Transcript

Dr. SchelenzFolie 1

13. Fachkongress Zukunftsenergien, 10.Feb. 2009, Essen

Simulation der dynamischen Beanspruchungen des p gAntriebsstranges von WEAUniv.-Prof. Dr.-Ing. G. Jacobs,Dr.-Ing. R. Schelenz,Dipl.-Ing. D. Möller

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 2

Team IME

Staff:Institute head: professor & 2 chief engineers19 scientific assistants20 employees secretary, measurement,

computer lab, mechanical workshop,50 salaried students

Payment:60 % government40 % i tifi & i d t i l j t40 % scientific & industrial projectstotal turnover: 4 Mio. Euro per year

1870: root of IME are founded1870: root of IME are founded1966: Prof. Heinz Peeken1992: Prof. P. W. Gold2004: formation of the commercial company2004: formation of the commercial company

TriboDrive GmbH2008: Prof. G. Jacobs

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 3Interacting systems on a wind turbine

Aerodynamicalsystem

Mechanical system (focus on drivetrain)

Electricalsystem

InteractionInteraction

Wind Turbine Controller: DLL-Modul

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 4

Powertrain simulation of wind turbines

Requirements and used tools:3-dimensional vibration behavior of all drive train components

Elastic characteristics of certain parts

Multi-Body-System simulation software (SIMPACK)

Elastic characteristics of certain parts

FE-models with Eigenmodes and –frequencies are required (modal reduced models) (ABAQUS or SIMBEAM)

Interaction of mechanical and aerodynamical system

Specialized module for realistic wind load consideration

Interaction of mechanical and electrical system fundamental wave

Specialized module for realistic wind load consideration(IME-Module/SIMPACK)

Interaction of mechanical and electrical system

Specialized modules for asynchronous generators(DRESP/MATLAB/SIMPACK)

realistic distribution

3rd harmonic wave

5th harmonic wave

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 5

DRESP – Torsional Vibration Analysis

Simulation tool developed by the IME and

DREhschwingungsSimulationsProgramm (DRESP):p y

supported by the ForschungsVereinigung Antriebstechnik e.V. (FVA) for over 30 years

gears (tolerance,

Machine-elements :

Simulation program is focused on the rotational degree of freedom, consistingof modules for elements, loads and joints

Aggregates and Excitationfunctions:

combustiong (period. stiffness)

hydrodyn. transfer functions

Modules are focused on drive systemsand components (validated coupling and force modules)

engine

electrical functions

dynamical behavior of elastomers

High number of validated excitation modules (e.g. module to represent the electrical and mechanical behavior of an asynchronous machine)

machines

controlstructures

elastomers

wheel/track-and tire/road-contact

behavior of an asynchronous machine)

Reduction of the remaining degrees of freedom, but alsomulti body elements via DYLA available

general excitation functions

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

multi body elements via DYLA available

Dr. SchelenzFolie 6DRESP – Calculation options

Frequency Domain

Model structure

Eigenfrequency and Eigenmode

Physical spring-mass model+

Linear model parameter( t f i ti t i l

Domain

(moment of inertia, torsional stiffness, …)

Transferfunctions and Frequency Response

Non-linear model parameter(backlash, gear ratio, ... )

Frequency Response

Excitations (Combustionengine, electrical

Machines, …)

Time Response and Loads

Initial conditions Time Domain

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 7

DRESP – Modeling of electric machinery

Type of electric machinery:• Direct-current motor

• Synchronous motor

• Asynchronous motory

Type of operation:• Motor operation• Motor operation• Generative operation

T f lType of power supply:• Supply by network

• Supply by inverter

Controlled drives

• Supply by inverter

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 8DRESP – Generator Models

MeasurementMeasurement Extended modelExtended model Standard modelStandard model

Equivalent circuit diagram by Arnold

Induction machine model based onMeasurementMeasurement Extended modelExtended model Standard modelStandard model

dom

ain

dom

ain

Equivalent circuit diagram by Arnold

Extended space vector model

Tim

e Ti

me

FFT

FFT

torque in the air gapfundamental wave realistic distribution

3rd harmonic wave

5th harmonic wave

Tload

rotor orientationand rotor speed

electromagnetic system mechanical system

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

electromagnetic system mechanical system

Dr. SchelenzFolie 9

DRESP/SIMPACK – MATLAB/Simulink – Co-Simulation

Mechanical drive train of the wind turbine in SIMPACK or DRESP

Doubly fed induction machinemodel in Simulink

1s

Integrator

R1

Gain

Generator speed ω, twist angle φDRESP

3n

2M

-K-p*(2*pi)/60

T32*Tno* u

T32

Product5

Product4

Product1

Product1s

Integrator4

1s

p

Gain5

emu -K-

1/J/(2*pi)*60

2u1

1Mw

5alpha_mu

4psi2

1i1

K*u

T23

psid1

psiq1

psid2

psiq2

id1

id2

iq1

iq2

Subsystem

1

Integrator1

R2

Gain2

R1

Gain1

Cartesian toPolar

or

SIMPACKInteraction byCo-Simulation

Product3

Product2

s

Integrator2

0

Constant1s

Integrator3

R2

Gain3

Constant

Generator torque MG

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 10DRESP model of a full wind turbine (focus on gear box)

Example from an industrial project:Example from an industrial project:

Rotor incl. control structure1 oto c co t o st uctu e1

4 Spur gear with 2 gear stages3 Planetary gear 2 Rotor shaft and rotor hub

4 Spur gear with 2 gear stages

6 Mass of generator incl. control structure for different load cases

5 Coupling and brake disk with controlstructure for braking torque

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 11SIMPACK model of a full wind turbine (focus on gear box)

Rotor and (flexible) rotor shaft

SIMPACK model:

Planetary gearSpur wheel sectionElastic coupling and brake diskElastic coupling and brake diskGenerator (flexible) Machine support

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 12Modular structure of the model

MBS with SIMPACKe.g. FLEX5

MBS model of structural elements, bearing, gearbox support, etc.

elastic rotor model with

aerodynamics

reduced gear box

model

electricsystemloads

basic modelto start with

pp ,

main bearingrotorbladesexchangeable brake elasticmain bearing and base

plate

gear box and drive train

tower and

rotorblades and

aerodynamics

exchangeableand extendable

substructuremodels

brake, elastic coupling, generator

tower and other

structural elements

gear box housing and

support

models

modular system structure!

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 13Aerodynamical rotor load module in DRESP + SIMPACK

Measured time response of wind speedGenerated 3D wind field

Measured time response of wind speed

IME t d l SIMPACK

Rotor module

IME rotor module(aerodynamics andelastic rotorblades)

SIMPACK(MBS of drivetraincomponents and

loads,motion,

etc

Simulated time response of rotor

within SIMPACK bearings)

Closed System: direct interaction,main effects are taken into t f t lt f t d l b

etc.

Time response of rotor loads p

speed and elastic behavior account, fast, results of rotor module can be validated in advance with simple model bymeasurements and/or BHawC results

Advantages:bidirectional communication loads and drive train behavior are directly interactingcontroller logic of wind turbine (power, pitch, azimuth, etc.) can be use via embedded DLL(dynamic linked library generated by FLEX or BLADED)

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

( y y g y )

Dr. SchelenzFolie 14Aerodynamic Rotor Load Function (IME-Module)

based onbased onBlade Element Momentum-Theory (stationary)• Local flow

G f• Global flow

• Atmospheric boundary layerExtended models considering further (dynamic) effects• Atmospheric boundary layer

• Dynamic stall (influence on Clift/Cdrag) (G t M d l)

• Tower effects

(Gormont-Model)• Dynamic Inflow (influence on impuls)

(TUDk-Model)• Yaw (TUDk), Tipp Loss, etc.

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 15Aerodynamic effects on Drive Train

Aerodynamic Rotor excitation

6

6.5x 105

m]

Aerodynamic Rotor excitation

25%

5

5.5

Torq

ue [N

m 25%

7x 10 Rotor shaft5

0 10 204.5

time [s]9000

Generator shaft

6

6.5

ue [N

m]

8000

8500

ue [N

m]

+12%

4.5

5

5.5

Torq

u

6500

7000

7500

Torq

u

-12%

0 10 204.5

time [s]0 10 20

6500

time [s]

Effects on drive train dynamics are not negligible and have to be considered

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 16Validation of Aerodynamic rotor torque in DRESP

Validation of simulation results with measurements at normal production with avarage windspeed of 10m/s in DRESP (torsional model)

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 17Validation of Aerodynamic Rotorload Results in SIMPACK

example results for run up simulation with SIMPACK with simple modelexample results for run-up simulation with SIMPACK with simple model(without gearbox and generator, 1D-Windfield: v_wind=f(t))

d f t h bwindspeed at anemometer speed of rotor hubwindspeed at anemometer

dmeasuredsimulated

load at rotor hub torque on rotor shafttorque on rotor shaft

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 18Elastic Rotorblades in SIMPACK

SIMPACK model with flexible blades:elasticity in edge and flap direction modeled with SIMBEAM or Abaqusreduced FE-model (here 20 sections per blade) (FEMBS)

SIMPACK model with flexible blades:

( p ) ( )

regarding influences and interactions of rotordynamics,t l ti d d i

nodes to applyaerodynamic forces

3-D representation by CAD geometries

rotorelastics and aerodynamics

First Rotor-Eigenmodes:edgewise (f7 = 1,9 Hz) flapwise (f5 = 1,1 Hz)

Rotorsection

edgewise (f7 1,9 Hz) flapwise (f5 1,1 Hz)

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Dr. SchelenzFolie 19Results for Emergency Braking

Procedure of emergency braking:

• Turning the rotor tips out of the windGenerator is deacti ated• Generator is deactivated

• Activating the disk brake• Exponential increasing of braking torque

Example result: Radial force in rotor bearing

over about 2 seconds• Rotor and generator shaft come to halt

6

3

F/F

Nen

n

Example result: Radial force in rotor bearingduring emergency braking Results:

• Base plate starts to oscillate after brake0

-3

-6

e be

arin

g fo

rceBase plate starts to oscillate after brake

is activated and again after the fastturning shaft of the generator stops

• This causes high forces and vibrations in-9

-12

-15

-5 0 5 10Time [s]

Rel

ativ

eThis causes high forces and vibrations inbearings, supports and toothings

• Big influence of flexible bodies is obvious

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

Time [s]

Dr. SchelenzFolie 20Consumption

Interactions between all subsystems: Influences have to be and can be regarded by special written modules

Modular System structure: Substructure models can be exchanged and varied in detail

Model is extendable: More detailed models for bearings, gear boxes and electric systems can be easily embeddedsystems can be easily embedded

General analysis and parameter variations: E.g. possibility of analyzing other main shaft bearing concepts or gear box conceptsshaft bearing concepts or gear box concepts

Interfaces to other simulation tools: FLEX5, FEM-Software, MATLAB/Simulink, Postprocessing of loads, external loads given by wind turbine producer

Validation of main results: by measurement or other verified system results

Complete controller logic of wind turbine: allows realistic simulations of load cases andComplete controller logic of wind turbine: allows realistic simulations of load cases and producer know how is preserved in DLL (control of Pitch, Generator torque, etc.)

Model allows an insight: Non-measurable data and results can be generated

Simulation der dynamischen Beanspruchungendes Antriebsstranges von WEA

g g


Recommended