Upload
others
View
12
Download
0
Embed Size (px)
AP Calculus Name___________________Pd.___ Implicit Differentiation Derivatives (2) Day 1 1-10: Find dy/dx by implicit differentiation. 1. 3 3 1x y+ =
2. 2 2 4x xy y+ =
3. 3 2 32 2x x y xy+ =
4. yxe x y=
5. 2 2cosy x x y= +
6. cos( ) 1 sinxy y= +
7. 4cos sin 1x y =
8. sinye x x xy= +
9. xye x y=
10. 2 21x y x y+ = +
¥K7tEx¥y7=¥kD2xtx¥yTtyx3 - 2yd¥=02xtxd¥tyU) - 2yd£×=02ydf×-Xdf×=2xtyExley-x) -- Zxty ¥=%t£. -- Exch -Exodx. date'te'¥63 -- I - II
,
x. e's .¥CyTteKD .- l - de
DX
Xe's test - dy
d.X
x:÷¥:¥i÷i.ie:¥×CcosCxyD=g¥gi¥[sing]
COSY#txsinlxyadf-ysinlxyj-sinlxyl.ae#y=coscygdgxcyyITkosyt-xsincxyfysinlxy)'si:*:*:±÷÷÷¥÷÷÷÷¥÷ii¥÷- xsincxyldy yddDX DX
[email protected]:i.ms?::i:::i;ie:.:i:¥¥s÷t¥¥ekosxtsinxebgkf-ltxdzytysinxeYII-xdduj-lty-ekosxf-xkxi.gl"7=¥¥¥④④chain'zcxtyjk.dz#tyT--x?gtxCy7t-5adzEx7ztyF.C1tdfxJ--x2l2y)ddIxty42x)zx¥ytz¥yd¥ -- 2×311×+2×5zf.FI#-2x2ydfz-- 2×5
- Lay[x¥ - 2×5111--2×5 ;¥g
÷÷÷÷÷÷i÷
AP Calculus Name___________________Pd.___ Implicit Differentiation Derivatives (2) Day 1 11-12: Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
11. sin 2 cos2 , ,2 4
x x y=
12. 2 22 2, (1,2)x xy y x+ + =
13-14: Find b im lici diffe en ia i n. 13. 2 29 9x y+ =
14. 4 4 4x y a+ = 4 constanta =
① Point
② Slope #hit,
#(cost2yDtCostly)fzCx][cos (2x)= Xl - sinky)) Gy]tcosC2yXl)2cosC2xl= - Xsinczyl -2¥ t costly)Zxsinlzy)# = costly) - ZCOSCZX)
died = C0SC2y)-2x)
2xsinC2y )=cos( Iz) - 2COSTa¥h¥i¥j¥¥ ' - ¥2. Iz sin (2 'II )
¥44]t¥Cy4]=¥[a4]M°4×3+49314=0
I
453daL, =- 4×3 n 11×2=-3×44--3×6. >
g- ydy = - 4×3 IIDX Ty3 I
f÷4z= - 3xYy4t×4 ]¥x=- Toriginal problem÷¥÷¥÷¥¥÷s¥*÷÷÷÷÷.dd¥=y3t3x7tyf3yff, dIIz=-3ay!dd÷z= - 3x2y3t3x3y2¥YT42×4-2=-3×43+3×354-yx÷)-
y6
42×7=-3×19--331yyb
AP Calculus Name___________________Pd.___ Implicit Differentiation Derivatives (2) Day 1 Review
15. 3
2lim
3x x+ 16.
2lim
3x x 17.
2
( ) 5 '( )xg x find g x=
18. ( ) ( )2 5( ) 3 2 2 5 '( )h x x x find h x= +
19. 2
( ) '( )3
f x find f xx
= 20. ( )3 2( ) sin '( )k x x find k x=
Answers: 1) 2
2
dy xdx y
= 2) 2 22 2
dy x y x ydx x y y x
+= = 3)
3 2
2 2
2 63
dy y xy xdx x xy
=
4) 11
y
y
dy edx xe
=+
5) 2 sincos 2
dy x y xdx x y
+= 6) sin( )
sin( ) cosdy y xydx x xy y
=
7) sin sin tan tancos cos
dy x yx y
dx x y= = 8) 1 cos
sin
y
y
dy y e xdx x e x
+= 9) 2
2
xy
xy
dy y y edx
y x e
=
10) 22
4 1
1 4
xy x ydydx x y x y
+=
+ 11) 2
4 2y x= 12) ( )72 1
2y x=
13)
2
2 3
9
81
dy xdx y
d ydx y
=
=
14) 33
2 2 4
2 7
3
dy xdx y
d y x adx y
=
=
15)
16) 0 17) 2'( ) ln5 2 5xg x x= 18) 4'( ) 2(3 2)(2 5) (21 5)h x x x x= + + 19)
2
2'( )
( 3)f x
x= 20) ( ) ( )2 2 2'( ) 6 sin cosk x x x x=
(J- Lo)EB
0--00
" '"43×-254×[12×+55]taxi- 55,1×[13×-25]KIX)=( since))3
"H)=l3x-27512*551.242×+55.213×-2343) K'(X)=3( sin (XZ))?¥§in(X2)h'K7- 1013×-2512×+55't612×+5513×-27 K' (X)=3sin2(X4(cos(X2Dh' (X)-- 213×-2712×+5141513×-2)t3(2Xt5D"(x) -- 213×-2712×+57445×-101-6×1-15) K' ( X) -_3Sin4x2)COS(x2)l2X)
flint KCH=6Xsin4x4co