42
Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis Analysis 10. 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Embed Size (px)

Citation preview

Page 1: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.11

EE4800 CMOS Digital IC Design & Analysis

Lecture 10 Combinational Circuit DesignZhuo Feng

Page 2: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.22

Outline■Bubble Pushing■Compound Gates■Logical Effort Example■Input Ordering■Asymmetric Gates■Skewed Gates■Best P/N ratio■Pseudo-nMOS Logic■Dynamic Logic■Pass Transistor Logic

Page 3: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.33

Example 11) Sketch a design using NAND, NOR, and NOT gates.

Assume ~S is available.

Y

D0S

D1S

Page 4: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.44

Bubble Pushing■ Start with network of AND / OR gates■ Convert to NAND / NOR + inverters■ Push bubbles around to simplify logic

► Remember DeMorgan’s Law

Y Y

Y

D

Y

(a) (b)

(c) (d)

Page 5: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.55

Example 22) Sketch a design using one compound gate

and one NOT gate. Assume ~S is available.

Y

D0SD1S

Page 6: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.66

Compound Gates■ Logical Effort of compound gates

ABCD

Y

ABC Y

A

BC

C

A B

A

B

C

D

A

C

B

D

2

21

4

44

2

2 2

2

4

4 4

4

gA = 6/3

gB = 6/3

gC = 5/3

p = 7/3

gA =

gB =

gC =

p =

gD =

YA

A Y

gA = 3/3

p = 3/3

2

1YY

unit inverter AOI21 AOI22

A

C

DE

Y

B

Y

B C

A

D

E

A

B

C

D E

gA =

gB =

gC =

gD =

2

2 2

22

6

6

6 6

3

p =

gE =

Complex AOI

Y A B C Y A B C D Y A B C D E Y A

Page 7: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.77

Compound Gates■ Logical Effort of compound gates

ABCD

Y

ABC Y

A

BC

C

A B

A

B

C

D

A

C

B

D

2

21

4

44

2

2 2

2

4

4 4

4

gA = 6/3

gB = 6/3

gC = 5/3

p = 7/3

gA = 6/3

gB = 6/3

gC = 6/3

p = 12/3

gD = 6/3

YA

A Y

gA = 3/3

p = 3/3

2

1YY

unit inverter AOI21 AOI22

A

C

DE

Y

B

Y

B C

A

D

E

A

B

C

D E

gA = 5/3

gB = 8/3

gC = 8/3

gD = 8/3

2

2 2

22

6

6

6 6

3

p = 16/3

gE = 8/3

Complex AOI

Y A B C Y A B C D Y A B C D E Y A

Page 8: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.88

Example 3■ The multiplexer has a maximum input capacitance of 16

units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs.

Y

D0S

D1S

Y

D0SD1S

H = 160 / 16 = 10B = 1N = 2

Page 9: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.99

NAND Solution

Y

D0S

D1S

2 2 4

(4 / 3) (4 / 3) 16 / 9

160 / 9

ˆ 4.2

ˆ 12.4

N

P

G

F GBH

f F

D Nf P

Page 10: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.1010

Compound Solution

4 1 5

(6 / 3) (1) 2

20

ˆ 4.5

ˆ 14

N

P

G

F GBH

f F

D Nf P

Y

D0SD1S

Page 11: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.1111

Example 4■Annotate your designs with transistor

sizes that achieve this delay.

6

6 6

6

10

10Y

24

12

10

10

8

8

88

8

8

88

25

25

2525Y

16 16160 * (4/3) / 4.2 = 50 160 * 1 / 4.5 = 36

Page 12: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.1212

Input Order■ Our parasitic delay model was too simple

► Calculate parasitic delay for Y falling▼ If A arrives latest? 2▼ If B arrives latest? 2.33

6C

2C2

2

22

B

Ax

Y

Page 13: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.1313

Inner & Outer Inputs■ Outer input is closest to rail (B)■ Inner input is closest to output (A)

■ If input arrival time is known► Connect latest input to inner terminal

2

2

22

B

A

Y

Page 14: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.1414

Asymmetric Gates■ Asymmetric gates favor one input over another■ Ex: suppose input A of a NAND gate is most critical

► Use smaller transistor on A (less capacitance)► Boost size of noncritical input► So total resistance is same

■ gA = 10/9

■ gB = 2

■ gtotal = gA + gB = 28/9

■ Asymmetric gate approaches g = 1 on critical input■ But total logical effort goes up

Areset

Y

4

4/3

22

reset

A

Y

Page 15: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.1515

Symmetric Gates■ Inputs can be made perfectly symmetric

A

B

Y2

1

1

2

1

1

Page 16: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.1616

Skewed Gates■ Skewed gates favor one edge over another■ Ex: suppose rising output of inverter is most critical

► Downsize noncritical nMOS transistor

■ Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.

► gu = 2.5 / 3 = 5/6

► gd = 2.5 / 1.5 = 5/3

1/2

2A Y

1

2A Y

1/2

1A Y

HI-skewinverter

unskewed inverter(equal rise resistance)

unskewed inverter(equal fall resistance)

Page 17: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.1717

HI- and LO-Skew■ Def: Logical effort of a skewed gate for a particular

transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.

■ Skewed gates reduce size of noncritical transistors► HI-skew gates favor rising output (small nMOS)► LO-skew gates favor falling output (small pMOS)

■ Logical effort is smaller for favored direction■ But larger for the other direction

Page 18: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.1818

Catalog of Skewed Gates

1/2

2A Y

Inverter

1

1

22

B

AY

B

A

NAND2 NOR2

1/21/2

4

4

HI-skew

LO-skew1

1A Y

2

2

11

B

AY

B

A

11

2

2

gu = 5/6gd = 5/3gavg = 5/4

gu = 4/3gd = 2/3gavg = 1

gu = 1gd = 2gavg = 3/2

gu = 2gd = 1gavg = 3/2

gu = 3/2gd = 3gavg = 9/4

gu = 2gd = 1gavg = 3/2

Y

Y

1

2A Y

2

2

22

B

AY

B

A

11

4

4

unskewedgu = 1gd = 1gavg = 1

gu = 4/3gd = 4/3gavg = 4/3

gu = 5/3gd = 5/3gavg = 5/3

Y

Page 19: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.1919

Asymmetric Skew■ Combine asymmetric and skewed gates

► Downsize noncritical transistor on unimportant input► Reduces parasitic delay for critical input

Areset

Y

4

4/3

21

reset

A

Y

Page 20: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.2020

Best P/N Ratio■ We have selected P/N ratio for unit rise and fall

resistance ( = 2-3 for an inverter).■ Alternative: choose ratio for least average

delay■ Ex: inverter

► Delay driving identical inverter

► tpdf = (P+1)

► tpdr = (P+1)(/P)

► tpd = (P+1)(1+/P)/2 = (P + 1 + + /P)/2

► Differentiate tpd w.r.t. P

► Least delay for P =

1

PA

Page 21: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.2121

P/N Ratios■ In general, best P/N ratio is sqrt of that giving

equal delay.► Only improves average delay slightly for inverters► But significantly decreases area and power

Inverter NAND2 NOR2

1

1.414A Y

2

2

22

B

AY

B

A

11

2

2

fastestP/N ratio gu = 1.15

gd = 0.81gavg = 0.98

gu = 4/3gd = 4/3gavg = 4/3

gu = 2gd = 1gavg = 3/2

Y

Page 22: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.2222

Observations■ For speed:

► NAND vs. NOR► Many simple stages vs. fewer high fan-in stages► Latest-arriving input

■ For area and power:► Many simple stages vs. fewer high fan-in stages

Page 23: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.2323

■ What makes a circuit fast?► I = C dV/dt -> tpd (C/I) V

► low capacitance► high current► small swing

■ Logical effort is proportional to C/I■ pMOS are the enemy!

► High capacitance for a given current

■ Can we take the pMOS capacitance off the input?

■ Various circuit families try to do this…

B

A

11

4

4

Y

Page 24: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.2424

Pseudo-nMOS■ In the old days, nMOS processes had no pMOS

► Instead, use pull-up transistor that is always ON

■ In CMOS, use a pMOS that is always ON► Ratio issue► Make pMOS about ¼ effective strength of pulldown network

Vout

Vin

16/2

P/2

Ids

load

0 0.3 0.6 0.9 1.2 1.5 1.8

0

0.3

0.6

0.9

1.2

1.5

1.8

P = 24

P = 4

P = 14

Vin

Vout

Page 25: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.2525

Pseudo-nMOS Gates■ Design for unit current on output

to compare with unit inverter.■ pMOS fights nMOS

Inverter NAND2 NOR2

AY

B

AY

A B

gu =gd =gavg =pu =pd =pavg =

Y

gu =gd =gavg =pu =pd =pavg =

gu =gd =gavg =pu =pd =pavg =

finputs

Y

Page 26: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.2626

Pseudo-nMOS Gates■ Design for unit current on output

to compare with unit inverter.■ pMOS fights nMOS

Inverter NAND2 NOR2

4/3

2/3

AY

8/3

8/3

2/3

B

AY

A B 4/34/3

2/3

gu = 4/3gd = 4/9gavg = 8/9pu = 6/3pd = 6/9pavg = 12/9

Y

gu = 8/3gd = 8/9gavg = 16/9pu = 10/3pd = 10/9pavg = 20/9

gu = 4/3gd = 4/9gavg = 8/9pu = 10/3pd = 10/9pavg = 20/9

finputs

Y

Page 27: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.2727

Dynamic Logic■ Dynamic gates uses a clocked pMOS pullup■ Two modes: precharge and evaluate

1

2A Y

4/3

2/3

AY

1

1

AY

Static Pseudo-nMOS Dynamic

Precharge Evaluate

Y

Precharge

Page 28: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.2828

The Foot■ What if pulldown network is ON during

precharge?■ Use series evaluation transistor to prevent

fight.

AY

foot

precharge transistor Y

inputs

Y

inputs

footed unfooted

f f

Page 29: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.2929

Logical Effort

Inverter NAND2 NOR2

1

1

AY

2

2

1

B

AY

A B 11

1

gd = 1/3pd = 2/3

gd = 2/3pd = 3/3

gd = 1/3pd = 3/3

Y

2

1

AY

3

3

1

B

AY

A B 22

1

gd = 2/3pd = 3/3

gd = 3/3pd = 4/3

gd = 2/3pd = 5/3

Y

footed

unfooted

32 2

Page 30: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.3030

Monotonicity■ Dynamic gates require monotonically rising

inputs during evaluation► 0 -> 0► 0 -> 1► 1 -> 1► But not 1 -> 0

Precharge Evaluate

Y

Precharge

A

Output should rise but does not

violates monotonicity during evaluation

A

Page 31: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.3131

Monotonicity Woes■ But dynamic gates produce monotonically

falling outputs during evaluation■ Illegal for one dynamic gate to drive another!

AX

Y

Precharge Evaluate

X

Precharge

A = 1

Y should rise but cannot

Y

X monotonically falls during evaluation

AX

Y

Precharge Evaluate

X

Precharge

A = 1

Y

Page 32: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.3232

Domino Gates■ Follow dynamic stage with inverting static gate

► Dynamic / static pair is called domino gate► Produces monotonic outputs

Precharge Evaluate

W

Precharge

X

Y

Z

A

BC

C

AB

W XY Z =

XZH H

A

W

B C

X Y Z

domino AND

dynamicNAND

staticinverter

Page 33: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.3333

Domino Optimizations■ Each domino gate triggers next one, like a

string of dominos toppling over■ Gates evaluate sequentially but precharge in

parallel■ Thus evaluation is more critical than precharge■ HI-skewed static stages can perform logic

S0

D0

S1

D1

S2

D2

S3

D3

S4

D4

S5

D5

S6

D6

S7

D7

YH

Page 34: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.3434

Dual-Rail Domino■ Domino only performs noninverting functions:

► AND, OR but not NAND, NOR, or XOR

■ Dual-rail domino solves this problem► Takes true and complementary inputs ► Produces true and complementary outputs

sig_h sig_l Meaning

0 0 Precharged

0 1 ‘0’

1 0 ‘1’

1 1 invalid

Y_h

f

inputs

Y_l

f

Page 35: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.3535

Example: AND/NAND■ Given A_h, A_l, B_h, B_l■ Compute Y_h = AB, Y_l = AB■ Pulldown networks are conduction

complements

Y_h

Y_l

A_h

B_hB_lA_l

= A*B= A*B

Page 36: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.3636

Example: XOR/XNOR■Sometimes possible to share transistors

Y_h

Y_l

A_l

B_h

= A xor B

B_l

A_hA_lA_h= A xnor B

Page 37: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.3737

Leakage■Dynamic node floats high during

evaluation►Transistors are leaky (IOFF 0)

►Dynamic value will leak away over time►Formerly miliseconds, now nanoseconds

■Use keeper to hold dynamic node►Must be weak enough not to fight evaluation

A

H

2

2

1 kX

Y

weak keeper

Page 38: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.3838

Charge Sharing

■ Dynamic gates suffer from charge sharing

B = 0

AY

x

Cx

CY

A

x

Y

Charge sharing noise

Yx Y DD

x Y

CV V V

C C

A

x

Y

Page 39: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.3939

Secondary Precharge■Solution: add secondary precharge

transistors►Typically need to precharge every other node

■Big load capacitance CY helps as well

B

AY

x

secondaryprechargetransistor

Page 40: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.4040

Noise Sensitivity■Dynamic gates are very sensitive to

noise► Inputs: VIH Vtn

►Outputs: floating output susceptible noise

■Noise sources►Capacitive crosstalk►Charge sharing►Power supply noise►Feedthrough noise►And more!

Page 41: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.4141

Power■Domino gates have high activity factors

►Output evaluates and precharges▼If output probability = 0.5, = 0.5

– Output rises and falls on half the cycles

►Clocked transistors have = 1

■Leads to very high power consumption

Page 42: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 10.1 EE4800 CMOS Digital IC Design & Analysis Lecture 10 Combinational Circuit Design Zhuo Feng

Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisAnalysis

10.10.4242

Domino Summary■ Domino logic is attractive for high-speed

circuits► 1.3 – 2x faster than static CMOS► But many challenges:

▼ Monotonicity, leakage, charge sharing, noise

■ Widely used in high-performance microprocessors in 1990s when speed was king

■ Largely displaced by static CMOS now that power is the limiter

■ Still used in memories for area efficiency