Transcript
  • 8

    参考文献[1] K. Abe, et al. [T2K Collaboration], Phys. Rev.

    Lett. 121, 171802 (2018).

    [2] K. Abe et al. [T2K Collaboration], Phys. Rev. D

    98, 012004 (2018).

    [3] N. Abgrall et al. [NA61/SHINE Collaboration],

    Phys. Rev. C 84, 034604 (2011).

    [4] N. Abgrall et al. [NA61/SHINE Collaboration],

    Phys. Rev. C 85, 035210 (2012).

    [5] N. Abgrall et al. [NA61/SHINE Collaboration],

    Phys. Rev. C 89, no. 2, 025205 (2014).

    [6] N. Abgrall et al. [NA61/SHINE Collaboration],

    Eur. Phys. J. C 76, no. 2, 84 (2016).

    [7] N. Abgrall et al. [NA61/SHINE Collaboration],

    Nucl. Instrum. Meth. A 701, 99 (2013).

    [8] N. Abgrall et al. [NA61/SHINE Collaboration],

    Eur. Phys. J. C 76, no. 11, 617 (2016).

    [9] N. Abgrall et al. [NA61/SHINE Collaboration],

    Eur. Phys. J. C 79, no. 2, 100 (2019).

    [10] A. Aduszkiewicz et al. [NA61/SHINE Collabora-

    tion], Phys. Rev. D 98, no. 5, 052001 (2018).

    [11] NA61/SHINE Beyond 2020 Workshop.

    https://indico.cern.ch/event/629968

    [12] A. Aduszkiewicz et al. [NA61/SHINE

    Collaboration], CERN-SPSC-2018-008.

    https://cds.cern.ch/record/2309890

    [13] J. Evans, D. G. Gamez, S. D. Porzio, S. Söldner-

    Rembold and S. Wren Phys. Rev. D 95, no. 2,

    023012 (2017).

    [14] G. Barr, NA61 beyond 2020 workshop,

    https://indico.cern.ch/event/629968/contributions/2659929

    1

    [email protected]

    [email protected]

    Roger Wendell

    [email protected]

    [email protected]

    2019 ( 31 ) 2 8

    1

    1998

    3

    3 θ12, θ23, θ13

    2 Δm221,Δm232 CP 1 δCP

    6

    θ23 |Δm232|m2 m3

    m3 > m2 m3 < m2

    1970

    SNO

    2002

    θ12 Δm221 Δm

    221

    θ13

    J-PARC

    295 km

    T2K θ13

    2011 1

    T2K 2013

    CP

    11

    2017

    183

  • 2

    ニュートリノ

    陽子の崩壊

    超新星爆発 太陽大気J-PARC大強度加速器による高品質ニュートリノビーム

    ハイパーカミオカンデ装置スーパーカミオカンデの約10倍の有効質量と2倍の光感度

    水槽(超純水)直径74m × 高さ60m

    写真提供:JAEA/KEK J-PARCセンター

    新型光センサー(従来の2倍の感度)4万本

    総質量 26万トン有効質量 19万トン

    1:

    1

    p → e+ + π0 201.6 × 1034

    2

    Hyper-Kamiokande

    Super-Kamiokande

    J-PARC

    CP

    J-PARC

    CP

    1

    8 km 650 m

    60 m × 74 m26

    10 19

    50 cm 4

    2

    2

    7.8 cm 19

    Multi-PMT

    15

    300

    2015 1

    2020

    3

    3.1

    CP1 CP

    CP

    1T2K 2σ CP[1]

    184

  • 2

    ニュートリノ

    陽子の崩壊

    超新星爆発 太陽大気J-PARC大強度加速器による高品質ニュートリノビーム

    ハイパーカミオカンデ装置スーパーカミオカンデの約10倍の有効質量と2倍の光感度

    水槽(超純水)直径74m × 高さ60m

    写真提供:JAEA/KEK J-PARCセンター

    新型光センサー(従来の2倍の感度)4万本

    総質量 26万トン有効質量 19万トン

    1:

    1

    p → e+ + π0 201.6 × 1034

    2

    Hyper-Kamiokande

    Super-Kamiokande

    J-PARC

    CP

    J-PARC

    CP

    1

    8 km 650 m

    60 m × 74 m26

    10 19

    50 cm 4

    2

    2

    7.8 cm 19

    Multi-PMT

    15

    300

    2015 1

    2020

    3

    3.1

    CP1 CP

    CP

    1T2K 2σ CP[1]

    3

    CP

    [2] 2

    δCP

    π+ → νμ+μ+π− → νμ+μ−

    J-PARC 295 km

    νμ → νeCP

    2 δCP

    2018 500 kW J-PARC Main

    Ring 1.3MW

    T2K 280m

    ND280

    ND280

    ND280

    1 km 1,000

    2

    2: νμ ν̄μ

    νe ν̄e

    δCP sin2 2θ13 = 0.1

    δCP δCP = 0

    10

    3: δCP sin δCP 0 CP

    Multi-PMT

    3 10 sin δCP 0

    CP

    δCP 5σ δCP

    57% T2K −90◦10 δCP

    7◦ 23◦ CP

    185

  • 4

    3.2

    K

    100 MeV 1 TeV

    10 km 10,000 km

    νμ → ντ

    3

    MSW

    νμ ↔ νe

    DUNE

    1300 km

    2-

    10 GeV

    4

    5

    4:

    νμ → νe ν̄μ → ν̄ecos θ < 0 2-

    10 GeV

    θ23

    10 3.8σ

    θ23

    45◦ ν2 ν3θ23 45

    θ23

    θ23

    θ23 45◦

    θ23

    186

  • 4

    3.2

    K

    100 MeV 1 TeV

    10 km 10,000 km

    νμ → ντ

    3

    MSW

    νμ ↔ νe

    DUNE

    1300 km

    2-

    10 GeV

    4

    5

    4:

    νμ → νe ν̄μ → ν̄ecos θ < 0 2-

    10 GeV

    θ23

    10 3.8σ

    θ23

    45◦ ν2 ν3θ23 45

    θ23

    θ23

    θ23 45◦

    θ23

    5

    5:

    θ23

    3 sin2 θ23 = 0.4 0.5 0.6

    νμ → ντ

    3.3

    (4p →He+2e++2νe)

    6 1990

    SNO

    CPT

    θ12 Δm221 7 θ12

    Δm221 2σ

    MSW

    Δm221

    6:

    [3] pp

    CNO

    4%

    MSW

    [5] MaVaN [6] [7]3He+ p → 4He+ e+ + νe

    hep

    3.4

    187

  • 6

    7: (θ12, Δm221)

    [4] KamLAND

    1987 2 23 IMB Baksan

    SN1987A

    24

    30

    2 3

    SASI Standing Accersion Shock

    Instability [9]

    ( 8) 1

    SASI

    5 7

    SASI

    1◦ ∼ 1.3◦1

    ����

    �����������������������������������������

    ��

    ������

    ����������������

    ����������

    ��������������������������

    ��

    ��

    ����

    ������

    ���������������

    ����������

    ����������������

    ��

    1.

    3.

    5.

    2.

    4.

    6.

    8: [8]

    ( )

    ( )

    ( )

    ( ) ( )

    ( )

    ( )

    2018 6 2019 1

    SK-Gd

    SK-Gd 10 4σ

    188

  • 6

    7: (θ12, Δm221)

    [4] KamLAND

    1987 2 23 IMB Baksan

    SN1987A

    24

    30

    2 3

    SASI Standing Accersion Shock

    Instability [9]

    ( 8) 1

    SASI

    5 7

    SASI

    1◦ ∼ 1.3◦1

    ����

    �����������������������������������������

    ��

    ������

    ����������������

    ����������

    ��������������������������

    ��

    ��

    ����

    ������

    ���������������

    ����������

    ����������������

    ��

    1.

    3.

    5.

    2.

    4.

    6.

    8: [8]

    ( )

    ( )

    ( )

    ( ) ( )

    ( )

    ( )

    2018 6 2019 1

    SK-Gd

    SK-Gd 10 4σ

    7

    4

    CP

    1016 GeV

    SU(5) SO(10)

    τp ∼ 1035

    1035

    1035

    6× 1034 (5× 1034

    p → e+ + π0 π0

    9 10

    p → e++π0 τp < 6×103410 3σ

    p → ν̄ +K+

    9: 10

    1.7× 1034100MeV/c

    100 ∼ 250MeV/c

    K+

    K+ → μ+ + νμ64% K+ → π+ + π0 21%

    K+

    p → e+ + π0

    40% 6MeV

    K+ τ ∼ 12 ns

    2

    p → ν̄ + K+τp < 2 × 1034 10 3σ

    189

  • 8

    5

    1996

    20

    K2K T2K

    300 km

    T2K

    2020

    [10]

    [1] K. Abe et al. (T2K Collaboration), Phys. Rev.

    Lett. 121, 171802 (2018).

    [2] M. Fukugita and T. Yanagida, Phys. Lett. B174,

    45 (1986).

    [3] A. M. Serenelli, W. C. Haxton, C. Pena-Garay,

    ApJ. 743, 24 (2011).

    [4] Y. Koshio, AIP Conf. Proc. 1666, 090001 (2015).

    [5] A. Friedland, C. Lunardini, C. Pena-Garay,

    Phys. Lett. B 594, 347 (2004).

    [6] M. Barger, P. Huber, D. Marfatia, Phys. Rev.

    Lett. 95, 211802 (2005).

    [7] P. C. de Holanda and A. Yu. Smirnov, Phys. Rev.

    D 69, 113002 (2004).

    [8] H. T. Janka, K. Langanke, A. Marek,

    G. Martinez-Pinedo and B. Mueller, Phys. Rept.

    442, 38 (2007).

    [9] I. Tamborra, F. Hanke, B. Müller, H. T. Janka

    and G. Raffelt, Phys. Rev. Lett. 111, no. 12,

    121104 (2013).

    [10] ”Hyper-Kamiokande Design Report”, K. Abe

    et al. (Hyper-Kamiokande Proto-Collaboration),

    https://arxiv.org/abs/1805.04163 (2018).

    190


Recommended