.00 -403.08 3.40 6.23 7.30

4 6 0.00 0.00 -9.81 1.60 1.10 7.67

5 7 0.00 0.00 -29.20 3.80 5.88 7.33

6 8 0.00 0.00 -45.11 3.46 6.35 7.49

7 +X 0.00 0.00 COUPLE 0.02 0.03 0.03

8 +Y 0.00 0.00 COUPLE 0.02 0.03 0.03

9 WGHT 0.00 0.00 -1044.42 2.33 7.19 7.50

10 DAF 0.00 0.00 -1253.30 2.33 7.19 7.50

11 PAD 0.00 0.00 -1691.95 2.33 7.19 7.50

12 NPAD 0.00 0.00 -1441.29 2.33 7.19 7.50

13 FLP3 0.00 0.00 -1916.92 2.33 7.19 7.50

14 LPA3 0.00 0.00 -1666.89 2.33 7.19 7.50

15 NLP3 0.00 0.00 -2250.30 2.33 7.19 7.50

G4 – Position

************* SEASTATE LOAD CASE CENTER REPORT *************

RELATIVE TO STRUCTURAL ORIGIN

LOAD LOAD ********* X - DIRECTION ********* ********* Y - DIRECTION ********* ********* Z - DIRECTION *********

CASE LABEL FORCE X Y Z FORCE X Y Z FORCE X Y Z

(KN) (M) (M) (M) (KN) (M) (M) (M) (KN) (M) (M) (M)

1 1 0.00 0.00 -270.70 3.61 6.14 7.84

2 2 0.00 0.00 -121.69 2.45 6.78 7.48

3 4 0.00 0.00 -403.08 3.40 6.23 7.30

4 6 0.00 0.00 -9.81 1.60 1.10 7.67

5 7 0.00 0.00 -29.20 3.80 5.88 7.33

6 8 0.00 0.00 -45.11 3.46 6.35 7.49

7 +X 0.00 0.00 COUPLE 0.02 0.03 0.03

8 +Y 0.00 0.00 COUPLE 0.02 0.03 0.03

9 WGHT 0.00 0.00 -1044.23 4.30 7.19 7.50

10 DAF 0.00 0.00 -1253.08 4.30 7.19 7.50

11 PAD 0.00 0.00 -1691.65 4.30 7.19 7.50

12 NPAD 0.00 0.00 -1441.04 4.30 7.19 7.50

13 FLP4 0.00 0.00 -1916.58 4.30 7.19 7.50

14 LPA4 0.00 0.00 -1666.59 4.30 7.19 7.50

15 NLP4 0.00 0.00 -2249.90 4.30 7.19 7.50

Page 33: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 33 of 31

6.2 DEFLECTION PLOTS

See Appendix C – Deflection Output Plots

6.3 SLINGS LOAD

SACS-IV SYSTEM MEMBER FORCES AND MOMENTS

******************** KN ********************* ******************* KN-M ********************

MEMBER MEMBER GROUP LOAD FORCE(X) FORCE(Y) FORCE(Z) MOMENT(X) MOMENT(Y) MOMENT(Z)

NUMBER END ID CASE

PL03-PL14 PL03 ROD LPA0 544.96 0.00 -5.46 0.00 0.00 0.00

LPA1 707.30 0.00 -6.80 0.00 0.00 0.00

LPA2 508.88 0.00 -5.16 0.01 0.00 0.00

LPA3 584.06 0.00 -5.20 0.01 0.00 0.00

LPA4 372.11 0.00 -4.19 0.00 0.00 0.00

PL14 LPA0 552.80 0.00 -9.99 0.00 -108.62 0.00

LPA1 715.14 0.00 -10.47 0.00 -116.12 0.00

LPA2 516.72 0.00 -9.51 0.01 -102.10 0.00

LPA3 591.90 0.00 -10.07 0.01 -109.43 0.00

LPA4 379.95 0.00 -9.59 0.00 -101.93 0.00

PL06-PL14 PL06 ROD LPA0 352.17 0.00 -1.69 0.00 0.00 0.00

LPA1 315.19 0.00 -4.14 -0.01 0.00 0.00

LPA2 523.20 0.00 -2.87 0.00 0.00 0.00

LPA3 168.69 0.00 3.74 0.00 0.00 0.00

LPA4 387.57 0.00 -3.11 0.00 0.00 0.00

PL14 LPA0 360.01 0.00 -6.86 0.00 -62.43 0.00

LPA1 323.03 0.00 -9.30 -0.01 -98.00 0.00

LPA2 531.04 0.00 -7.14 0.00 -69.39 0.00

LPA3 176.53 0.00 -2.34 0.00 10.75 0.00

LPA4 395.41 0.00 -8.45 0.00 -85.18 0.00

PL09-PL14 PL09 ROD LPA0 583.47 0.00 2.91 -0.01 0.00 0.00

LPA1 622.73 0.00 3.12 -0.01 0.00 0.00

LPA2 415.02 0.00 3.21 -0.01 0.00 0.00

LPA3 742.50 0.00 2.52 0.00 0.00 0.00

LPA4 547.73 0.00 2.81 -0.01 0.00 0.00

PL14 LPA0 591.31 0.00 -1.24 -0.01 11.50 0.00

LPA1 630.57 0.00 -1.34 -0.01 12.45 0.00

LPA2 422.86 0.00 -1.83 -0.01 9.93 0.00

LPA3 750.34 0.00 -0.76 0.00 11.61 0.00

LPA4 555.57 0.00 -1.22 -0.01 10.92 0.00

PL12-PL14 PL12 ROD LPA0 407.62 0.00 1.12 0.01 0.00 0.00

LPA1 228.58 0.00 5.10 0.00 0.00 0.00

LPA2 444.15 0.00 1.88 0.01 0.00 0.00

LPA3 370.46 0.00 -3.31 0.02 0.00 0.00

LPA4 574.97 0.00 1.47 0.01 0.00 0.00

PL14 LPA0 415.46 0.00 -3.73 0.01 -18.68 0.00

LPA1 236.42 0.00 -0.66 0.00 33.56 0.00

LPA2 451.99 0.00 -3.09 0.01 -8.72 0.00

LPA3 378.31 0.00 -8.21 0.02 -82.70 0.00

LPA4 582.81 0.00 -2.46 0.01 -6.76 0.00

6.4 MEMBER CODE CHECKS

6.4.1 Member Connected to Padeye * * * M E M B E R G R O U P S U M M A R Y * * *

API RP2A 21ST/AISC 9TH

MAX. DIST EFFECTIVE CM

GRUP CRITICAL LOAD UNITY FROM * APPLIED STRESSES * *** ALLOWABLE STRESSES *** CRIT LENGTHS * VALUES *

ID MEMBER COND CHECK END AXIAL BEND-Y BEND-Z AXIAL EULER BEND-Y BEND-Z COND KLY KLZ Y Z

M N/MM2 N/MM2 N/MM2 N/MM2 N/MM2 N/MM2 N/MM2 M M

B01 D005-PL03 NLP3 0.34 0.2 -0.04 -41.67 -34.48 174.151774.56 234.30 266.25 C<.15 5.3 0.2 0.85 0.85

B02 D072-D073 NLP3 0.61 0.8 -1.38 -35.78 64.33 133.431914.79 155.10 176.25 C<.15 2.1 0.8 0.85 0.85

G01 D030-D044 NLP3 0.57 0.0 -9.74 99.39 13.71 175.28 463.73 213.00 266.25 C<.15 7.6 4.6 0.85 0.85

G02 D050-D051 NLP3 0.27 0.2 -0.50 54.66 -8.18 149.795116.35 234.30 266.25 C<.15 3.4 0.9 0.85 0.85

P02 PL02-PL03 NLP1 0.04 1.5 5.10 5.05 1.45 207.00 954.13 258.75 258.75 TN+BN 7.0 1.5 0.85 0.85

Page 34: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 34 of 31

6.4.2 Member Not Connected to Padeye * * * M E M B E R G R O U P S U M M A R Y * * *

API RP2A 21ST/AISC 9TH

MAX. DIST EFFECTIVE CM

GRUP CRITICAL LOAD UNITY FROM * APPLIED STRESSES * *** ALLOWABLE STRESSES *** CRIT LENGTHS * VALUES *

ID MEMBER COND CHECK END AXIAL BEND-Y BEND-Z AXIAL EULER BEND-Y BEND-Z COND KLY KLZ Y Z

M N/MM2 N/MM2 N/MM2 N/MM2 N/MM2 N/MM2 N/MM2 M M

B01 D005-PL03 FLP3 0.29 0.2 -0.04 -35.49 -29.38 174.151774.56 234.30 266.25 C<.15 5.3 0.2 0.85 0.85

B02 D072-D073 FLP3 0.52 0.8 -1.18 -30.48 54.80 133.431914.79 155.10 176.25 C<.15 2.1 0.8 0.85 0.85

G01 D030-D044 FLP3 0.49 0.0 -8.30 84.67 11.68 175.28 463.73 213.00 266.25 C<.15 7.6 4.6 0.85 0.85

G02 D050-D051 FLP3 0.23 0.2 -0.43 46.56 -6.97 149.795116.35 234.30 266.25 C<.15 3.4 0.9 0.85 0.85

P02 PL02-PL03 FLP1 0.04 1.5 4.35 4.31 1.24 207.00 954.13 258.75 258.75 TN+BN 7.0 1.5 0.85 0.85

6.5 REACTION

Reaction force without consequence factor

SACS-IV SYSTEM REACTION FORCES AND MOMENTS

********************* KN ******************** ******************** KN-M *******************

JOINT LOAD FORCE(X) FORCE(Y) FORCE(Z) MOMENT(X) MOMENT(Y) MOMENT(Z)

NUMBER CASE

PL02 LPA0 3.418 9.930 0.000 0.000 0.000 0.000

LPA1 4.688 16.313 0.000 0.000 0.000 0.000

LPA2 4.755 11.046 0.000 0.000 0.000 0.000

LPA3 0.844 2.264 0.000 0.000 0.000 0.000

LPA4 3.809 10.132 0.000 0.000 0.000 0.000

PL11 LPA0 -2.084 0.000 0.000 0.000 0.000 0.000

LPA1 -2.004 0.000 0.000 0.000 0.000 0.000

LPA2 -3.475 0.000 0.000 0.000 0.000 0.000

LPA3 0.199 0.000 0.000 0.000 0.000 0.000

LPA4 -3.548 0.000 0.000 0.000 0.000 0.000

PL14 LPA0 -1.334 -9.930 1666.527 -140.304 -7.189 0.001

LPA1 -2.684 -16.313 1666.781 -206.159 -8.864 -0.013

LPA2 -1.280 -11.046 1666.483 -134.190 11.995 0.000

LPA3 -1.043 -2.264 1666.881 -57.032 -31.392 0.022

LPA4 -0.262 -10.132 1666.584 -164.503 -1.931 -0.004

SACS-IV SYSTEM REACTION FORCES AND MOMENTS SUMMARY

*** MOMENTS SUMMED ABOUT ORIGIN ***

********************* KN ******************** ******************** KN-M *******************

LOAD FORCE(X) FORCE(Y) FORCE(Z) MOMENT(X) MOMENT(Y) MOMENT(Z)

CASE

LPA0 0.000 0.000 1666.527 10344.642 -5524.963 0.000

LPA1 0.000 0.000 1666.781 10367.688 -5545.938 -13.629

LPA2 0.000 0.000 1666.483 10365.754 -5504.899 12.326

LPA3 0.000 0.000 1666.881 10325.237 -5546.360 -3.307

LPA4 0.000 0.000 1666.584 10323.564 -5505.227 9.870

Page 35: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 35 of 31

Reaction force with consequence factor of 1.15

SACS-IV SYSTEM REACTION FORCES AND MOMENTS

********************* KN ******************** ******************** KN-M *******************

JOINT LOAD FORCE(X) FORCE(Y) FORCE(Z) MOMENT(X) MOMENT(Y) MOMENT(Z)

NUMBER CASE

PL02 FLP0 3.931 11.420 0.000 0.000 0.000 0.000

FLP1 5.394 18.765 0.000 0.000 0.000 0.000

FLP2 5.468 12.707 0.000 0.000 0.000 0.000

FLP3 0.972 2.600 0.000 0.000 0.000 0.000

FLP4 4.379 11.650 0.000 0.000 0.000 0.000

PL11 FLP0 -2.396 0.000 0.000 0.000 0.000 0.000

FLP1 -2.304 0.000 0.000 0.000 0.000 0.000

FLP2 -3.999 0.000 0.000 0.000 0.000 0.000

FLP3 0.232 0.000 0.000 0.000 0.000 0.000

FLP4 -4.081 0.000 0.000 0.000 0.000 0.000

PL14 FLP0 -1.535 -11.420 1916.532 -161.353 -8.268 0.001

FLP1 -3.090 -18.765 1916.816 -237.081 -10.194 -0.015

FLP2 -1.469 -12.707 1916.474 -154.307 13.795 0.000

FLP3 -1.204 -2.600 1916.932 -65.595 -36.102 0.026

FLP4 -0.297 -11.650 1916.590 -189.195 -2.219 -0.005

SACS-IV SYSTEM REACTION FORCES AND MOMENTS SUMMARY

*** MOMENTS SUMMED ABOUT ORIGIN ***

********************* KN ******************** ******************** KN-M *******************

LOAD FORCE(X) FORCE(Y) FORCE(Z) MOMENT(X) MOMENT(Y) MOMENT(Z)

CASE

FLP0 0.000 0.000 1916.532 11896.505 -6353.801 0.000

FLP1 0.000 0.000 1916.816 11923.021 -6377.944 -15.675

FLP2 0.000 0.000 1916.474 11920.797 -6330.642 14.175

FLP3 0.000 0.000 1916.932 11874.091 -6378.428 -3.804

FLP4 0.000 0.000 1916.590 11872.165 -6331.019 11.352

Reaction force with consequence factor of 1.35

SACS-IV SYSTEM REACTION FORCES AND MOMENTS

********************* KN ******************** ******************** KN-M *******************

JOINT LOAD FORCE(X) FORCE(Y) FORCE(Z) MOMENT(X) MOMENT(Y) MOMENT(Z)

NUMBER CASE

PL02 NLP0 4.614 13.406 0.000 0.000 0.000 0.000

NLP1 6.330 22.026 0.000 0.000 0.000 0.000

NLP2 6.419 14.915 0.000 0.000 0.000 0.000

NLP3 1.140 3.054 0.000 0.000 0.000 0.000

NLP4 5.141 13.677 0.000 0.000 0.000 0.000

PL11 NLP0 -2.813 0.000 0.000 0.000 0.000 0.000

NLP1 -2.706 0.000 0.000 0.000 0.000 0.000

NLP2 -4.693 0.000 0.000 0.000 0.000 0.000

NLP3 0.270 0.000 0.000 0.000 0.000 0.000

NLP4 -4.790 0.000 0.000 0.000 0.000 0.000

PL14 NLP0 -1.800 -13.406 2249.827 -189.411 -9.706 0.001

NLP1 -3.624 -22.026 2250.166 -278.313 -11.966 -0.018

NLP2 -1.726 -14.915 2249.764 -181.149 16.194 0.000

NLP3 -1.410 -3.054 2250.302 -76.996 -42.380 0.030

NLP4 -0.351 -13.677 2249.901 -222.087 -2.606 -0.006

SACS-IV SYSTEM REACTION FORCES AND MOMENTS SUMMARY

*** MOMENTS SUMMED ABOUT ORIGIN ***

********************* KN ******************** ******************** KN-M *******************

LOAD FORCE(X) FORCE(Y) FORCE(Z) MOMENT(X) MOMENT(Y) MOMENT(Z)

CASE

NLP0 0.000 0.000 2249.827 13965.368 -7458.742 0.000

NLP1 0.000 0.000 2250.166 13996.496 -7487.070 -18.402

NLP2 0.000 0.000 2249.764 13993.885 -7431.619 16.640

NLP3 0.000 0.000 2250.302 13939.126 -7487.639 -4.464

NLP4 0.000 0.000 2249.901 13936.867 -7432.062 13.326

Page 36: [Www.indowebster.com]-Microsoft Word - TUGAS AKHIR LIFTING

DATE: 02/02/12

DIESEL STORAGE PLATFORM LIFTING ANALYSIS

REVISION: A

PAGE: 36 of 31

6.6 CONNECTION CODE CHECKS

Since no tubular intersection is found during lifting analysis, joint can analysis is not performed in this calculation.