14
Four annular structures in a protostellar disk less than 500,000 years old Abstract Annular structures (rings and gaps) in disks around pre-main-sequence stars have been detected in abundance towards class II protostellar objects that are approximately 1,000,000 years old . These structures are often interpreted as evidence of planet formation , with planetary-mass bodies carving rings and gaps in the disk . This implies that planet formation may already be underway in even younger disks in the class I phase, when the protostar is still embedded in a larger-scale dense envelope of gas and dust . Only within the past decade have detailed properties of disks in the earliest star-forming phases been observed . Here we report 1.3-millimetre dust emission observations with a resolution of five astronomical units that show four annular substructures in the disk of the young (less than 500,000 years old) protostar IRS 63. IRS 63 is a single class I source located in the nearby Ophiuchus molecular cloud at a distance of 144 parsecs , and is one of the brightest class I protostars at millimetre Search Login Explore Journal info Subscribe 1 1,2,3 4 5 6,7 8 9

years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

Article Published: 07 October 2020

Four annular structures in a protostellar disk less than 500,000years old

Dominique M. Segura-Cox , Anika Schmiedeke, Jaime E. Pineda, Ian W. Stephens, Manuel

Fernández-López, Leslie W. Looney, Paola Caselli, Zhi-Yun Li, Lee G. Mundy, Woojin Kwon &

Robert J. Harris 

Nature  586, 228–231(2020)

2282 Accesses 408 Altmetric Metrics

Abstract

Annular structures (rings and gaps) in disks around pre-main-sequence stars have beendetected in abundance towards class II protostellar objects that are approximately1,000,000 years old . These structures are often interpreted as evidence of planetformation , with planetary-mass bodies carving rings and gaps in the disk . Thisimplies that planet formation may already be underway in even younger disks in theclass I phase, when the protostar is still embedded in a larger-scale dense envelope of gasand dust . Only within the past decade have detailed properties of disks in the earlieststar-forming phases been observed . Here we report 1.3-millimetre dust emissionobservations with a resolution of five astronomical units that show four annularsubstructures in the disk of the young (less than 500,000 years old) protostar IRS 63.IRS 63 is a single class I source located in the nearby Ophiuchus molecular cloud at adistance of 144 parsecs , and is one of the brightest class I protostars at millimetre

nature articles article

Search Login

Explore Journal info Subscribe

1

1,2,3 4

5

6,7

8

9

Page 2: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

wavelengths. IRS 63 also has a relatively large disk compared to other young disks(greater than 50 astronomical units) . Multiple annular substructures observed towardsdisks at young ages can act as an early foothold for dust-grain growth, which is aprerequisite of planet formation. Whether or not planets already exist in the disk ofIRS 63, it is clear that the planet-formation process begins in the initial protostellarphases, earlier than predicted by current planet-formation theories .

Access through your institutionBuy or subscribeAccess options

Subscribe toJournal

Get full journal access for1 year

$199.00only $3.90 per issue

Subscribe

All prices are NET prices. VAT will be added later in the checkout.

Rent or Buyarticle

Get time limited or full articleaccess on ReadCube.

from $8.99

Rent or Buy

All prices are NET prices.

Additional access options:

Log inAccess through your institutionLearn about institutional subscriptions

Data availability

10

11

Page 3: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

1.

2.

3.

This paper makes use of ALMA data with the project code:ADS/JAO.ALMA#2015.1.01512.S. The archival data are available athttp://almascience.eso.org/aq/ by querying the project code. The final calibratedversion of the data analysed in this work is available from the Harvard Dataverse athttps://doi.org/10.7910/DVN/LPVDSF. Other material in this work is available fromthe corresponding author on reasonable request .

Code availability

The radiative-transfer modelling makes use of RADMC-3D, which is publicly availableat http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/. The radiative-transfer modelling also uses the Pandora framework for the setup of and interfacing withRADMC-3D; Pandora is not open source and is available upon request. The MCMCmodelling uses emcee, which is publicly available athttps://emcee.readthedocs.io/en/stable/.

References

1. Andrews, S. M. et al. The Disk Substructures at High Angular Resolution Project(DSHARP). I. Motivation, sample, calibration, and overview. Astrophys. J. Lett. 869,41 (2018).

2. ALMA Partnership et al. The2014 ALMA Long Baseline Campaign: first resultsfrom high angular resolution observations toward the HL Tau region. Astrophys. J.Lett. 808, 3 (2015).

3. van der Marel, N., Dong, R., di Francesco, J., Williams, J. P. & Tobin, J.Protoplanetary disk rings and gaps across ages and luminosities. Astrophys. J. 872,112 (2019).

58

Page 4: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

4. Huang, J. et al. The Disk Substructures at High Angular Resolution Project(DSHARP). II. Characteristics of annular substructures. Astrophys. J. Lett. 869, 42(2018).

5. André, P., Ward-Thompson, D. & Barsony, M. From prestellar cores to protostars:the initial conditions of star formation. In Protostars and Planets IV (eds Mannings,V., Boss, A. P. & Russell, S. S.) 59–96 (Univ. Arizona Press, 2000).

6. Harsono, D. et al. Rotationally-supported disks around class I sources in Taurus:disk formation constraints. Astron. Astrophys. 562, A77 (2014).

7. Yen, H. et al. Signs of early-stage disk growth revealed with ALMA. Astrophys. J.834, 178 (2017).

8. Kristensen, L. E. & Dunham, M. M. Protostellar half-life: new methodology andestimates. Astron. Astrophys. 618, A158 (2018).

9. Ortiz-León, G. N. et al. Gaia-DR2 confirms VLBA parallaxes in Ophiuchus,Serpens, and Aquila. Astrophys. J. Lett. 869, 33 (2018).

10. Brinch, C. & Jørgensen, J. K. Interplay between chemistry and dynamics inembedded protostellar disks. Astron. Astrophys. 559, A82 (2013).

11. Helled, R. et al. Giant planet formation, evolution, and internal structure. InProtostars and Planets IV (eds Beuther, H. et al.) 643–665 (Univ. Arizona Press, 2014).

12. Sheehan, P. D. & Eisner, J. A. Multiple gaps in the disk of the class I protostar GY91. Astrophys. J. 857, 18 (2018).

13. Sheehan, P. D. & Eisner, J. A. WL 17: a young embedded transition disk.Astrophys. J. Lett. 840, 12 (2017).

Page 5: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

14. de Valon, A. et al. ALMA reveals a large structured disk and nested rotatingoutflows in DG Tauri B. Astron. Astrophys. 634, L12 (2020).

15. Bae, J., Hartmann, L. & Zhu, Z. Are protoplanetary disks born with vortices?Rossby wave instability driven by protostellar infall. Astrophys. J. 805, 15 (2015).

16. Pinte, C. et al. Nine localised deviations from Keplerian rotation in the DSHARPcircumstellar disks: kinematic evidence for protoplanets carving the gaps. Astrophys.J. Lett. 890, 9 (2020).

17. Manara, C. F., Morbidelli, A. & Guillot, T. Why do protoplanetary disks appearnot massive enough to form the known exoplanet population? Astron. Astrophys.618, L3 (2018).

18. Kanagawa, K. D. et al. Mass constraint for a planet in a protoplanetary disk fromthe gap width. Publ. Astron. Soc. Jpn. 68, 43 (2016).

19. Dong, R., Li, S., Chiang, E. & Li, H. Multiple disk gaps and rings generated by asingle super-Earth. II. Spacings, depths, and number of gaps, with application toreal systems. Astrophys. J. 866, 110 (2018).

20. Weidenschilling, S. J. Aerodynamics of solid bodies in the solar nebula. Mon.Not. R. Astron. Soc. 180, 57–70 (1977).

21. Pinilla, P. et al. Trapping dust particles in the outer regions of protoplanetarydisks. Astron. Astrophys. 538, A114 (2012).

22. Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks.Astrophys. J. 620, 459–469 (2005).

23. Harsono, D. et al. Evidence for the start of planet formation in a youngcircumstellar disk. Nat. Astron. 2, 646–651 (2018).

Page 6: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

24. Gammie, C. F. Layered accretion in T Tauri disks. Astrophys. J. 457, 355–362(1996).

25. Suriano, S. S., Li, Z.-Y., Krasnopolsky, R., Suzuki, T. K. & Shang, H. Theformation of rings and gaps in wind-launching non-ideal MHD discs: three-dimensional simulations. Mon. Not. R. Astron. Soc. 484, 107–124 (2019).

26. Pineda, J. E. et al. A protostellar system fed by a streamer of 10,500 AU length.Nat. Astron. https://doi.org/10.1038/s41550-020-1150-z (2020).

27. Zhang, K., Blake, G. A. & Bergin, E. A. Evidence of fast pebble growth nearcondensation fronts in the HL Tau protoplanetary disk. Astrophys. J. Lett. 806, 7(2015).

28. Gonzalez, J.-F., Laibe, G. & Maddison, S. T. Self-induced dust traps: overcomingplanet formation barriers. Mon. Not. R. Astron. Soc. 467, 1984–1996 (2017).

29. Vericel, A. & Gonzalez, J.-F. Self-induced dust traps around snow lines inprotoplanetary discs. Mon. Not. R. Astron. Soc. 492, 210–222 (2020).

30. Williams, J. P. et al. The Ophiuchus Disk Survey Employing ALMA (ODISEA):disk dust mass distributions across protostellar evolutionary classes. Astrophys. J.Lett. 875, 9 (2019).

31. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion ofsolids and gas. Icarus 124, 62–85 (1996).

32. Öberg, K. I. & Wordsworth, R. Jupiter’s composition suggests its core assembledexterior to the N2 snowline. Astrophys. J. 158, 194 (2019).

33. Bosman, A. D., Cridland, A. J. & Miguel, Y. Jupiter formed as a pebble pilearound the N2 ice line. Astron. Astrophys. 632, L11 (2019).

Page 7: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

34. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASAarchitecture and applications. In Astronomical Data Analysis Software and Systems XVI(eds Shaw, R. A., Hill, F. & Bell, D. J.) 127–130 (Astronomical Society of the Pacific,2007).

35. Pérez, L. M. et al. Spiral density waves in a young protoplanetary disk. Science353, 1519–1521 (2016).

36. van der Marel, N., Williams, J. P. & Bruderer, S. Rings and gaps inprotoplanetary disks: planets or snowlines? Astrophys. J. Lett. 867, 14 (2018).

37. Myers, P. C. & Ladd, E. F. Bolometric temperatures of young stellar objects.Astrophys. J. Lett. 413, 47 (1993).

38. Crapsi, A., van Dishoeck, E. F., Hogerheijde, M. R., Pontoppidan, K. M. &Dullemond, C. P. Characterizing the nature of embedded young stellar objectsthrough silicate, ice and millimeter observations. Astron. Astrophys. 486, 245 (2008).

39. Enoch, M. L., Evans, N. J., II, Sargent, A. I. & Glenn, J. Properties of the youngestprotostars in Perseus, Serpens, and Ophiuchus. Astrophys. J. 692, 973–997 (2009).

40. White, R. J. & Hillenbrand, L. A. On the evolutionary status of class I stars andHerbig–Haro energy sources in Taurus–Auriga. Astrophys. J. 616, 998–1032 (2004).

41. Young, C. H. & Evans, N. J., II. Evolutionary signatures in the formation of low-mass protostars. Astrophys. J. 627, 293–309 (2005).

42. Evans, N. J., II et al. The Spitzer c2d legacy results: star-formation rates andefficiencies; evolution and lifetimes. Astrophys. J. Supp. Ser. 181, 321–350 (2009).

43. Garufi, A. et al. ALMA chemical survey of disk-outflow sources in Taurus(ALMA-DOT): I. CO, CS, CN, and H2CO around DG Tau B. Astron. Astrophys. 636,

Page 8: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

A65 (2020).

44. Nakatani, R. et al. Substructure formation in a protostellar disk of L1527 IRS.Astrophys. J. Lett. 895, 2 (2020).

45. Schmiedeke, A. et al. The physical and chemical structure of Sagittarius B2. I.Three-dimensional thermal dust and free-free continuum modeling on 100 AU to 45pc scales. Astron. Astrophys. 588, A143 (2016).

46. Dullemond, C. P. et al. RADMC-3D: a multi-purpose radiative transfer tool.Astrophysics Source Code Library http://ascl.net/1202.015 (2012).

47. Pineda, J. E. et al. The enigmatic core L1451-mm: a first hydrostatic core? Or ahidden VeLLO? Astrophys. J. 743, 201 (2011).

48. Ossenkopf, V. & Henning, Th. Dust opacities for protostellar cores. Astron.Astrophys. 291, 943–959 (1994).

49. Hildebrand, R. H. The determination of cloud masses and dust characteristicsfrom submillimetre thermal emission. Q. J. R. Astron. Soc. 24, 267–282 (1983).

50. Virtanen, P. et al. SciPy 1.0–fundamental algorithms for scientific computing inPython. Nat. Methods 17, 261–272 (2020).

51. Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C. & Dullemond, C. P.Protoplanetary disk structures in Ophiuchus. Astrophys. J. 700, 1502–1523 (2009).

52. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMChammer. Publ. Astron. Soc. Pacif. 125, 306 (2013).

53. Foreman-Mackey, D. corner.py: scatterplot matrices in Python. J. Open SourceSoftw. 1, 24 (2016).

Page 9: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

54.

55.

56.

57.

58.

54. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observationalappearance. Astron. Astrophys. 500, 33–51 (2009).

55. Cieza, L. A. et al. Imaging the water snow-line during a protostellar outburst.Nature 535, 258–261 (2016).

56. Zhu, Z. et al. One solution to the mass budget problem for planet formation:optically thick disks with dust scattering. Astrophys. J. Lett. 877, 18 (2019).

57. Liu, H. B. The anomalously low (sub)millimeter spectral indices of someprotoplanetary disks may be explained by dust self-scattering. Astrophys. J. Lett. 877,22 (2019).

58. Astropy Collaboration et al. Astropy: a community Python package forastronomy. Astron. Astrophys. 558, A33 (2013).

Acknowledgements

ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS(Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republicof Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory isoperated by ESO, AUI/NRAO and NAOJ. D.M.S.-C., A.S., J.E.P. and P.C. are grateful forsupport from the Max Planck Society. L.W.L. acknowledges support from NSF AST-1910364. Z.-Y.L. is supported in part by NASA 80NSSC18K1095 and NSF AST-1910106.This research made use of Astropy, a community-developed core Python package forastronomy.

Author information

Page 10: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

Affiliations

1. Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics,Garching, Germany

Dominique M. Segura-Cox, Anika Schmiedeke, Jaime E. Pineda & Paola Caselli

2. Department of Astronomy, University of Illinois, Urbana, IL, USA

Dominique M. Segura-Cox, Leslie W. Looney & Robert J. Harris

3. Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA

Ian W. Stephens

4. Instituto Argentino de Radioastronomía (CCT-La Plata, CONICET; CICPBA),Buenos Aires, Argentina

Manuel Fernández-López

5. Astronomy Department, University of Virginia, Charlottesville, VA, USA

Zhi-Yun Li

6. Astronomy Department and Laboratory for Millimeter-wave Astronomy, Universityof Maryland, College Park, MD, USA

Lee G. Mundy

7. Department of Earth Science Education, Seoul National University (SNU), Seoul,Republic of Korea

Woojin Kwon

Page 11: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

8. Korea Astronomy and Space Science Institute (KASI), Daejeon, Republic of Korea

Woojin Kwon

Contributions

D.M.S.-C. led the observing proposal and project, led the analysis, reduced the ALMAdata, and wrote the manuscript. A.S. performed the radiative-transfer modelling. J.E.P.performed the MCMC modelling. I.W.S., M.F.-L., L.W.L., Z.-Y.L., L.G.M., W.K. and R.J.H.contributed to the ALMA proposal. P.C. provided discussion and interpretation of theresults. All authors discussed the results and implications, and commented on themanuscript.

Corresponding author

Correspondence to Dominique M. Segura-Cox.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jonathan Williams and the other, anonymous,reviewer(s) for their contribution to the peer review of this work. Peer reviewer reportsare available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Page 12: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

Extended data figures and tables

Extended Data Fig. 1 Asymmetry remains after re-centring the best radiative-transfer model.a, The residual of the data minus the best radiative-transfer model, which had a centroidset to the Gaussian fit centre (same as Fig. 2c). b, The residuals of the best radiative-transfer model with a shifted centroid from minimizing the r.m.s. of the data minusmodel residuals. The asymmetry to the northwest portion of the disk is clear in bothcases.

Extended Data Fig. 2 Posterior distributions of the analytic disk modelparameters.From left to right, the parameters are: normalization factor Σc, surface density gradient γ,

characteristic radius Rc, the coordinates of the centroid of the fit x0 and y0, disk position

angle PA and disk inclination angle IA.

Extended Data Fig. 3 A geometrically flat analytic model shows asymmetry inthe residuals.a, The original dust continuum data (same as Fig. 2a). b, The image of the flat analyticmodel, generated from the median parameter values resulting from the MCMC fit. c, Theresiduals of the observed data minus the analytic model. Again, here the annularsubstructures and the asymmetry with excess emission to the northwest are seen.

Extended Data Fig. 4 Position–intensity cuts of the dust continuum imagecentred at the position of the peak intensity.The centroid is (α(2000), δ(2000)) = (16 h 31 m 35.6577 s, −24° 01′ 29.897″). a–c, The cutsare taken at position angles of 150.0° or along the minor axis (a), of 60.0° or along theminor axis (b), and of 105.0° or along a cut from the southeast to northwest (c). d, Theorientation of these cuts across the disk are shown in blue, orange and green,corresponding to a–c, respectively. The radii in a–c are deprojected assuming a diskinclination angle of 45.0° and are measured starting from the centroid outwards. Thegrey shaded areas represent the resolution of the observations, and the black horizontal

Page 13: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

lines show the 1σ noise level of 18.4 μJy per beam. We plot the radial intensities alongeither side of the centroid for each cut (solid and dashed lines). The 105.0° cut in c, alongthe southeast to northwest direction, shows the highest difference in intensities on eitherside of the centroid, and is consistent with the asymmetric and excess emission to thenorthwest previously seen in the residuals from the disk models.

Extended Data Fig. 5 Position–intensity cuts of the dust continuum imagecentred at the Gaussian fit position.As in Extended Data Fig. 4, with a centroid of (α(2000), δ(2000)) = (16 h 31 m 35.6572 s,−24° 01′ 29.896″).

Extended Data Fig. 6 Position–intensity cuts of the dust continuum imagecentred at the centre determined from the MCMC fit to the analytic model.As in Extended Data Fig. 4, with a centroid of (α(2000), δ(2000)) = 16 h 31 m 35.6575 s,−24° 01′ 29.901″.

Extended Data Fig. 7 Radial properties derived from observations.a–c, The radial profiles of the in-band spectral index (α, a), the optical depth (τ, b) andthe temperature (T, c) derived from the observational data. The grey shaded arearepresents the resolution of the observations, and the vertical grey dashed and dottedlines show the positions of the bright annular substructures R1 and R2 and dark annularsubstructures G1 and G2. For the spectral index the light-blue ribbon represents the localstandard deviation of each bin, and the horizontal dashed grey line shows the α = 2blackbody Rayleigh–Jeans limit. Optical depth is determined from a greybody fit to theintensity profile of the two in-band wavelengths. The temperature profile is determinedfrom the greybody fit at radii where τ > 3 (solid blue line), and extrapolated to largerradii, r, as an inverse square-root law (dot–dash black line). For optical depth andtemperature, the light-blue ribbons reflect the 10% amplitude uncertainty of theobservations. The orange shaded region shows the location of the CO snowline based ondust temperature, reflecting the range of gas densities used to compute the condensationtemperature.

Page 14: years old Four annular structures in a protostellar disk less than … · 2020. 10. 29. · GÆ á ûS}áÆ:» ü Four annular structures in a protostellar disk less than 500,000

Supplementary information

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Segura-Cox, D.M., Schmiedeke, A., Pineda, J.E. et al. Four annular structures in aprotostellar disk less than 500,000 years old. Nature 586, 228–231 (2020).https://doi.org/10.1038/s41586-020-2779-6

Received 05 March 2020 Accepted 05 August 2020 Published 07 October 2020

Issue Date 08 October 2020 DOI https://doi.org/10.1038/s41586-020-2779-6

Nature ISSN 1476-4687 (online)

© 2020 Springer Nature Limited