7
48 Hepatobiliary Pancreat Dis IntVol 13No 1 February 152014 www.hbpdint.com Original Article / Liver Author Affiliations: Department  of  General  Surgery,  Xinhua  Hospital,  Shanghai Jiaotong University School of Medicine, Shanghai 200092, China  (Weng  MZ,  Zhuang  PY,  Hei  ZY,  Lin  PY,  Chen  ZS,  Liu YB,  Quan  ZW  and  Tang ZH) Corresponding Author: Zhao-Hui  Tang,  MD,  PhD,  Department  of  General  Surgery,  Xinhua  Hospital,  Shanghai  Jiaotong  University  School  of  Medicine,  No.  1665  Kongjiang  Street,  Shanghai  200092,  China  (Tel/Fax:  86-21-25078999; Email: [email protected]) © 2014, Hepatobiliary Pancreat Dis Int. All rights reserved. doi: 10.1016/S1499-3872(14)60006-0 BACKGROUND: A  better  understanding  of  the  molecular  mechanisms  in  liver  regeneration  holds  promise  for  exploring  the new potential therapy for liver failure. The present study was  to investigate the role of zinc finger and BTB domain-containing  protein  20  (ZBTB20),  a  potential  factor  associated  with  liver  regeneration, in a model of 70% hepatectomy in mice.  METHODS: Parameters for liver proliferation such as liver/body  ratio  and  BrdU  positivity  were  obtained  via  direct  measurement  and  immunohistochemistry.  The  levels  of  zinc  fingers  and  homeoboxes  2  (ZHX2),  ZBTB20,  alpha-fetoprotein  (AFP)  and  glypican  3  (GPC3)  transcripts  in  the  regenerating  liver  tissue  of  a  70%  hepatectomy  rodent  model  were  monitored  by  real-time  PCR analysis at different time points. Knockdown of ZBTB20 was  performed to characterize its regulatory function. RESULTS: A  negatively  regulating  relationship  between  ZHX2,  ZBTB20  and  AFP,  GPC3  was  revealed  from  24  to  72  hours  after 70% hepatectomy. ZBTB20 appears to negatively regulate  AFP  and  GPC3  transcription  since  the  knockdown  of  ZBTB20  promoted the proliferation of hepatocytes and the expression of  AFP and GPC3.  CONCLUSION: In addition to AFP, GPC3 and ZHX2, ZBTB20  is  a  new  regulator  in  liver  regeneration  and  the  decrease  of  ZBTB20 expression following 70% hepatectomy promotes AFP  and GPC3 expression.  (Hepatobiliary Pancreat Dis Int 2014;13:48-54) KEY WORDS: partial hepatectomy; liver regeneration; ZBTB20; mouse Introduction T he  liver  can  functionally  recover  from  hepatic  injury  such  as  surgery,  trauma,  poisoning,  infection, and so on, which indicates that the liver  possesses  remarkable  regenerative  capabilities.  A  better  understanding  of  the  molecular  mechanisms  in  liver  regeneration helps to find a potential effective therapy for  liver failure. Partial hepatectomy of rodent model has been  extensively  utilized  for  investigating  this  highly  precise  molecular regulation, which has led to the identification of  many factors necessary for liver regeneration. [1] Alpha-fetoprotein  (AFP),  a  major  plasma  protein  produced  by  the  yolk  sac  and  the  liver  during  fetal  development,  is  thought  to  be  the  fetal  form  of  serum  albumin. [2,  3] Glypicans  are  a  small  family  of  glycosylphosphatidylinositol-anchored  heparin  sulfate  proteoglycans, [4] which  is  associated  with  cell  growth,  development  and  responses  to  various  growth  factors.  Among different glypicans, X-linked glypican 3 (GPC3)  has been associated with certain tumors such as breast  and  ovarian  tumors  and  mesotheliomas. [5-7] AFP  and  GPC3  are  expressed  in  fetal  liver  but  not  in  adult  liver,  they  are  reactivated  in  hepatocellular  carcinoma  and  therefore, are the markers of hepatocellular carcinoma. [8] Furthermore, their levels are elevated in the regenerating  liver and they are the markers of liver regeneration. [9-11] The correlation between zinc fingers and homeoboxes  2  (ZHX2)  and  AFP  was  noticed  in  BALB/cJ  mice. [12, 13] Loss  of  the  ZHX2  gene  in  BALB/cJ  mice  leads  to  incomplete  silencing  of  its  target  AFP,  and  the  AFP  mRNA level is about 10-20 times more in BALB/cJ mice  than  that  in  other  strains.  This  suggests  that  ZHX2  negatively  regulates  AFP.  In  addition,  Morford  et  al [14] reported  that  GPC3  was  up-regulated  in  the  liver  of  BALB/cJ  mice  and  this  trend  could  be  reversed  by  transfecting  the  ZHX2  gene  into  BALB/cJ  mice,  which  indicates that ZHX2 could also repress GPC3 expression. ZBTB20 is involved in liver regeneration after partial hepatectomy in mouse Ming-Zhe Weng, Peng-Yuan Zhuang, Zhen-Yu Hei, Pei-Yi Lin, Zhi-Sheng Chen, Ying-Bin Liu, Zhi-Wei Quan and Zhao-Hui Tang Shanghai, China

ZBTB20 is involved in liver regeneration after partial hepatectomy in mouse

Embed Size (px)

Citation preview

Page 1: ZBTB20 is involved in liver regeneration after partial hepatectomy in mouse

Hepatobiliary & Pancreatic Diseases International

48 • Hepatobiliary Pancreat Dis Int,Vol 13,No 1 • February 15,2014 • www.hbpdint.com

Original Article / Liver

Author Affiliations: Department  of  General  Surgery,  Xinhua  Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China (Weng MZ, Zhuang PY, Hei ZY, Lin PY, Chen ZS, Liu YB, Quan ZW and Tang ZH)

Corresponding Author: Zhao-Hui  Tang,  MD,  PhD,  Department  of General Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine,  No.  1665  Kongjiang  Street,  Shanghai  200092,  China  (Tel/Fax: 86-21-25078999; Email: [email protected])

© 2014, Hepatobiliary Pancreat Dis Int. All rights reserved.doi: 10.1016/S1499-3872(14)60006-0

BACKGROUND:  A  better  understanding  of  the  molecular mechanisms  in  liver  regeneration  holds  promise  for  exploring the new potential therapy for liver failure. The present study was to investigate the role of zinc finger and BTB domain-containing protein  20  (ZBTB20),  a  potential  factor  associated  with  liver regeneration, in a model of 70% hepatectomy in mice. 

METHODS:  Parameters for liver proliferation such as liver/body ratio and BrdU positivity were obtained via direct measurement and  immunohistochemistry.  The  levels  of  zinc  fingers  and homeoboxes  2  (ZHX2),  ZBTB20,  alpha-fetoprotein  (AFP)  and glypican  3  (GPC3)  transcripts  in  the  regenerating  liver  tissue  of a  70%  hepatectomy  rodent  model  were  monitored  by  real-time PCR analysis at different time points. Knockdown of ZBTB20 was performed to characterize its regulatory function.

RESULTS:  A negatively regulating relationship between ZHX2, ZBTB20  and  AFP,  GPC3  was  revealed  from  24  to  72  hours after 70% hepatectomy. ZBTB20 appears to negatively regulate AFP and GPC3 transcription since the knockdown of ZBTB20 promoted the proliferation of hepatocytes and the expression of AFP and GPC3. 

CONCLUSION:  In addition to AFP, GPC3 and ZHX2, ZBTB20 is  a  new  regulator  in  liver  regeneration  and  the  decrease  of ZBTB20 expression following 70% hepatectomy promotes AFP and GPC3 expression. 

(Hepatobiliary Pancreat Dis Int 2014;13:48-54)

KEY WORDS:  partial hepatectomy;                                 liver regeneration;                                 ZBTB20;                                 mouse

Introduction

The  liver  can  functionally  recover  from  hepatic injury  such  as  surgery,  trauma,  poisoning, infection, and so on, which indicates that the liver 

possesses  remarkable  regenerative  capabilities.  A  better understanding  of  the  molecular  mechanisms  in  liver regeneration helps to find a potential effective therapy for liver failure. Partial hepatectomy of rodent model has been extensively  utilized  for  investigating  this  highly  precise molecular regulation, which has led to the identification of many factors necessary for liver regeneration.[1]

Alpha-fetoprotein  (AFP),  a  major  plasma  protein produced  by  the  yolk  sac  and  the  liver  during  fetal development,  is  thought  to  be  the  fetal  form  of serum  albumin.[2,  3]  Glypicans  are  a  small  family  of glycosylphosphatidylinositol-anchored  heparin  sulfate proteoglycans,[4]  which  is  associated  with  cell  growth, development  and  responses  to  various  growth  factors. Among different glypicans, X-linked glypican 3 (GPC3) has been associated with certain  tumors  such as breast and  ovarian  tumors  and  mesotheliomas.[5-7]  AFP  and GPC3  are  expressed  in  fetal  liver  but  not  in  adult  liver, they  are  reactivated  in  hepatocellular  carcinoma  and therefore, are the markers of hepatocellular carcinoma.[8] Furthermore, their levels are elevated in the regenerating liver and they are the markers of liver regeneration.[9-11]

The correlation between zinc fingers and homeoboxes 2  (ZHX2)  and  AFP  was  noticed  in  BALB/cJ  mice.[12, 13] Loss  of  the  ZHX2  gene  in  BALB/cJ  mice  leads  to incomplete  silencing  of  its  target  AFP,  and  the  AFP mRNA level is about 10-20 times more in BALB/cJ mice than  that  in  other  strains.  This  suggests  that  ZHX2 negatively  regulates  AFP.  In  addition,  Morford  et  al[14] reported  that  GPC3  was  up-regulated  in  the  liver  of BALB/cJ  mice  and  this  trend  could  be  reversed  by transfecting  the  ZHX2  gene  into  BALB/cJ  mice,  which indicates that ZHX2 could also repress GPC3 expression.

ZBTB20 is involved in liver regeneration after partial hepatectomy in mouseMing-Zhe Weng, Peng-Yuan Zhuang, Zhen-Yu Hei, Pei-Yi Lin, Zhi-Sheng Chen,

Ying-Bin Liu, Zhi-Wei Quan and Zhao-Hui Tang

Shanghai, China

Page 2: ZBTB20 is involved in liver regeneration after partial hepatectomy in mouse

ZBTB20 in liver regeneration

Hepatobiliary Pancreat Dis Int,Vol 13,No 1 • February 15,2014 • www.hbpdint.com • 49

Another  zinc  finger  family  protein−zinc  finger  and BTB domain-containing protein 20 (ZBTB20) was also found  to  be  activated  in  fetal  liver  and  its  expression inversely  correlated  with  AFP  gene  expression.[15] However,  it  is  not  clear  whether  ZBTB20  plays  a  role in  the  regulation  of  AFP  and  GPC3  gene  transcription during liver regeneration. 

The  present  study  was  to  elucidate  some  of  the molecular mechanisms of liver regeneration. We used a partial hepatectomy in mice to observe the relationships between  regeneration-related  genes  (AFP  and  GPC3) and two zinc finger protein genes (ZHX2 and ZBTB20).

MethodsZBTB20 siRNA-expressing adenovirus

Adenoviruses were created with the Ad Easy System from Stratagene  Biotechnology  (La  Jolla,  CA,  USA).  siRNA-expressing  adenovirus  targeting  mouse  ZBTB20  was constructed according to the manufacturer's instructions. Briefly,  one  pair  of  oligonucleotides  targeting  mouse ZBTB20  mRNA  was  synthesized  by  Sangon  Biotech (Shanghai, China). The dsDNA was ligated between the BamHI  and  HindIII  sites  on  the  pShuttle  containing H1  promoter  and  GFP  sequences.  The  control  (mock) vector was constructed by inserting oligonucleotides that include  a  siRNA  with  limited  homology  to  sequences in  the  mouse  genome.  Adenoviral  DNA  was  prepared on  a  large  scale  in  Escherichia coli  DH5α,  generating Ad/ ZBTB20  siRNA  and  Ad/siRNA.  All  adenoviruses were  packaged  in  HEK293  cells  and  purified  using Adeno-X ™  purification  kit  (BD  Biosciences  Clontech, Mountain View, CA, USA). Viral titers were determined using Adeno-X™ rapid titer kit from the same company. 

Cell culture and transfection

Mouse hepatocyte cell line TIB-73 (from the Chinese Academy  of  Sciences,  Shanghai,  China)  was  used.  The cells  were  cultured  in  RPMI  1640  medium  (HyClone Laboratories  Inc.,  Logan,  UT,  USA)  supplemented with  10%  fetal  bovine  serum  (HyClone  Laboratories Inc.,  Logan,  UT,  USA),  100  U/mL  penicillin  and  100 mg/ mL streptomycin, and were incubated in a 5% CO2 

atmosphere  at  37 ℃.  TIB-73  cells  were  infected  with the  Ad/ZBTB20  siRNA  at  50  PFU/cell,  and  TIB-73 cells  infected  with  Ad/siRNA  were  used  as  controls. Adenovirus generation was confirmed by the expression of  GFP.  For  cell  growth  curves,  TIB-73,  TIB-73+Ad/siRNA  and  TIB-73+Ad/ZBTB20  siRNA  were  harvested and  reseeded  at  1×104  cells/well  in  12-well  plates.  The total  cell  number  was  determined  every  day  with  a 

Fig. 1. Mouse liver. A: The anatomy of mouse liver. LLL, LML and RML were resected. B: Liver morphology after major hepatectomy. LLL: left lateral lobe; LML: left middle lobe; RML: right middle lobe; RUL: right upper lobe; RLL: right lower lobe; CL: caudate lobe; GB: gallbladder; PCL: posterior caudate lobe; ACL: anterior caudate lobe.

hematocytometer and by using an inverted microscope (Olympus, Tokyo, Japan). 

Animal husbandry and surgery

C57BL/6J mice (age 6-10 weeks, body weight 20-30 g) were  obtained  from  the  Shanghai  Laboratory  Animal Center  of  the  Chinese  Academy  of  Sciences  (Shanghai, China). The mice were housed in groups of three to five in a vivarium maintained on a 12-hour light/dark cycle with a  temperature of 22±1 ℃  and a  relative humidity of  50±5%.  All  mice  were  divided  into  two  groups: major  hepatectomy  (70%  partial  hepatectomy)  group and  minor  hepatectomy  (5%  partial  hepatectomy) group  (n=35  in  each  group).  Major  hepatectomy  was performed under general anesthesia (4% chloral hydrate at  a  dose  of  8  µL/g,  intraperitoneal  injection)  and  the left  lateral,  left  middle  and  right  middle  lobes  were removed  (Fig.  1).  Minor  hepatectomy  was  performed with  the  resection  of  the  left  middle  lobe  was  resected. The removed liver during the surgery was considered as sample at 0 hour. At each time point (2, 4, 24, 48, 72, 96 and 168 hours) after  surgery, 5 animals were  sacrificed by CO2  inhalation and  liver  tissues were harvested. All procedures  were  carried  out  in  accordance  with  the guidelines of the Ethics Committee of Xinhua Hospital, Shanghai Jiaotong University School of Medicine.

Liver  tissue  collection,  histology  and  immunohisto-chemistry

At  each  time  point  after  the  surgery,  regenerating liver  samples  were  collected  and  liver  weights  were measured.  The  liver/body  weight  ratio  (%)  was calculated to evaluate regeneration. Bromodeoxyuridine (BrdU)  labeling  was  used  to  identify  hepatocytes within  S-phase.  Briefly,  100  mg  BrdU  (Dako  Corp., Carpinteria,  CA,  USA)  per  kg  of  body  weight  was injected intraperitoneally 30 minutes before the animals were euthanized. The parafin-embedded liver tissue was 

Page 3: ZBTB20 is involved in liver regeneration after partial hepatectomy in mouse

Hepatobiliary & Pancreatic Diseases International

50 • Hepatobiliary Pancreat Dis Int,Vol 13,No 1 • February 15,2014 • www.hbpdint.com

cut  into 6-µm sections, deparafinized, and cooked  in a microwave  oven  for  10  minutes  in  Tris-buffered  citric acid  (pH=6)  for  antigen  retrieval.  BrdU  incorporation was detected immunohistologically using a monoclonal anti-BrdU  antibody  (Dako  Corp.,  Carpinteria,  CA, USA)  according  to  the  supplied  protocol.  Hepatocyte proliferation  was  measured  by  calculating  the  mean number  of  hepatocytes  with  positive  BrdU  nuclear staining in eight 100× microscopic fields.

Quantitative real-time PCR

Total  RNA  was  extracted  from  cells  using  Trizol reagent kit (Gibco BRL, Gaithersburg, MD, USA) according to the manufacturer's instructions. After quantification, complementary  DNA  (cDNA)  was  synthesized  from  2 µg  of  total  RNA  using  a  Takara  RNA  PCR  kit  (Takara Bio  Inc.,  Dalian,  China)  according  to  manufacturer's instructions.  The  primers  were  designed  by  Primer Premier Version 5.0 and synthesized by Sangon Biotech (Shanghai,  China)  (Table).  The  PCR  was  performed  as follows:  initial denaturation at 95 ℃  for 5 minutes,  40 cycles  of  20  seconds  at  94 ℃,  20  seconds  at  61 ℃  for primer annealing extension. β-actin was used as control (mock).

Western blotting analysis 

Total  protein  was  extracted  from  the  treated  cells using  RIPA  lysis  buffer  (Beyotime  Biotechnology, Haimen,  China)  supplemented  with  1  mmol/L  phenyl-methanesulfonyl  fluoride.  The  protein  concentration was measured with BCA protein assay system (Beyotime Biotechnology,  Haimen,  China).  Total  proteins  (40-50 µg)  were  separated  by  10%  sodium  dodecyl  sulfate-polyacrylamide  gel  electrophoresis  and  transferred onto  polyvinylidene  fluoride  (PVDF)  membranes. The  blots  were  blocked  with  5%  skim  milk  in  Tris-buffered  saline  containing  0.1%  Tween-20  (TBST)  for 

Table. Primer sequences used for the real-time PCR analysis

Primer Sense (5'-3') Anti-sense(5'-3')

AFP TCT GCT GGC ACG CAA GAA G

TCG GCA GGT TCT GGA AAC TG

GPC3 CGC TTT GCC GGG CTA CAT CTG C

CCG TTC CTT GCC GCC TTC TGG

ZHX2 TGG AAG CGA GGC GGC ACA TCA G

CCG GCT CCA GCT ACC CCA CTT CTC

ZBTB20 AGC AAC ACA CAG GTC ATT GGC

CGG GTT GGG TAG TGA AGA GG

β-actin CGT TGA CAT CCG TAA AGA CC

AAC AGT CCG CCT AGA AGC AC

AFP: alpha-fetoprotein; GPC3: glypican 3; ZHX2: zinc fingers and homeo-boxes 2; ZBTB20: zinc finger and BTB domain-containing protein 20.

2  hours  at  room  temperature,  incubated  with  primary antibodies  against  ZBTB20  (Abcam  Inc.,  Cambridge, UK) (1:500), AFP (Abcam Inc., Cambridge, UK) (1:1000), and  GPC3  (Abcam  Inc.,  Cambridge,  UK)  (1:1000). β-actin  (Zhongshan  Golden  Bridge  Biotech,  Beijing, China)  (1:10  000)  was  used  as  a  loading  control.  The membranes were  incubated with the respective primary antibodies overnight at 4 ℃. They were washed in TBST for  three  times  and  then  incubated  with  horseradish peroxidase-conjugated  anti-rabbit  or  anti-mouse  IgG (Zhongshan  Golden  Bridge  Biotech,  Beijing,  China) (1:10 000) for 1 hour at room temperature. The protein bands  were  detected  using  the  Super  Signal  West  Pico Chemiluminescent  Substrate  (Thermo  Fisher  Scientific Inc., Rockford, IL, USA) and visualized using a VersaDoc Imaging System (Bio-Rad Laboratories Co., Ltd., Hercules, CA, USA). Densitometric analysis was performed using Quantity One Software v4.62 (Bio-Rad Laboratories Co., Ltd., Hercules, CA, USA) and the results were presented as the mean of three independent experiments.

Statistical analysis

Data  were  expressed  as  mean±SD.  SPSS  Software (SPSS,  Chicago,  IL,  USA)  was  used  for  statistical analyses.  Analysis  of  variance  (ANOVA)  was  used  for comparisons. All P values were two-tails and considered to be statistically significant when P<0.05.

ResultsLiver regeneration after partial hepatectomy

The  ratio  of  the  liver  to  body  weight  was  significantly increased  at  the  point  of  48  hours  post  major hepatectomy compared to that at the point of 24 hours. However,  the  ratio  did  not  change  significantly  in  the minor  hepatectomy  group.  Seven  days  after  surgery, there  was  no  significant  difference  in  the  liver/body weight ratio between the two groups, indicating that the recovery of the rodent liver was about one week (Fig. 2). BrdU staining showed that the number of BrdU positive cells was significantly increased in the liver tissue at 24, 72, and 168 hours after hepatectomy compared with that in  the  controls.  BrdU  positive  cells  peaked  at  72  hours after hepatectomy (Fig. 3).

AFP and GPC3 mRNA transcriptions were increased in parallel with liver regeneration

AFP mRNA level exhibited a gradual increase in the major hepatectomy group and reached a significant level after  24  hours  compared  with  the  minor  hepatectomy group. AFP peaked at 72 hours after major hepatectomy 

Page 4: ZBTB20 is involved in liver regeneration after partial hepatectomy in mouse

ZBTB20 in liver regeneration

Hepatobiliary Pancreat Dis Int,Vol 13,No 1 • February 15,2014 • www.hbpdint.com • 51

and then dropped rapidly toward normal value (Fig. 4A). The  trend  of  GPC3  mRNA  expression  was  similar  to that of AFP.  In  the minor hepatectomy group,  the AFP 

Fig. 3. BrdU immunostaining of regenerative liver tissue (original magnification ×100). A:  control; B :  liver  tissue obtained 24 hours after hepatectomy; C:  liver tissue obtained 72 hours after hepatectomy; D: liver tissue obtained 168 hours after hepatectomy; E: the number of BrdU positive hepatocytes of liver tissue from control, 24, 72 and 168 hours after hepatectomy (*: P<0.05). Eight fields of each histological section in liver tissue were photographed.

Fig. 2. Liver/body weight ratios of major and minor hepatectomy groups (*: P<0.05; #: P<0.05, compared with 2 hours after surgery).

Fig. 4. mRNA levels as measured by quantitative PCR (*: P<0.05). A: time-course of AFP mRNA expression; B: time-course of GPC3 mRNA expression; C: time-course of ZHX2 mRNA expression; D: time-course of ZBTB20 mRNA expression. All RNA levels were normalized to β-actin.

and GPC3 mRNA levels did not change significantly at the different time points (Fig. 4A, B).

Page 5: ZBTB20 is involved in liver regeneration after partial hepatectomy in mouse

Hepatobiliary & Pancreatic Diseases International

52 • Hepatobiliary Pancreat Dis Int,Vol 13,No 1 • February 15,2014 • www.hbpdint.com

ZHX2 and ZBTB20 mRNA transcriptions

On  the  contrary,  both  ZHX2  and  ZBTB20  mRNA transcriptions  in  the  major  hepatectomy  group  were decreased  after  partial  hepatectomy  and  reached  a significant  level  in  24  hours  compared  with  the  minor hepatectomy  group  in  which  there  were  no  significant changes  at  each  time  point.  Both  ZHX2  and  ZBTB20 mRNA transcriptions increased back toward normal in 72 hours after major hepatectomy (Fig. 4C, D).

ZBTB20  knockdown  increased  AFP  and  GPC3 expressions and enhanced the proliferation of TIB-73 hepatocytes 

To  verify  that  ZBTB20  was  a  negative  regulator  of AFP and GPC3, we conducted a knockdown experiment with  the  siRNA  technique.  TIB-73  cells  were  stably transfected with ZBTB20 siRNA-expressing adenovirus, which was confirmed by detection of GFP (Fig. 5A). The marked knockdown of ZBTB20 (>85%) at mRNA (Fig. 5B)  and  protein  (Fig.  5C)  levels  were  detected  by  real-time PCR and Western blotting analysis. 

In the cells with confirmed knockdown of ZBTB20, we  observed  a  significant  increase  in  AFP  and  GPC3 (Fig.  5D).  Knockdown  of  ZBTB20  also  promoted the  proliferation  of  TIB-73  cells.  The  cell  number  in the  three  groups  (TIB-73+Ad/ZBTB20  siRNA,  TIB-73+Ad/siRNA,  and  TIB-73)  was  calculated  every  day. The growth rate of cells with confirmed knockdown of ZBTB20 was  significantly higher  than  that of  the other two groups in 24 hours after transfection (Fig. 6).

Fig. 6. Growth curves of mock, Ad/siRNA and Ad/ZBTB20 siRNA treated TIB-73 cells.

Fig. 5. Effect of Ad/ZBTB20 siRNA on ZBTB20 expression in TIB-73 cells. A: TIB-73 cells were infected with Ad/ZBTB20 siRNA at a multiplicity of infection of 50 in which nearly all the cultured TIB-73 cells were GFP-positive under fluorescent microscope; B: ZBTB20 mRNA was quantified by real-time PCR. All RNA levels were normalized to mock group (β-actin); C: ZBTB20 protein was quantified by Western blotting; D: The AFP and GPC3 levels in TIB-73 cells after infection were quantified by Western blotting. 

DiscussionTo  our  knowledge,  this  is  the  first  study  to  investigate the  association  of  ZBTB20  and  liver  regeneration.  We found  that  ZBTB20  significantly  repressed  AFP  and GPC3 expressions as well as liver regeneration. ZBTB20 knockdown  significantly  increased  AFP  and  GPC3 expressions and enhanced hepatocytes proliferation.

Liver  regeneration  is  a  fundamental  response  to hepatic  damage  and  has  been  extensively  studied  since the  two-thirds  partial  hepatectomy  model  in  rodents was  described.[1]  The  advantage  of  this  animal  model over administration with carbon tetrachloride (CCl4) is that in partial hepatectomy, all hepatocytes are exposed to  the same stimuli  resulting  in  less heterogeneity. The liver regeneration generally reached completeness within one  week  in  this  study,  which  is  consistent  with  what 

Page 6: ZBTB20 is involved in liver regeneration after partial hepatectomy in mouse

ZBTB20 in liver regeneration

Hepatobiliary Pancreat Dis Int,Vol 13,No 1 • February 15,2014 • www.hbpdint.com • 53

was reported in the literature.[1]

Several  factors  have  been  identified  to  be  necessary for quiescent mature hepatocytes  to rapidly reenter  the cell  cycle  and  proliferate  to  restore  the  original  liver mass.  AFP  was  reported  at  a  high  level  in  the  visceral endoderm  of  the  yolk  sac  and  fetal  liver,  but  rapidly repressed after birth and remained at an extremely low level in normal liver tissue.[2, 3] However, this repression is reversible as the AFP gene can be re-activated during liver  regeneration  and  hepatocellular  carcinoma.  Thus, it  has  been  proposed  that  AFP  transcription  level  is correlated to the proliferation of hepatocytes.[16]

GPC3 was discovered as a potential  serological and histochemical  marker  for  hepatocellular  carcinoma.[17] Because  the  expression  of  the  GPC3  gene  is  active  in fetal  liver  and  hepatocellular  carcinoma  but  silent  in normal adult liver, it seems reasonable that it shared the same  pattern  of  regulation  with  AFP.[18]  In  accordance with other's findings,[10, 11] we found that AFP and GPC3 mRNA levels began to significantly increase in 24 hours after  major  hepatectomy  and  peaked  at  72  hours,  then dropped dramatically from 72 to 168 hours.

On  the  contrary,  we  observed  that  ZHX2  level  was significantly  declined  at  24  and  48  hours  in  the  major hepatectomy group whereas the levels of AFP and GPC3 elevated  significantly.  At  48  hours  after  operation,  the expression of ZHX2,  similar  to  that of AFP and GPC3, returned  to  the  normal  level.  Our  findings  suggested that  liver regeneration  induced the repression of ZHX2 and inversely promoted the expression of AFP and GPC3 (24 to 72 hours post-hepatectomy), which was consistent with  previous  studies  and  confirmed  that  ZHX2  is  an important repressor of AFP in postnatal mouse liver.[12, 13]

ZBTB20 was  initially described as one of a  series of genes expressed in human dendritic cells.[19] The proteins belong  to  the ZBTB  family contain an N-terminal BTB (Broad  complex,  tramtrack,  bric-a-brac)  domain  and multiple C-terminal Kruppel-like C2H2 zinc fingers which often  act  as  transcriptional  repressors.[20]  Wang  et  al[21] have  reported  that  ZBTB20  increased  in  hepatocellular carcinoma and was inversely related to AFP expression in tumor tissue, which was in keeping with our findings. 

The  changes  in  mRNA  expression  observed  after partial  hepatectomy  prompted  us  to  speculate  that ZBTB20  was  another  negative  regulator  of  AFP  and GPC3  genes  in  addition  to  ZHX2.  To  verify  this, siRNA  targeting  ZBTB20  mRNA  was  constructed  and introduced into TIB-73 cells by adenovirus. Knockdown of  ZBTB20  in  TIB-73  cells  led  to  significantly  higher expression of AFP and GPC3 and higher cell growth rate (24 hours after transfection). 

There  was  still  some  deficiency  in  this  work.  AFP 

activation  in C57BL/6J mice  is  lower  than  that  in other mouse strains due to a genetically unlinked transacting locus, Afr2 (alpha-fetoprotein regulator 2),[22] thus we are going to investigate the other mouse strains. What's more, the mechanism of how hepatectomy starts repression of zinc finger protein genes is still worth exploring.

In summary, there were inverse correlations between ZHX2, ZBTB20 and AFP, GPC3 at 24 to 72 hours after major  hepatectomy  in  our  rodent  model.  We  found that  in  liver  regeneration  after  70%  hepatectomy,  the decrease  of  ZBTB20  expression  would  consequently promote  the  expression  of  AFP  and  GPC3  as  well  as hepatocytes proliferation.

Contributors: TZH proposed the study. WMZ and TZH performed research and wrote the first draft. WMZ collected and analyzed the data. All authors contributed to the design and interpretation of the study and to further drafts. TZH is the guarantor.Funding: This study was supported by a grant from the Shanghai Municipal  Commission  of  Education  Scientific  Research  and Innovation Project (11zz107).Ethical approval: This study was approved by Ethics Committee of Xinhua Hospital, Shanghai Jiaotong University School of Medicine.Competing  interest:  No  benefits  in  any  form  have  been  received or  will  be  received  from  a  commercial  party  related  directly  or indirectly to the subject of this article.

References1  Michalopoulos  GK.  Liver  regeneration.  J  Cell  Physiol  2007; 

213:286-300.2  Terentiev  AA,  Moldogazieva  NT.  Alpha-fetoprotein:  a 

renaissance. Tumour Biol 2013;34:2075-2091.3  Bi Y, He Y, Huang  JY, Xu L, Tang N, He TC, et  al.  Induced 

maturation  of  hepatic  progenitor  cells  in  vitro.  Braz  J  Med Biol Res 2013;46:559-566.

4  Yang D, Yang J, Lu F, Li C, Yang J, Liang J. A new membrane re-anchored  protein  originating  from  GPC3  against hepatoma cells HepG2. Mol Med Rep 2011;4:1067-1073.

5  Buchanan  C,  Stigliano  I,  Garay-Malpartida  HM,  Rodrigues Gomes L, Puricelli L, Sogayar MC, et al. Glypican-3 reexpression regulates  apoptosis  in  murine  adenocarcinoma  mammary cells modulating PI3K/Akt and p38MAPK signaling pathways. Breast Cancer Res Treat 2010;119:559-574.

6  Suzuki  S,  Yoshikawa  T,  Hirosawa  T,  Shibata  K,  Kikkawa F, Akatsuka Y,  et  al. Glypican-3 could be an effective  target for  immunotherapy  combined  with  chemotherapy  against ovarian clear cell carcinoma. Cancer Sci 2011;102:1622-1629.

7  Anchala PR, Dhir R, Parwani AV, Zynger DL. Immunohisto-chemical  profile  of  paratesticular  serous  papillary  adeno-carcinoma  and  tunica  vaginalis  facilitates  distinction  from malignant mesothelioma. Int J Surg Pathol 2011;19:692-698.

8  Yao  M,  Yao  DF,  Bian  YZ,  Wu  W,  Yan  XD,  Yu  DD,  et  al. Values  of  circulating  GPC-3  mRNA  and  alpha-fetoprotein in  detecting  patients  with  hepatocellular  carcinoma. Hepatobiliary Pancreat Dis Int 2013;12:171-179.

9  Mneimneh W, Farges O, Bedossa P, Belghiti J, Paradis V. High 

Page 7: ZBTB20 is involved in liver regeneration after partial hepatectomy in mouse

Hepatobiliary & Pancreatic Diseases International

54 • Hepatobiliary Pancreat Dis Int,Vol 13,No 1 • February 15,2014 • www.hbpdint.com

serum level of alpha-fetoprotein in focal nodular hyperplasia of the liver. Pathol Int 2011;61:491-494.

10  Meier  V,  Tron  K,  Batusic  D,  Elmaouhoub  A,  Ramadori  G. Expression  of  AFP  and  Rev-Erb  A/Rev-Erb  B  and  N-CoR in  fetal  rat  liver,  liver  injury  and  liver  regeneration.  Comp Hepatol 2006;5:2.

11  Liu B, Paranjpe S, Bowen WC, Bell AW, Luo JH, Yu YP, et al. Investigation  of  the  role  of  glypican  3  in  liver  regeneration and hepatocyte proliferation. Am J Pathol 2009;175:717-724.

12  Belayew  A,  Tilghman  SM.  Genetic  analysis  of  alpha-fetoprotein synthesis in mice. Mol Cell Biol 1982;2:1427-1435.

13  Perincheri S, Dingle RW, Peterson ML, Spear BT. Hereditary persistence  of  alpha-fetoprotein  and H19 expression  in  liver of BALB/cJ mice is due to a retrovirus insertion in the Zhx2 gene. Proc Natl Acad Sci U S A 2005;102:396-401.

14  Morford  LA,  Davis  C,  Jin  L,  Dobierzewska  A,  Peterson ML,  Spear  BT.  The  oncofetal  gene  glypican  3  is  regulated in the postnatal  liver by zinc fingers and homeoboxes 2 and in  the  regenerating  liver  by  alpha-fetoprotein  regulator  2. Hepatology 2007;46:1541-1547.

15  Xie Z, Zhang H, Tsai W, Zhang Y, Du Y, Zhong J, et al. Zinc finger protein ZBTB20 is a key repressor of alpha-fetoprotein gene  transcription  in  liver.  Proc  Natl  Acad  Sci  U  S  A  2008; 105:10859-10864.

16  Assimakopoulos  SF,  Tsamandas  AC,  Alexandris  IH, Georgiou  C,  Vagianos  CE,  Scopa  CD.  Stimulation  of  oval cell  and  hepatocyte  proliferation  by  exogenous  bombesin and  neurotensin  in  partially  hepatectomized  rats.  World  J 

Gastrointest Pathophysiol 2011;2:146-154.17  Yao  M,  Yao  DF,  Bian  YZ,  Zhang  CG,  Qiu  LW,  Wu  W,  et  al. 

Oncofetal antigen glypican-3 as a promising early diagnostic marker for hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2011;10:289-294.

18  Hippo  Y,  Watanabe  K,  Watanabe  A,  Midorikawa  Y, Yamamoto  S,  Ihara  S,  et  al.  Identification  of  soluble  NH2-terminal  fragment  of  glypican-3  as  a  serological  marker  for early-stage  hepatocellular  carcinoma.  Cancer  Res  2004;64: 2418-2423.

19  Zhang  W,  Mi  J,  Li  N,  Sui  L,  Wan  T,  Zhang  J,  et  al. Identification and characterization of DPZF, a novel human BTB/POZ  zinc  finger  protein  sharing  homology  to  BCL-6. Biochem Biophys Res Commun 2001;282:1067-1073.

20  Peterson  ML,  Ma  C,  Spear  BT.  Zhx2  and  Zbtb20:  novel regulators of postnatal alpha-fetoprotein repression and their potential role in gene reactivation during liver cancer. Semin Cancer Biol 2011;21:21-27.

21  Wang  Q,  Tan  YX,  Ren  YB,  Dong  LW,  Xie  ZF,  Tang  L,  et al.  Zinc  finger  protein  ZBTB20  expression  is  increased  in hepatocellular carcinoma and associated with poor prognosis. BMC Cancer 2011;11:271.

22  Jin  DK,  Feuerman  MH.  Genetic  mapping  of  Afr2  (Rif): regulator  of  gene  expression  in  liver  regeneration.  Mamm Genome 1998;9:256-258.

Received August 30, 2013Accepted after revision November 17, 2013