Download pdf - Assignment 2 (1)

Transcript
Page 1: Assignment 2 (1)

DEPARTMENT OF MATHEMATICS

College of Engineering Studies

University of Petroleum & Energy Studies, Dehradun, Uttarakhand

Programe: B.Tech. (All Branches)

Subject: Mathematics II Subject Code: MATH 102

Assignment: II Semester: II

Topic: Vector Calculus

---------------------------------------------------------------------------------------------------------------------

Q1. Show that the vector field defined by the vector function ๏ฟฝโƒ—๏ฟฝ = ๐‘ฅ๐‘ฆ๐‘ง(๐‘ฆ๐‘ง๐‘–ฬ‚ + ๐‘ฅ๐‘ง๐‘—ฬ‚ + ๐‘ฅ๐‘ฆ๏ฟฝฬ‚๏ฟฝ) is

conservative. Hence find the scalar potential.

Q2. (a) In what direction from the point (1, 1, โˆ’1) is the directional derivative of

๐‘“ = ๐‘ฅ2 โˆ’ 2๐‘ฆ2 + 4๐‘ง2 a maximum? Also find the value of this maximum directional derivative.

(b) What is the greatest rate of increase of the temperature ๐‘‡(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐‘ฅ๐‘ฆ๐‘ง2 at the point

(1, 0, 3).

Q3. Prove that โˆ‡. {๐‘Ÿโˆ‡ (1

๐‘Ÿ3)} =

3

๐‘Ÿ4. . Further, write the physical meaning of Gradient, Divergence

and Curl.

Q4. Find the angle between the surfaces ๐‘ฅ log ๐‘ง = ๐‘ฆ2 โˆ’ 1 and ๐‘ฅ2๐‘ฆ = 2 โˆ’ ๐‘ง at the point (1, 1, 1).

Q5. (a)Show that โˆซ (๐‘ฆ๐‘ง โˆ’ 1)๐‘‘๐‘ฅ๐‘

+ (๐‘ง + ๐‘ฅ๐‘ง + ๐‘ง2)๐‘‘๐‘ฆ + (๐‘ฆ + ๐‘ฅ๐‘ฆ + 2๐‘ฆ๐‘ง)๐‘‘๐‘ง is independent of

path of integration from (1, 2, 2) to (2, 3, 4). Evaluate the integral.

(b) Evaluate โˆซ ๐‘ฅ๐‘ฆ3๐‘‘๐‘ ๐‘

, where ๐ถ is the segment of the line ๐‘ฆ = 2๐‘ฅ in the ๐‘ฅ๐‘ฆ plane from

(โˆ’1,โˆ’2) to (1, 2) and ๐‘  is the arc length.

Page 2: Assignment 2 (1)

Q6. If ๐น = ๐‘ฆ๐‘–ฬ‚ โˆ’ ๐‘ฅ๐‘—ฬ‚ evaluate โˆซ ๐น . ๐‘‘๐‘Ÿ ๐ถ

from (0, 0) to (1, 1) along the following paths:

(a) The parabola ๐‘ฆ = ๐‘ฅ2

(b) The straight lines from (0, 0) to (1, 0) and then to (1, 1).

(c) The straight line joining (0, 0) and (1, 1)

Q7. Evaluate โˆซ ๐ด . ๏ฟฝฬ‚๏ฟฝ ๐‘‘๐‘†๐‘†

where ๐ด = ๐‘ฆ๐‘ง ๐‘–ฬ‚ + ๐‘ง๐‘ฅ๐‘—ฬ‚ + ๐‘ฅ๐‘ฆ๏ฟฝฬ‚๏ฟฝ and ๐‘† is the part of the sphere

๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2 = 9 which lies in the first octant.

Q8. Verify divergence theorem for ๐น = (๐‘ฅ2 โˆ’ ๐‘ฆ๐‘ง)๐‘–ฬ‚ + (๐‘ฆ2 โˆ’ ๐‘ง๐‘ฅ)๐‘—ฬ‚ + (๐‘ง2 โˆ’ ๐‘ฅ๐‘ฆ)๏ฟฝฬ‚๏ฟฝ taken over the

rectangular parallelepiped.

Q9. Verify Greenโ€™s Theorem in the plane for the integral

โˆฎ (3๐‘ฅ2 โˆ’ 8๐‘ฆ2)๐‘‘๐‘ฅ + 4(4๐‘ฆ โˆ’ 6๐‘ฅ๐‘ฆ)๐‘‘๐‘ฆ๐ถ

where ๐ถ is the boundary of the region bounded by ๐‘ฆ = โˆš๐‘ฅ and ๐‘ฆ = ๐‘ฅ2.

Q10. Evaluate by Greenโ€™s Theorem

โˆฎ (cos ๐‘ฅ sin ๐‘ฆ โˆ’ ๐‘ฅ๐‘ฆ)๐‘‘๐‘ฅ + (sin ๐‘ฅ cos ๐‘ฆ)๐‘‘๐‘ฆ๐ถ

where C is the circle ๐‘ฅ2 + ๐‘ฆ2 = 1.

Q11. Introducing ๐ด = ๐‘๐‘–ฬ‚ โˆ’ ๐‘€๐‘—ฬ‚, show that the formula in Greenโ€™s theorem may be written as

โˆฌ div๐ด ๐‘…

๐‘‘๐‘ฅ๐‘‘๐‘ฆ = โˆฎ ๐ด . ๏ฟฝฬ‚๏ฟฝ๐‘‘๐‘ ๐ถ

where ๏ฟฝฬ‚๏ฟฝ is the outward normal vector to C and ๐‘  is the arc length.