40
Искусственный интеллект

Искусственный интелект

  • Upload
    -

  • View
    438

  • Download
    0

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Искусственный интелект

Искусственный интеллект

Page 2: Искусственный интелект

2 Искусственный интеллект

ОглавлениеГносеологические проблемы искусственного интеллекта . . . . . . . . . . . . .3

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3Конкретизация понятия «искусственный интеллект» . . . . . . . . . . . . . .3Знание – основа интеллектуальной системы . . . . . . . . . . . . . . . . . . . . . . . .7Аспекты представления знаний . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Рефлексия как одна из составляющих интеллектуальной деятельно-

сти . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Неотъемлемость рефлексии . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Некоторые подходы к решению проблемы ИИ . . . . . . . . . . . . . . . . . . . . . . 12Механистический подход . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Электронный подход . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Кибернетический подход . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Кибернетика и сознание . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Нейронный подход . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Появление перцептрона . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Искусственный интеллект и естественный язык . . . . . . . . . . . . . . . . . 19Природа обработки естественного языка . . . . . . . . . . . . . . . . . . . . . . . . . 19Основная проблема обработки естественного языка . . . . . . . . . . . . . 20Распознавание речи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Проблема искусственного интеллекта . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

История развития систем искусственного интеллекта . . . . . . . . . . . . 29Перспективы и тенденции развития искусственного интеллекта . 34

Page 3: Искусственный интелект

3Искусственный интеллект

Гносеологические проблемы искусственно-го интеллекта

Введение Проблема искусственного интеллекта является сейчас одной из самых злободнев-

ных. Ей занимаются ученые различных специальностей: кибернетики, лингвисты, психологи, философы, математики, инженеры. При исследовании проблем, связан-ных с искусственным интеллектом, решаются многие основополагающие вопросы, связанные с путями развития научной мысли, с воздействием достижений в обла-сти вычислительной техники и робототехники на жизнь будущих поколений людей. Здесь возникают и развиваются новые методы научных междисциплинарных иссле-дований. Здесь формируется новый взгляд на роль тех или иных научных результа-тов и возникает то, что можно назвать философским осмыслением этих результатов.

По современным научным данным человеческий мозг содержит огромное число «вычислительных» узлов – нейронов. Новейшие вычислительные системы стре-мительно приближаются по своим вычислительным возможностям к мозгу, хотя ещё и далеки от совершенства. Искусственные нейронные сети контролируют сложнейшие системы управления и слежения, проявляют способности в области распознавания изображения вплоть до возможности создания интеллектуальных автопилотов. Активно занимается системами искусственного интеллекта область, издавна считавшаяся прерогативой человека - компьютеры стали довольно непло-хо играть в шахматы. В таких условиях приобретает особую значимость рассмотре-ние основных философских вопросов, связанных с искусственным интеллектом и искусственной жизнью. При этом, очевидно, возможно взаимовлияние искусствен-ного интеллекта и искусственной жизни на философские проблемы мышления и на жизнь вообще.

Понятие искусственного интеллекта многогранно. Но несколько наиболее важных аспектов все же можно выделить. Во-первых, это вопрос о том, что такое искусственный интеллект, ведь определение понятия обусловливает предмет, цель, методы, успешность исследования. Во-вторых, интеллект подразумевает обработку информации, поэтому важной является проблема представления знаний в системах искусственного интеллекта. В-третьих, существовали и существуют различные под-ходы к решению вопросов, связанных с созданием интеллектуальных систем, и их рассмотрение проливает свет на многие аспекты проблемы. В-четвертых, огромное значение имеет обеспечение взаимодействия систем искусственного интеллекта с человеком на естественном языке, так как при этом значительно облегчается веде-ние диалога с ними.

Несмотря на то, что, по мнению некоторых ученых, искусственный интеллект принципиально невозможен, разработки в области создания систем искусственно-го интеллекта являются в настоящее время одним из приоритетных направлений в науке.

Конкретизация понятия «искусственный интеллект»

Page 4: Искусственный интелект

4 Искусственный интеллект В понятие «искусственный интеллект» вкладывается различный смысл - от при-

знания интеллекта у ЭВМ, решающих логические или даже любые вычислительные задачи, до отнесения к интеллектуальным лишь тех систем, которые решают весь комплекс задач, осуществляемых человеком, или еще более широкую их совокуп-ность. Постараемся же вычленить тот смысл понятия «искусственный интеллект», который в наибольшей степени соответствует реальным исследованиям в этой области.

В исследованиях по искусственному интеллекту ученые отвлекаются от сходства процессов, происходящих в технической системе или в реализуемых ею програм-мах, с мышлением человека. Если система решает задачи, которые человек обычно решает посредством своего интеллекта, то мы имеем дело с системой искусствен-ного интеллекта.

Однако это ограничение недостаточно. Создание традиционных программ для ЭВМ- работа программиста - не есть конструирование искусственного интеллекта. Какие же задачи, решаемые техническими системами, можно рассматривать как конституирующие искусственный интеллект?

Чтобы ответить на этот вопрос, надо уяснить, прежде всего, что такое задача. Как отмечают психологи, этот термин тоже не является достаточно определенным. По-видимому, в качестве исходного можно принять понимание задачи как мысли-тельной задачи, существующее в психологии. Они подчеркивают, что задача есть только тогда, когда есть работа для мышления, т. е. когда имеется некоторая цель, а средства к ее достижению не ясны; их надо найти посредством мышления. Хорошо по этому поводу сказал замечательный математик Д. Пойа: «...трудность решения в какой-то мере входит в само понятие задачи: там, где нет трудности, нет и задачи». Если человек имеет очевидное средство, с помощью которого, наверное, можно осуществить желание, поясняет он, то задачи не возникает. Если человек обладает алгоритмом решения некоторой задачи и имеет физическую возможность его реа-лизации, то задачи в собственном смысле уже не существует.

Так понимаемая задача, в сущности, тождественна проблемной ситуации, и решается она посредством преобразования последней. В ее решении участвуют не только условия, которые непосредственно заданы. Человек использует любую на-ходящуюся в его памяти информацию, «модель мира», имеющуюся в его психике и включающую фиксацию разнообразных законов, связей, отношений этого мира.

Если задача не является мыслительной, то она решается на ЭВМ традиционными методами и, значит, не входит в круг задач искусственного интеллекта. Ее интел-лектуальная часть выполнена человеком. На долю машины осталась часть работы, которая не требует участия мышления, т. е. «безмысленная», неинтеллектуальная.

Под словом «машина» здесь понимается машина вместе с ее совокупным матема-тическим обеспечением, включающим не только программы, но и необходимые для решения задач «модели мира». Недостатком такого понимания является главным образом его антропоморфизм. Задачи, решаемые искусственным интеллектом, целесообразно определить таким образом, чтобы человек, по крайней мере, в определении отсутствовал. Основная функция мышления заключается в выработ-ке схем целесообразных внешних действий в бесконечно варьирующих условиях.

Page 5: Искусственный интелект

5Искусственный интеллект Специфика человеческого мышления (в отличие от рассудочной деятельности животных) состоит в том, что человек вырабатывает и накапливает знания, храня их в своей памяти. Выработка схем внешних действий происходит не по принципу «стимул - реакция», а на основе знаний, получаемых дополнительно из среды, для поведения в которой вырабатывается схема действия.

Этот способ выработки схем внешних действий (а не просто действия по коман-дам, пусть даже меняющимся как функции от времени или как однозначно опреде-ленные функции от результатов предшествующих шагов) является существенной ха-рактеристикой любого интеллекта. Отсюда следует, что к системам искусственного интеллекта относятся те, которые, используя заложенные в них правила переработ-ки информации, вырабатывают новые схемы целесообразных действий на основе анализа моделей среды, хранящихся в их памяти. Способность к перестройке самих этих моделей в соответствии с вновь поступающей информацией является свиде-тельством более высокого уровня искусственного интеллекта.

Большинство исследователей считают наличие собственной внутренней модели мира у технических систем предпосылкой их «интеллектуальности». Формирование такой модели связано с преодолением синтаксической односторонности системы, т.е. с тем, что символы или та их часть, которой оперирует система, интерпретиро-ваны, имеют семантику.

Характеризуя особенности систем искусственного интеллекта, специалисты ука-зывают на:

наличие в них собственной внутренней модели внешнего мира; эта модель 1. обеспечивает индивидуальность, относительную самостоятельность системы в оценке ситуации, возможность семантической и прагматической интерпре-тации запросов к системе; способность пополнения имеющихся знаний; 2. способность к дедуктивному выводу, т.е. к генерации информации, которая в 3. явном виде не содержится в системе; это качество позволяет системе кон-струировать информационную структуру с новой семантикой и практической направленностью; умение оперировать в ситуациях, связанных с различными аспектами нечет-4. кости, включая «понимание» естественного языка; способность к диалоговому взаимодействию с человеком; 5. способность к адаптации. 6.

На вопрос, все ли перечисленные условия обязательны, необходимы для призна-ния системы интеллектуальной, ученые отвечают по-разному. В реальных иссле-дованиях, как правило, признается абсолютно необходимым наличие внутренней модели внешнего мира, и при этом считается достаточным выполнение хотя бы одного из перечисленных выше условий.

П. Армер выдвинул мысль о «континууме интеллекта»: различные системы могут сопоставляться не только как имеющие и не имеющие интеллекта, но и по степени его развития. При этом, считает он, желательно разработать шкалу уровня интел-лекта, учитывающую степень развития каждого из его необходимых признаков. Известно, что в свое время А.Тьюринг предложил в качестве критерия, определяю-

Page 6: Искусственный интелект

6 Искусственный интеллект щего, может ли машина мыслить, «игру в имитацию». Согласно этому критерию, ма-шина может быть признана мыслящей, если человек, ведя с ней диалог по достаточ-но широкому кругу вопросов, не сможет отличить ее ответов от ответов человека.

Критерий Тьюринга в литературе был подвергнут критике с различных точек зрения. Действительно серьезный аргумент против этого критерия заключается в том, что в подходе Тьюринга ставится знак тождества между способностью мыслить и способностью к решению задач переработки информации определенною типа. Успешная «игра в имитацию» не может без тщательного предварительного анали-за мышления как целостности быть признана критерием способности машины к мышлению.

Однако этот аргумент бьет мимо цели, если мы говорим не о мыслящей машине, а об искусственном интеллекте, который должен лишь продуцировать физические тела знаков, интерпретируемые человеком в качестве решений определенных задач. Поэтому прав В.М. Глушков, утверждая, что наиболее естественно, следуя Тьюрингу, считать, что некоторое устройство, созданное человеком, представляет собой искусственный интеллект, если, ведя с ним достаточно долгий диалог по более или менее широкому кругу вопросов, человек не сможет различить, разгова-ривает он с разумным живым существом или с автоматическим устройством. Если учесть возможность разработки программ, специально рассчитанных на введение в заблуждение человека, то, возможно, следует говорить не просто о человеке, а о специально подготовленном эксперте. Этот критерий, на взгляд многих ученых, не противоречит перечисленным выше особенностям системы искусственного интеллекта.

Но что значит по «достаточно широкому кругу вопросов», о котором идет речь в критерии Тьюринга и в высказывании В.М.Глушкова? На начальных этапах раз-работки проблемы искусственного интеллекта ряд исследователей, особенно занимающихся эвристическим программированием, ставили задачу создания интеллекта, успешно функционирующего в любой сфере деятельности. Это можно назвать разработкой «общего интеллекта». Сейчас большинство работ направлено на создание «профессионального искусственного интеллекта», т. е. систем, решаю-щих интеллектуальные задачи из относительно ограниченной области (например, управление портом, интегрирование функций, доказательство теорем геометрии и т.п.). В этих случаях «достаточно широкий круг вопросов» должен пониматься как соответствующая область предметов.

Исходным пунктом рассуждений об искусственном интеллекте было определе-ние такой системы как решающей мыслительные задачи. Но перед нею ставятся и задачи, которые люди обычно не считают интеллектуальными, поскольку при их решении человек сознательно не прибегает к перестройке проблемных ситуаций. К их числу относится, например, задача распознания зрительных образов. Чело-век узнает человека, которого видел один-два раза, непосредственно в процессе чувственного восприятия. Исходя из этого, кажется, что эта задача не является ин-теллектуальной. Но в процессе узнавания человек не решает мыслительных задач лишь постольку, поскольку программа распознания не находится в сфере осознан-ного. Но так как в решении таких задач на неосознанном уровне участвует модель

Page 7: Искусственный интелект

7Искусственный интеллект среды, хранящаяся в памяти, то эти задачи, в сущности, являются интеллектуальны-ми. Соответственно и система, которая ее решает, может считаться интеллектуаль-ной. Тем более это относится к «пониманию» машиной фраз на естественном языке, хотя человек в этом не усматривает обычно проблемной ситуации.

Теория искусственного интеллекта при решении многих задач сталкивается с гносеологическими проблемами.

Одна из таких проблем состоит в выяснении вопроса, доказуема ли теоретически (математически) возможность или невозможность искусственного интеллекта. На этот счет существуют две точки зрения. Одни считают математически доказанным, что ЭВМ в принципе может выполнить любую функцию, осуществляемую естествен-ным интеллектом. Другие полагают в такой же мере доказанным математически, что есть проблемы, решаемые человеческим интеллектом, которые принципиально не-доступны ЭВМ. Эти взгляды высказываются как кибернетиками, так и философами.

Знание – основа интеллектуальной системы Многие виды умственной деятельности человека, такие, как написание про-

грамм для вычислительной машины, занятие математикой, ведение рассуждений на уровне здравого смысла и даже вождение автомобиля – требуют «интеллекта». На протяжении последних десятилетий было построено несколько типов компьютер-ных систем, способных выполнять подобные задачи.

Имеются системы, способные диагностировать заболевания, планировать синтез сложных синтетических соединений, решать дифференциальные уравнения в сим-вольном виде, анализировать электронные схемы, понимать ограниченный объем человеческой речи и естественного языкового текста. Можно сказать, что такие системы обладают в, некоторой степени, искусственным интеллектом.

Работа по построению таких систем проводится в области, получившей название искусственный интеллект (ИИ).

При реализации интеллектуальных функций непременно присутствует информа-ция, называемая знаниями. Другими словами, интеллектуальные системы являются в то же время системами обработки знаний.

В настоящее время в исследованиях по искусственному интеллекту выделились несколько основных направлений.

1. Представление знаний. В рамках этого направления решаются задачи, связан-ные с формализацией и представлением знаний в памяти системы ИИ. Для этого разрабатываются специальные модели представления знаний и языки описания знаний, внедряются различные типы знаний. Проблема представления знаний является одной из основных проблем для системы ИИ, так как функционирование такой системы опирается на знания о проблемной области, которые хранятся в ее памяти.

2. Манипулирование знаниями. Чтобы знаниями можно было пользоваться при решении задачи, следует научить систему ИИ оперировать ими. В рамках данного направления разрабатываются способы пополнения знаний на основе их неполных описаний, создаются методы достоверного и правдоподобного вывода на основе имеющихся знаний, предлагаются модели рассуждений, опирающихся на знания и

Page 8: Искусственный интелект

8 Искусственный интеллект имитирующих особенности человеческих рассуждений. Манипулирование знания-ми очень тесно связано с представлением знаний, и разделить эти два направления можно лишь условно.

3. Общение. В круг задач этого направления входят: проблема понимания и синтеза связных текстов на естественном языке, понимание и синтез речи, теория моделей коммуникаций между человеком и системой ИИ. На основе исследований в этом направлении формируются методы построения лингвистических процессов, вопросно-ответных систем, диалоговых систем и других систем ИИ, целью которых является обеспечение комфортных условий для общения человека с системой ИИ.

4. Восприятие. Это направление включает разработку методов представления информации о зрительных образах в базе знаний, создание методов перехода от зрительных сцен к их текстовому описанию и методов обратного перехода, созда-ние средств, порождающих зрительные сцены на основе внутренних представле-ний в системах ИИ.

5. Обучение. Для развития способности систем ИИ к обучению, т.е. к решению задач, с которыми они раньше не встречались, разрабатываются методы форми-рования условий задач по описанию проблемной ситуации или по наблюдению за ней, методы перехода от известного решения частных задач (примеров) к решению общей задачи, создание приемов разбиения исходной задачи на более мелкие и уже известные для систем ИИ. В этом направлении ИИ сделано еще весьма мало.

6. Поведение. Поскольку системы ИИ должны действовать в некоторой окружаю-щей среде, то необходимо разрабатывать некоторые поведенческие процедуры, которые позволили бы им адекватно взаимодействовать с окружающей средой, другими системами ИИ и людьми. Это направление в ИИ также разработано ещё очень слабо.

В последние годы термин «знание» все чаще употребляется в информатике. Специалисты подчеркивают, что совершенствование так называемых интеллекту-альных систем (информационно-поисковых систем высокого уровня, диалоговых систем, базирующихся на естественных языках, интерактивных человеко-машинных систем, используемых в управлении, проектировании, научных исследованиях) во многом определяется тем, насколько успешно будут решаться задачи (проблемы) представления знаний.

Аспекты представления знаний Неудивительно, что перед теми, кто занимается проблемой представления зна-

ний, встает вопрос о том, что такое знание, какова его природа и основные характе-ристики. В связи с этим предпринимаются, например, попытки дать такое определе-ние знания, из которого можно было бы исходить в решении задач представления знаний в компьютерных системах.

Представлению данных присущ пассивный аспект: книга, таблица, заполненная информацией память. В теории искусственного интеллекта особо подчеркивается активный аспект представления знаний: приобретение знания должно стать актив-ной операцией, позволяющей не только запоминать, но и применять воспринятые (приобретенные, усвоенные) знания для рассуждений на их основе.

Page 9: Искусственный интелект

9Искусственный интеллект Использование символического языка, такого, как язык математической логики,

позволяет формулировать описания в форме, одновременно близкой и к обычному языку, и к языку программирования. Впрочем, математическая логика позволяет рассуждать, базируясь на приобретенных знаниях: логические выводы действи-тельно являются активными операциями получения новых знаний из уже усвоен-ных.

Принципиальная мировоззренческая установка состоит в рассмотрении ЭВМ как предмета-посредника в познавательной человеческой деятельности. Компьютер-ная система, подобно другим предметам-посредникам (орудиям труда и предметам быта, инструментам, приборам, знаково-символическим системам, научным текстам и т. д.), играя инструментальную роль в познании, является средством объективиза-ции накопленного знания, воплощением определенного социально-исторического опыта практической и познавательной деятельности.

Проблема представления знаний возникла как одна из проблем искусственного интеллекта. Она связана с переходом исследований в этой области в некоторую новую фазу. Речь идет о создании практически полезных систем (прежде всего так называемых экспертных систем), применяемых в медицине, геологии, химии. Соз-дание такого рода систем требует интенсивных усилий по формализации знания, накопленного в соответствующей науке.

С термином «представление знаний» связывается определенный этап в развитии математического обеспечения ЭВМ. Если на первом этапе доминировали про-граммы, а данные играли вспомогательную роль своеобразной «пищи» для «голод-ных» программ, то на последующих этапах роль данных неуклонно возрастала. Их структура усложнялась: от машинного слова, размещенного в одной ячейке памяти ЭВМ, происходил переход к векторам, массивам, файлам, спискам. Венцом этого развития стали абстрактные типы данных, обеспечивающие возможность создания такой структуры данных, которая наиболее удобна при решении задачи. После-довательное развитие структур данных привело к их качественному изменению и к переходу от представления данных к представлению знаний. Уровень пред-ставления знаний отличается от уровня представления данных не только более сложной структурой, но и существенными особенностями: интерпретируемость, наличие классифицируемых связей (например, связь между знаниями, относящихся к элементу множества, и знаниями об этом множестве), которые позволяют хранить информацию, одинаковую для всех элементов множества, записанную одноактно при описании самого множества, наличие ситуативных отношений (одновремен-ности, нахождения в одной точке пространства и т. п., эти отношения определяют ситуативную совместимость тех или иных знаний, хранимых в памяти). Кроме того, для уровня знаний характерны такие признаки, как наличие специальных процедур обобщения, пополнения имеющихся в системе знаний и ряда других процедур.

Моделирование на ЭВМ понималось как техническая реализация определенной формы знакового моделирования. Однако, рассматривая ЭВМ в гносеологическом плане в качестве посредника в познании, имеет смысл не фиксировать внимание, прежде всего на «железной части» (hardware) компьютера, а рассматривать всю компьютерную систему как сложную систему взаимосвязанных и до некоторых

Page 10: Искусственный интелект

10 Искусственный интеллект

пределов самостоятельных моделей - как материальных, так и знаковых, т. е. иде-альных. Такой подход не только соответствует рассмотрению компьютерных систем в современной информатике, но является и гносеологически оправданным. Многие важные философские аспекты проблем, возникающих в связи с компьютеризацией различных сфер человеческой деятельности, требуют для своего исследования обращения, прежде всего, к знаковым составляющим компьютерных систем. Это верно и в отношении философских аспектов проблем представления знаний.

В последние годы все чаще стал употребляться термин «компьютерное модели-рование». Очевидно, имеет смысл обозначать им построение любого из составляю-щих компьютерной системы - будь то знаковая модель или материальная.

Что изменяется в компьютерном моделировании с переходом от уровня пред-ставления данных к уровню представлению знаний? Каков гносеологический смысл этих изменений?

С введением термина «знание» появляется свойство «осознавать», т. е. «понимать» свои интеллектуальные возможности. В свою очередь, это означает не что иное, как рефлексию.

Рефлексия как одна из составляющих интеллектуальной деятельности Исследования в области искусственного интеллекта возникли под влиянием идей

кибернетики - прежде всего идеи общности процессов управления и передачи информации в живых организмах, обществе и технике, в частности, в компьютерах.

Философская приемлемость проблематики искусственного интеллекта в ее традиционном виде была обусловлена лежащим в ее основе представлением о том, что «порядок и связь идей те же, что порядок и связь вещей». Тем самым создать в компьютере структуру, воспроизводящую «мир идей», означало попросту создать структуру, изоморфную структуре вещественного мира, т. е. построить «электрон-ную модель мира». Эта модель интерпретировалась как компьютерная модель че-ловеческих знаний о мире. Процесс человеческого мышления интерпретировался в компьютере как машинный поиск таких трансформаций модели, которые должны были перевести компьютерную модель в некое финальное состояние (например, матовую позицию в шахматах).

Для этого система искусственного интеллекта нуждалась в знаниях о том, как осуществлять трансформации состояний модели, приводящие к заранее заданной цели - состоянию с определенными свойствами. В первое время было распростра-нено убеждение в принципиальной способности компьютера к самостоятельному исследованию хранящейся в нем модели, т. е. к самообучению стратегии достиже-ния поставленной цели.

Данная гипотетическая способность интерпретировалась как возможность машинного творчества, как основа создания будущих «мыслящих машин». И, хотя в реально разрабатывавшихся системах достижение цели осуществлялось на основе человеческого опыта с помощью алгоритмов, основанных на теоретическом ана-лизе создаваемых моделей и результатов проводимых на них экспериментов, идеи построения самообучаемых систем многим казались наиболее перспективными. Лишь к 80-му году была осознана значимость проблемы использования в интеллек-

Page 11: Искусственный интелект

11Искусственный интеллект

туальных системах человеческих знаний о действительности, повлекшая серьезную разработку баз знаний и методов извлечения личных знаний экспертов.

С развитием данного направления возникла идея рефлексивного управления. До этого момента в кибернетике управление рассматривалось как передача объекту сигналов, непосредственно воздействующих на его поведение, а эффективность управления достигалась с помощью обратной связи - получения информации о реакциях управляемого объекта. Рефлексивное же управление - есть передача информации, воздействующей на имеющийся у объекта образ мира. Тем самым обратная связь оказывается излишней - состояние субъекта известно передающему информацию, то есть объекту.

Традиционные системы искусственного интеллекта основаны на идеологии целеориентированного поведения типа шахматной игры, где цель обоих партнеров состоит в том, чтобы поставить мат ценой любых жертв. Не случайно именно шах-матные программы оказались столь важными для отработки методов искусственно-го интеллекта.

Неотъемлемость рефлексии Стоит ли считать рефлексию неотъемлемой частью систем искусственного интел-

лекта? Ответом с технической точки зрения может служить следующее. Как и любая

компьютерная программа, наделенная средствами самодиагностики и самоисправ-ления (а такие средства уже становятся стандартом), т. е. средствами повышения надежности, системы искусственного интеллекта должны контролировать проис-ходящие процессы - как внешние, так и внутренние. Однако может показаться, что в этом смысле будет достаточным просто развитая структура обратных связей. Сразу надо оговориться, что под обратной связью следует понимать только ответную реакцию (или получение информации о ней) после какого-то конкретного действия системы. Обратная связь лишь предоставляет данные, информацию, но ни в коей мере не интерпретирует их. Норбертом Винером в книге «Кибернетика, или управ-ление и связь в животном и машине» были приведены примеры нарушений нерв-ной системы людей и их последствия. Так люди с нарушением системы ориентации собственных конечностей в пространстве (не чувствующие своих рук и ног, случай, когда конечности «немеют») должны были визуально контролировать свои дей-ствия. Это было типичное нарушение обратной связи. Рефлексия же подразумевает анализ полученной картины.

Анализ функционирования собственной модели или модели «всей окружающей действительности» (в рамках поставленной задачи), контроль над ее состоянием, прогнозирование состояния - есть ни что иное, как реализация рефлексии. Рефлек-сия - есть некий метауровень. С применением языков программирования высокого уровня, таких как Пролог, позволяющий формулировать цели и строить логические выводы достижимости этих целей, задача реализации рефлексии уже может быть частично решена. С их помощью можно построить некую метаструктуру, надстрой-ку, некий метауровень, позволяющий оценивать поведение предыдущего. Однако, при рассмотрении термина «глубокая рефлексия» или «многоуровневая рефлек-

Page 12: Искусственный интелект

12 Искусственный интеллект сия» встает проблема построения моделей самой системой. Здесь на помощь при-ходят абстрактные типы данных. Они позволяют оперировать структурами данных любой конечной сложности. Таким образом, можно считать, что системы искус-ственного интеллекта могут содержать модель рефлексии.

Таким образом, считать интеллектуальную систему полноценной без умения оценивать, «понимать» свои действия, то есть рефлексировать, нельзя. Более того, рефлексию следует считать одним из главных инструментов построения поведения систем. Говоря языком математики, рефлексия является необходимым условием существования интеллектуальной системы.

Некоторые подходы к решению проблемы ИИ

Механистический подходИдея создания мыслящих машин «человеческого типа», которые думают, двигают-

ся, слышат, говорят, и вообще ведут себя как живые люди уходит корнями в глубо-кое прошлое. Еще в античности люди стремились создать машину, подобную себе.

В 1736 г. французский изобретатель Жак де Вокансон изготовил механического флейтиста в человеческий рост, который исполнял двенадцать мелодий, перебирая пальцами отверстия и дуя в мундштук, как настоящий музыкант. В середине 1750-х годов Фридрих фон Кнаус, австрийский автор, служивший при дворе Франциска I, сконструировал серию машин, которые умели держать перо и могли писать до-вольно длинные тексты. Другой мастер, Пьер Жак-Дроз из Швейцарии, построил пару изумительных по сложности механических кукол размером с ребенка: маль-чика, пишущего письма и девушку, играющую на клавесине. Успехи механики XIX в. стимулировали еще более честолюбивые замыслы. Так, в 1830-х годах английский математик Чарльз Бэббидж задумал, правда, так и не завершив, сложный цифровой калькулятор, который он назвал Аналитической машиной; как утверждал Бэббидж, его машина в принципе могла бы рассчитывать шахматные ходы. Позднее, в 1914 г., директор одного из испанских технических институтов Леонардо Торрес-и-Кеведо действительно изготовил электромеханическое устройство, способное разыгры-вать простейшие шахматные эндшпили почти также хорошо, как и человек.

Но все эти механические устройства имеют лишь отдаленное сходство с тем, что может быть названо ИИ, хотя интересны с исторической точки зрения.

Электронный подходПосле второй мировой войны появились устройства, казалось бы, подходящие

для достижения заветной цели – моделирования разумного поведения; это были электронные цифровые вычислительные машины.

К концу 50-х годов все эти увлечения выделились в новую более или менее само-стоятельную ветвь информатики, получившую название «искусственный интел-лект». Исследования в области ИИ, первоначально сосредоточенные в нескольких университетских центрах США – Массачусетском технологическом институте, Тех-нологическом институте Карнеги в Питтсбурге, Станфордском университете, - ныне ведутся во многих других университетах и корпорациях США и других стран. Иссле-

Page 13: Искусственный интелект

13Искусственный интеллект дователей ИИ, работающих над созданием мыслящих машин, можно разделить на две группы. Одних интересует чистая наука и для них компьютер - лишь инструмент, обеспечивающий возможность экспериментальной проверки теорий процессов мышления. Интересы другой группы лежат в области техники: они стремятся расши-рить сферу применения компьютеров и облегчить пользование ими. Многие пред-ставители второй группы мало заботятся о выяснении механизма мышления - они полагают, что для их работы это едва ли более полезно, чем изучение полета птиц и самолетостроения.

На протяжении всей своей короткой истории исследователи в области ИИ всегда находились на переднем крае информатики. Многие ныне обычные разработки, в том числе усовершенствованные системы программирования, текстовые редакто-ры и программы распознавания образов, в значительной мере рассматриваются на работах по ИИ. Короче говоря, теории, новые идеи, и разработки ИИ неиз-менно привлекают внимание тех, кто стремится расширить области применения и возможности компьютеров, сделать их более «дружелюбными» то есть более похожими на разумных помощников и активных советчиков, чем те педантичные и туповатые электронные рабы, какими они всегда были. Несмотря на многообе-щающие перспективы, ни одну из разработанных до сих пор программ ИИ нельзя назвать «разумной» в обычном понимании этого слова. Это объясняется тем, что все они узко специализированы; самые сложные экспертные системы по своим воз-можностям скорее напоминают дрессированных или механических кукол, нежели человека с его гибким умом и широким кругозором. Даже среди исследователей ИИ теперь многие сомневаются, что большинство подобных изделий принесет существенную пользу. Немало критиков ИИ считают, что такого рода ограничения вообще непреодолимы, и решение проблемы ИИ надо искать не в сфере непосред-ственно электроники, а где-то за ее пределами.

Кибернетический подход Попытки построить машины, способные к разумному поведению, в значитель-

ной мере вдохновлены идеями профессора Массачусетского технологического института, Норберта Винера, одной из выдающихся личностей в интеллектуальной истории Америки и всего мира. Помимо математики он обладал широкими позна-ниями в других областях, включая нейропсихологию, медицину, физику и электро-нику. Винер был убежден, что наиболее перспективны научные исследования в так называемых пограничных областях, которые нельзя конкретно отнести к той или иной конкретной дисциплины. Они лежат где-то на стыке наук, поэтому к ним обыч-но не подходят столь строго. «Если затруднения в решении какой-либо проблемы психологии имеют математический характер, пояснял он, - то десять несведущих в математике психологов продвинуться не дальше одного столь же несведущего». Таким образом, междисциплинарность - краеугольный камень современной науки. Винеру и его сотруднику Джулиану Бигелоу принадлежит разработка принципа «обратной связи», который был успешно применен при разработке нового оружия с радиолокационным наведением. Принцип обратной связи заключается в исполь-зовании информации, поступающей из окружающего мира, для изменения поведе-

Page 14: Искусственный интелект

14 Искусственный интеллект ния машины. В основу разработанных Винером и Бигелоу систем наведения были положены тонкие математические методы; при малейшем изменении отраженных от самолета радиолокационных сигналов они соответственно изменяли наводку орудий, то есть - заметив попытку отклонения самолета от курса, они тотчас рассчи-тывали его дальнейший путь и направляли орудия так, чтобы траектории снарядов и самолетов пересеклись. В дальнейшем Винер разработал на принципе обратной связи теории как машинного, так и человеческого разума. Он доказывал, что имен-но благодаря обратной связи все живое приспосабливается к окружающей среде и добивается своих целей. «Все машины, претендующие на разумность», - писал он, - «должны обладать способностью преследовать определенные цели и приспоса-бливаться, т.е. обучаться». В 1948 году выходит книга Винера, в которой он заложил фундамент новой науки, названной им кибернетикой, что в переводе с греческого означает рулевой. Следует отметить, что принцип «обратной связи», введенный Винером, был в какой-то степени предугадан Сеченовым в описанном им в книге «Рефлексы головного мозга» (1863 г.) феномене «центрального торможения», т. е. почти за 100 лет до Винера, и рассматривался как механизм регуляции деятель-ности нервной системы, и который лег в основу многих моделей произвольного поведения в отечественной психологии.

Таким образом, кибернетика возникла на стыке многих областей знания: матема-тики, логики, семиотики, биологии, социологии.

Обобщающий характер кибернетических идей и методов сближает науку об управлении, каковой является кибернетика, с философией.

Задача обоснования исходных понятий кибернетики, особенно таких, как ин-формация, управление, обратная связь и др. требуют выхода в более широкую, философскую область знаний, где рассматриваются самые общие закономерности познания.

Сама кибернетика как наука об управлении многое дает современному философ-скому мышлению. Она позволяет более глубоко раскрыть механизм самооргани-зации материи, обогащает содержание категории связей, причинности, позволяет более детально изучить диалектику необходимости и случайности, возможности и действительности. Открываются пути для разработки «кибернетической» гно-сеологии, которая позволяет уточнить, детализировать и углубить в свете науки об управлении ряд существенно-важных проблем.

Возникнув в результате развития и взаимного стимулирования ряда в недалеком прошлом слабо связанных между собой дисциплин технического, биологического и социального профиля, кибернетика проникла во многие сферы жизни.

Столь необычная «биография» кибернетики объясняется целым рядом причин, среди которых надо выделить две.

Во-первых, кибернетика имеет необычайный, синтетический характер. В связи с этим до сих пор существуют различия в трактовке некоторых ее проблем и понятий.

Во-вторых, основополагающие идеи кибернетики пришли в нашу страну с Запада, где они с самого начала оказались под влиянием идеализма и метафизики, а иногда и идеологии. То же самое, или почти то же самое происходило и у нас. Таким обра-зом, становится очевидной необходимость разработки философских основ кибер-

Page 15: Искусственный интелект

15Искусственный интеллект нетики, освещение основных её положений с позиций философского познания.

Осмысление кибернетических понятий с позиции философии будет способство-вать более успешному осуществлению теоретических и практических работ в этой области, создаст лучшие условия для эффективной работы и научного поиска в этой области познания.

Кибернетика как перспективная область научного познания привлекает к себе все большее внимание философов. Положения и выводы кибернетики включаются в их области знания, которые в значительной степени определяют развитие совре-менной теории познания. Как справедливо отмечают отечественные исследовате-ли, кибернетика, достижения которой имеет громадное значение для исследования познавательного процесса, по своей сущности и содержанию должна входить в теорию познания.

Исследование методологического и гносеологического аспектов кибернети-ки способствует решению многих философских проблем. В их числе - проблемы диалектического понимания простого и сложного, количества и качества, необхо-димости и случайности, возможности и действительности, прерывности и непре-рывности, части и целого. Для развития самих математики и кибернетики большое значение имеет применение к материалу этих наук ряда фундаментальных фило-софских принципов и понятий, применение, обязательно учитывающее специфику соответствующих областей научного знания.

Философская мысль уже много сделала в анализе аспектов и теоретико-познавательной роли кибернетики. Было показано, сколь многообещающим в философском плане является рассмотрение в свете кибернетики таких вопросов и понятий, как природа информации, цель и целенаправленность, соотношение детерминизма и теологии, соотношение дискретного и непрерывного, детерми-нистского и вероятностного подхода к науке.

Нужно сказать и о большом значении кибернетики для построения научной кар-тины мира, ведь предмет кибернетики - процессы, протекающие в системах управ-ления, общие закономерности таких процессов.

Кибернетика и сознание Явления, которые отображаются в таких фундаментальных понятиях кибернетики,

как информация и управление, имеют место в органической природе и обществен-ной жизни. Таким образом, кибернетику можно определить как науку об управле-нии и связи в живой природе, в обществе и технике. Это определение принадлежит основателю кибернетики – Норберту Винеру, хотя в первом издании его книги «Кибернетика или управление и связь в животном и машине» в определении кибер-нетики отсутствует общество, включенное позже.

Один из важнейших вопросов, вокруг которого идут философские дискуссии - это вопрос о том, что такое информация, какова ее природа? Для характеристики при-роды информационных процессов необходимо кратко рассмотреть естественную основу всякой информации, а таковой естественной основой информации является присущее материи объективное свойство отражения.

Положение о неразрывной связи информации и отражения стало одним из

Page 16: Искусственный интелект

16 Искусственный интеллект важнейших в изучении информации и информационных процессов и признается абсолютным большинством отечественных и зарубежных философов.

Информация в живой природе в, отличие от неживой, играет активную роль, так как участвует в управлении всеми жизненными процессами.

Материалистическая теория отражения видит решение новых проблем науки и, в частности, такой кардинальной проблемы естествознания как переход от неорга-нической материи к органической, в использовании методологической основы диа-лектического материализма. Проблема заключается в том, что существует материя, способная ощущать, и материя, созданная из тех же атомов и, в тоже время, не обла-дающая этой способностью. Вопрос, таким образом, поставлен вполне конкретно и, тем самым, толкает проблему к решению. Кибернетика вплотную занялась иссле-дованием механизмов саморегуляции и самоуправления. Вместе с тем, оставаясь методически ограниченными, эти достижения оставили открытыми ряд проблем, к рассмотрению которых привела внутренняя ломка кибернетики.

Сознание является не столько продуктом развития природы, сколько продуктом общественной жизни человека, общественного труда предыдущих поколений лю-дей. Оно является существенной частью деятельности человека, посредством кото-рой создается человеческая природа и не может быть принята вне этой природы.

Если в машинах и вообще в неорганической природе отражение есть пассивный, мертвый физико-химический, механический акт без обобщения и проникновения в сущность обобщаемого явления, то отражение в форме сознания есть, то мнению Ф.Энгельса «познание высокоорганизованной материей самой себя, проникно-вение в сущность, закон развития природы, предметов и явлений объективного мира».

В машине же отражение не осознанно, так как оно осуществляется без образова-ния идеальных образов и понятий, а происходит в виде электрических импульсов, сигналов и т.п. Поскольку машина не мыслит, эта не есть та форма отражения, кото-рая имеет место в процессе познания человеком окружающего мира. Закономерно-сти процесса отражения в машине определяются, прежде всего, закономерностями отражения действительности в сознании человека, так как машину создает человек в целях более точного отражения действительности, и не машина сама по себе отражает действительность, а человек отражает ее с помощью машины. Поэтому отражение действительности машиной является составным элементом отражения действительности человеком. Появление кибернетических устройств приводит к возникновению не новой формы отражения, а нового звена, опосредующего от-ражение природы человеком.

Нейронный подход На некотором этапе развития информатики многие ученые стали понимать, что

создателям вычислительных машин есть чему поучиться у биологии. Среди них был нейрофизиолог и поэт-любитель Уоррен Маккалок, обладавший, как и Винер, фило-софским складом ума и широким кругом интересов. В 1942 г. Маккалок, участвуя в научной конференции в Нью-Йорке, услышал доклад одного из сотрудников Винера о механизмах обратной связи в биологии. Высказанные в докладе идеи

Page 17: Искусственный интелект

17Искусственный интеллект перекликались с собственными идеями Маккалока относительно работы головного мозга. В течение следующего года Маккалок в соавторстве со своим 18-летним про-теже, блестящим математиком Уолтером Питтсом, разработал теорию деятельности головного мозга. Эта теория и являлась той основой, на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значитель-ной мере сходны. Исходя отчасти из предшествующих исследований нейронов (основных активных клеток, составляющих нервную систему животных и человека в частности), проведенных Маккаллоком, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно рассматривать как устройства, оперирующие дво-ичными числами. Двоичные числа, состоящие из цифр единица и нуль, - рабочий инструмент одной из систем математической логики. Английский математик XIXв. Джордж Буль, предложивший эту остроумную и мощнейшую систему, показал, что логические утверждения можно закодировать в виде единиц и нулей, где единица соответствует истинному высказыванию, а нуль - ложному, после чего этим можно оперировать как обычными числами. В 30-е годы XX в. пионеры информатики, в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально подходит для электронно-вычислительных устройств. Маккалок и Питтс предложили конструкцию сети из электронных «нейронов» и показали, что подобная сеть может выполнять практически любые вообразимые числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, т.е. она обладает всеми чертами интеллекта. Теории Маккаллока-Питтса в сочетании с книгами Винера вызвали огромный интерес к разумным машинам. В 40-60-е годы все больше кибернетиков из университетов и частных фирм запира-лись в лабораториях и мастерских, напряженно работая над теорией функциониро-вания мозга и методично припаивая электронные компоненты моделей нейронов. Из этого кибернетического, или нейромодельного, подхода к машинному разуму скоро сформировался так называемый «восходящий метод» - движение от про-стых аналогов нервной системы примитивных существ, обладающих малым чис-лом нейронов, к сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании «адаптивной сети», «самоорганизующейся системы» или «обучающейся машины» - все эти названия разные исследователи использовали для обозначения устройств, способных следить за окружающей обстановкой и с по-мощью обратной связи изменять свое поведение в полном соответствии с господ-ствовавшей в те времена бихевиористской школой психологии, т.е. вести себя так же как живые организмы. Однако отнюдь не во всех случаях возможна аналогия с живыми организмами. Но дело здесь не только во времени. Основной трудностью, с которой столкнулся «восходящий метод» на заре своего существования, была высо-кая стоимость электронных элементов. Слишком дорогой оказывалась даже модель нервной системы муравья, состоящая из 20 тыс. нейронов, не говоря уже о нервной системе человека, включающей около 100 млрд. нейронов. Даже самые совершен-ные кибернетические модели содержали лишь несколько сотен нейронов. Столь ограниченные возможности обескуражили многих исследователей того периода.

Page 18: Искусственный интелект

18 Искусственный интеллект В настоящее время нейронный подход является, по мнению ряда ученых, наи-

более продуктивным, так как при этом создается структура, изоморфная человече-скому мозгу, что, соответственно повышает вероятность появления систем искус-ственного интеллекта уже в ближайшем будущем. Элементная база и принципы функционирования современных компьютеров практически исчерпали себя, и компьютерная индустрия стоит на пороге коренной ломки, которая может пойти по пути использования моделей нейронов, что может существенно упростить работу с компьютером и повысить его вычислительную мощность.

Появление перцептрона После нескольких лет эйфории кибернетика столкнулась с целым рядом труд-

ностей. Одним из тех, кого они ничуть не испугали, был Фрэнк Розенблат, труды которого, казалось, отвечали основным устремлениям кибернетиков. В середи-не 1958 г. им была предложена модель электронного устройства, названного им перцептроном, которое должно было бы имитировать процессы человеческого мышления. Перцептрон должен был передавать сигналы от «глаза», составленного из фотоэлементов, в блоки электромеханических ячеек памяти, которые оценивали относительную величину электрических сигналов. Эти ячейки соединялись между собой случайным образом в соответствии с господствующей тогда теорией, соглас-но которой мозг воспринимает новую информацию и реагирует на нее через систе-му случайных связей между нейронами. Два года спустя была продемонстрирована первая действующая машина «Марк-1», которая могла научиться распознавать некоторые из букв, написанных на карточках, которые подносили к его «глазам», напоминающие кинокамеры. Перцептрон Розенблата оказался наивысшим до-стижением «восходящего», или нейромодельного метода создания искусственного интеллекта. Чтобы научить перцептрон способности строить догадки на основе ис-ходных предпосылок, в нем предусматривалась некая элементарная разновидность автономной работы или «самопрограммирования». При распознании той или иной буквы одни ее элементы или группы элементов оказываются гораздо более суще-ственными, чем другие. Перцептрон мог научаться выделять такие характерные особенности буквы полуавтоматически, своего рода методом проб и ошибок, напо-минающим процесс обучения. Однако возможности перцептрона были ограничен-ными: машина не могла надежно распознавать частично закрытые буквы, а также буквы иного размера или рисунка, нежели те, которые использовались на этапе ее обучения.

Ведущие представители так называемого «нисходящего метода» специализи-ровались, в отличие от представителей «восходящего метода», в составлении для цифровых компьютеров общего назначения программ решения задач, требующих от людей значительного интеллекта, например для игры в шахматы или поиска ма-тематических доказательств. К числу защитников «нисходящего метода» относились Марвин Минский и Сеймур Пейперт, профессора Массачусетского технологическо-го института, того самого, профессором которого был и Винер. Минский начал свою карьеру исследователя искусственного интеллекта сторонником «восходящего метода» и в 1951 г. построил обучающуюся сеть на вакуумных электронных лампах.

Page 19: Искусственный интелект

19Искусственный интеллект Однако вскоре, к моменту создания перцептрона он перешел в противоположный лагерь. В соавторстве с южно-африканским математиком Пейпертом, с которым его познакомил Маккаллок, он написал книгу «Перцептроны», где математически доказывалось, что перцептроны, подобные розенблатовским, принципиально не в состоянии выполнять многие из тех функций, которые предсказывал им Розенблат. Минский утверждал, что, перцептроны никогда не обретут даже умения рас-познавать предмет, частично заслоненный другим. Глядя на торчащий из-за кресла кошачий хвост, подобная машина никогда не сможет понять, что она видит. Нельзя сказать, что появившаяся в 1969 г. эта критическая работа покончила с киберне-тикой. Она лишь переместила интерес аспирантов и субсидии правительственных организаций США, традиционно финансирующих исследования по ИИ, на другое направление исследований - «нисходящий метод». Интерес к кибернетике в послед-нее время возродился, так как сторонники «нисходящего метода» столкнулись со столь же неодолимыми трудностями. Сам Минский публично выразил сожаление, что его выступление нанесло урон концепции перцептронов, заявив, что, соглас-но его теперешним представлениям, для реального прорыва вперед в создании разумных машин потребуется устройство, во многом похожее на перцептрон. Но в основном ИИ стал синонимом нисходящего подхода, который выражался в состав-лении все более сложных программ для компьютеров, моделирующих сложную деятельность человеческого мозга.

Искусственный интеллект и естественный язык Можно выделить две основные линии работ по искусственному интеллекту. Пер-

вая связана с совершенствованием самих машин, с повышением «интеллектуаль-ности» искусственных систем. Вторая связана с задачей оптимизации совместной работы «искусственного интеллекта» и собственно интеллектуальных возможно-стей человека. Эта задача тесно связана с лингвистикой, психологией.

Обеспечение взаимодействия с ЭВМ на естественном языке (ЕЯ) является важ-нейшей задачей исследований по искусственному интеллекту. Базы данных, пакеты прикладных программ и экспертные системы, основанные на ИИ, требуют осна-щения их гибким интерфейсом для многочисленных пользователей, не желающих общаться с компьютером на искусственном языке. В то время как многие фундамен-тальные проблемы в области обработки ЕЯ еще не решены, прикладные системы могут оснащаться интерфейсом, понимающим ЕЯ при определенных ограничениях.

Существуют два вида и, следовательно, две концепции обработки естественного языка:

- для отдельных предложений; - для ведения интерактивного диалога.

Природа обработки естественного языка Обработка естественного языка - это формулирование и исследование

компьютерно-эффективных механизмов для обеспечения коммуникации с ЭВМ на ЕЯ. Объектами исследований являются:

- собственно естественные языки; - использование ЕЯ как в коммуникации между людьми, так и в коммуникации

Page 20: Искусственный интелект

20 Искусственный интеллект человека с ЭВМ.

Задача исследований - создание компьютерно-эффективных моделей коммуника-ции на ЕЯ. Именно такая постановка задачи отличает обработку ЕЯ от задач тради-ционной лингвистики и других дисциплин, изучающих ЕЯ, и позволяет отнести ее к области ИИ. Проблемой обработки ЕЯ занимаются две дисциплины: лингвистика и когнитивная психология.

Традиционно лингвисты занимались созданием формальных, общих, структурных моделей ЕЯ, и поэтому отдавали предпочтение тем из них, которые позволяли из-влекать как можно больше языковых закономерностей и делать обобщения. Прак-тически никакого внимания не уделялось вопросу о пригодности моделей с точки зрения компьютерной эффективности их применения. Таким образом, оказалось, что лингвистические модели, характеризуя собственно язык, не рассматривали механизмы его порождения и распознавания.

Задачей же когнитивной психологии является моделирование не структуры язы-ка, а его использования. Специалисты в этой области также не придавали большого значения вопросу о компьютерной эффективности.

Различаются общая и прикладная обработка ЕЯ. Задачей общей обработки ЕЯ яв-ляется разработка моделей использования языка человеком, являющихся при этом компьютерно-эффективными. Несомненно, общая обработка ЕЯ требует огромных знаний о реальном мире, и большая часть работ сосредоточена на представлении таких знаний и их применении при распознавании поступающего сообщения на ЕЯ. На сегодняшний день ИИ еще не достиг того уровня развития, когда для решения подобных задач в большом объеме использовались бы знания о реальном мире, и существующие системы можно называть лишь экспериментальными, поскольку они работают с ограниченным количеством тщательно отобранных шаблонов на ЕЯ.

Прикладная обработка ЕЯ занимается обычно не моделированием, а непосред-ственно возможностью коммуникации человека с ЭВМ на ЕЯ. В этом случае не так важно, как введенная фраза будет понята с точки зрения знаний о реальном мире, а важно извлечение информации о том, чем и как ЭВМ может быть полезной пользо-вателю (примером может служить интерфейс экспертных систем). Кроме понима-ния ЕЯ, в таких системах важно также и распознавание ошибок и их коррекция.

Основная проблема обработки естественного языка Основной проблемой обработки ЕЯ является языковая неоднозначность. Суще-

ствуют самые разные виды неоднозначности: синтаксическая (структурная), смыс-ловая неоднозначность, падежная неоднозначность и т. д.

Центральная проблема, как для общей, так и для прикладной обработки ЕЯ - раз-решение такого рода неоднозначностей - решается с помощью перевода внешнего представления ЕЯ в некую внутреннюю структуру. Для общей обработки ЕЯ такое превращение требует набора знаний о реальном мире.

Прикладные системы обработки ЕЯ имеют преимущество перед общими, т.к. ра-ботают в узких предметных областях.

Тем не менее, создание систем, имеющих возможность общения на ЕЯ в широких областях, возможно, хотя пока результаты далеки от удовлетворительных.

Page 21: Искусственный интелект

21Искусственный интеллект Распознавание речи

По мере развития компьютерных систем становится все более очевидным, что ис-пользование этих систем намного расширится, если станет возможным использова-ние человеческой речи при работе непосредственно с компьютером, и в частности станет возможным управление машиной обычным голосом в реальном времени, а также ввод и вывод информации в виде обычной человеческой речи.

Существующие технологии распознавания речи не имеют пока достаточных возможностей для их широкого использования, но на данном этапе исследований проводится интенсивный поиск возможностей употребления коротких многознач-ных слов (процедур) для облегчения понимания. Распознавание речи в настоящее время нашло реальное применение в жизни, пожалуй, только в тех случаях, когда используемый словарь сокращен до 10 знаков, например при обработке номеров кредитных карт и прочих кодов доступа в базирующихся на компьютерах системах, обрабатывающих передаваемые по телефону данные. Так что насущная задача – распознавание, по крайней мере, 20 тысяч слов естественного языка - остается пока недостижимой. Эти возможности пока недоступны для широкого коммерче-ского использования. Однако ряд компаний своими силами пытается использовать уже существующие в данной области науки знания.

Для успешного распознавания речи следует решить следующие задачи: 1. обработку словаря (фонемный состав),2. обработку синтаксиса, 3. сокращение речи (включая возможное использование жестких сценариев), 4. выбор диктора (включая возраст, пол, родной язык и диалект), тренировку

дикторов, 5. выбор особенного вида микрофона (принимая во внимание направленность

и местоположение микрофона), 6. условия работы системы и получения результата с указанием ошибок. Существующие сегодня системы распознавания речи основываются на сборе

всей доступной (порой даже избыточной) информации, необходимой для рас-познавания слов. Исследователи считают, что таким образом задача распознавания образца речи, основанная на качестве сигнала, подверженного изменениям, будет достаточной для распознавания, но, тем не менее, в настоящее время даже при рас-познавании небольших сообщений нормальной речи, пока невозможно после по-лучения разнообразных реальных сигналов осуществить прямую трансформацию в лингвистические символы, что является желаемым результатом.

Проблема искусственного интеллекта Гносеологический анализ проблемы искусственного интеллекта вскрывает

роль таких познавательных орудий, как категории, специфическая семиотическая система, логические структуры, ранее накопленное знание. Они обнаруживаются не посредством исследования физиологических или психологических механизмов познавательного процесса, а выявляются в знании, в его языковом выражении. Орудия познания, формирующиеся, в конечном счете, на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактно-

Page 22: Искусственный интелект

22 Искусственный интеллект го мышления, независимо от ее конкретного материального субстрата и структуры. Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления, т. е. в конечном счете, формирующую адекватные схемы внешних действий в суще-ственно меняющихся средах, необходимо наделить такую систему этими орудиями.

Развитие систем искусственного интеллекта за последние десятилетия идет по этому пути. Однако степень продвижения в данном направлении в отношении каждого из указанных познавательных орудий неодинакова и в целом пока незна-чительна.

1. В наибольшей мере системы искусственного интеллекта используют формально-логические структуры, что обусловлено их неспецифичностью для мышления и, в сущности, алгоритмическим характером. Это дает возможность относительно легкой их технической реализации. Однако даже здесь кибернети-ке предстоит пройти большой путь. В системах искусственного интеллекта еще слабо используются модальная, императивная, вопросная и иные логики, которые функционируют в человеческом интеллекте и не менее необходимы для успешных познавательных процессов, чем давно освоенные логикой, а затем и кибернети-кой формы вывода. Повышение «интеллектуального» уровня технических систем, безусловно, связано не только с расширением применяемых логических средств, но и с более интенсивным их использованием (для проверки информации на не-противоречивость, конструирования планов вычислений и т. д.).

2. Намного сложнее обстоит дело с семиотическими системами, без которых интеллект невозможен. Языки, используемые в ЭВМ, еще далеки от семиотических структур, которыми оперирует мышление.

Прежде всего, для решения ряда задач необходимо последовательное прибли-жение семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпри-нимаются попытки наделить входные языки ЭВМ универсалиями языка, например полисемией (которая элиминируется при обработке в лингвистическом процессо-ре). Разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом этой работы является создание семантических языков (и их формализация), в которых слова-символы имеют интерпретацию.

Однако многие универсалии естественных языков, необходимые для выполнения ими познавательных функций, в языках искусственного интеллекта пока реали-зованы слабо (например, открытость) или используются ограниченно (например, полисемия). Все большее воплощение в семиотических системах универсалий есте-ственного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем искусственного интеллекта, особен-но тех, в которых проблемная область заранее жестко не определена.

Современные системы искусственного интеллекта способны осуществлять перевод с одномерных языков на многомерные. В частности, они могут строить диаграммы, схемы, чертежи, графы, высвечивать на экранах кривые и т. д. ЭВМ производят и обратный перевод (описывают графики и тому подобное с помощью символов). Такого рода перевод является существенным элементом интеллектуаль-

Page 23: Искусственный интелект

23Искусственный интеллект ной деятельности. Но современные системы искусственного интеллекта пока не способны к непосредственному (без перевода на символический язык) использо-ванию изображений или воспринимаемых сцен для «интеллектуальных» действий. Поиск путей глобального (а не локального) оперирования информацией составляет одну из важнейших и перспективных задач теории искусственного интеллекта.

3. Воплощение в информационные массивы и программы систем искусствен-ного интеллекта аналогов категорий находится пока в начальной стадии. Аналоги некоторых категорий (например, «целое», «часть», «общее», «единичное») использу-ются в ряде систем представления знаний, в частности в качестве «базовых отноше-ний», в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют системы.

В формализованном понятийном аппарате некоторых систем представления знаний предприняты отдельные (теоретически существенные и практически важные) попытки выражения некоторых моментов содержания и других категорий (например, «причина», «следствие»). Однако ряд категорий (например, «сущность», «явление») в языках систем представления знаний отсутствует. Проблема в целом разработчиками систем искусственного интеллекта в полной мере еще не осмысле-на, и предстоит большая работа философов, логиков и кибернетиков по внедрению аналогов категорий в системы представления знаний и другие компоненты интел-лектуальных систем. Это одно из перспективных направлений в развитии теории и практики кибернетики.

4. Современные системы искусственного интеллекта почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать про-блемные ситуации, комбинировать локальные части сетей знаний в блоки, пере-страивать эти блоки и т. д.

Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фрей-мах, использующихся при представлении знаний, пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой инфор-мацией, находит нужные данные, перестраивает свою систему знаний и т. д.

5. Еще в меньшей мере современные системы искусственного интеллекта способ-ны активно воздействовать на внешнюю среду, без чего не может; осуществляться самообучение и вообще совершенствование «интеллектуальной» деятельности.

Таким образом, хотя определенные шаги к воплощению гносеологических харак-теристик мышления в современных системах искусственного интеллекта сделаны, но в целом эти системы еще далеко не владеют комплексом гносеологических орудий, которыми располагает человек и которые необходимы для выполнения со-вокупности функций абстрактного мышления. Чем больше характеристики систем искусственного интеллекта будут приближены к гносеологическим характеристи-кам мышления человека, тем ближе будет их «интеллект» к интеллекту человека, точнее, тем выше будет их способность к комбинированию знаковых конструкций, воспринимаемых и интерпретируемых человеком в качестве решения задач и во-обще воплощения мыслей.

В связи с этим возникает сложный вопрос. При анализе познавательного процес-

Page 24: Искусственный интелект

24 Искусственный интеллект са гносеология абстрагируется от психофизиологических механизмов, посредством которых реализуется этот процесс. Но из этого не следует, что для построения систем искусственного интеллекта эти механизмы не имеют значения. Вообще го-воря, не исключено, что механизмы, необходимые для воплощения неотъемлемых характеристик интеллектуальной системы, не могут быть реализованы в цифровых машинах или даже в любой технической системе, включающей в себя только компо-ненты неорганической природы. Иначе говоря, в принципе не исключено, что хотя мы можем познать все гносеологические закономерности, обеспечивающие вы-полнение человеком его познавательной функции, но их совокупность реализуема лишь в системе, субстратно тождественной человеку.

Такой взгляд обосновывается X. Дрейфусом. «Телесная организация человека, - пишет он, - позволяет ему выполнять... функции, для которых нет машинных про-грамм - таковые не только еще не созданы, но даже не существуют в проекте... Эти функции включаются в общую способность человека к приобретению телесных умений и навыков. Благодаря этой фундаментальной способности наделенный телом субъект может существовать в окружающем его мире, не пытаясь решить не-выполнимую задачу формализации всего и вся».

Как отмечают специалисты, подчеркивание значения «телесной организации» для понимания особенностей психических процессов, в частности возможности вос-приятия, заслуживает внимания. Качественные различия в способности конкретных систем отражать мир тесно связаны с их структурой, которая хотя и обладает отно-сительной самостоятельностью, но не может преодолеть некоторых рамок, задан-ных субстратом. В процессе биологической эволюции совершенствование свойства отражения происходило на основе усложнения нервной системы, т. е. субстрата отражения. Не исключается также, что различие субстратов ЭВМ и человека может обусловить фундаментальные различия в их способности к отражению, что ряд функций человеческого интеллекта в принципе недоступен таким машинам.

Иногда в философской литературе утверждается, что допущение возможности выполнения технической системой интеллектуальных функций человека означа-ет сведение высшего (биологического и социального) к низшему (к системам из неорганических компонентов) и, следовательно, противоречит материалистиче-ской диалектике. Однако в этом рассуждении не учитывается, что пути усложне-ния материи однозначно не предначертаны и не исключено, что общество имеет возможность создать из неорганических компонентов (абстрактно говоря, минуя химическую форму движения) системы не менее сложные и не менее способные к отражению, чем биологические. Созданные таким образом системы являлись бы компонентами общества, социальной формой движения. Следовательно, вопрос о возможности передачи интеллектуальных функций техническим системам, и в част-ности о возможности наделения их рассмотренными в работе гносеологическими орудиями, не может быть решен только исходя из философских соображений. Он должен быть подвергнут анализу на базе конкретных научных исследований.

X. Дрейфус подчеркивает, что ЭВМ оперирует информацией, которая не имеет значения, смысла. Поэтому для ЭВМ необходим перебор огромного числа вариан-тов. Телесная организация человека, его организма позволяет отличать значимое

Page 25: Искусственный интелект

25Искусственный интеллект от незначимого для жизнедеятельности и вести поиск только в сфере первого. Для «нетелесной» ЭВМ, утверждает Дрейфус, это недоступно. Конечно, конкретный тип организации тела позволяет человеку ограничивать пространство возможного по-иска. Это происходит уже на уровне анализаторной системы. Совсем иначе обстоит дело в ЭВМ. Когда в кибернетике ставится общая задача, например распознания об-разов, то эта задача переводится с чувственно-наглядного уровня на абстрактный. Тем самым снимаются ограничения, не осознаваемые человеком, но содержащиеся в его «теле», в структуре органов чувств и организма в целом. Они игнорируются ЭВМ. Поэтому пространство поиска резко увеличивается. Это значит, что к «интел-лекту» ЭВМ предъявляются более высокие требования (поиска в более обширном пространстве), чем к интеллекту человека, к которому приток информации ограни-чен физиологической структурой его тела.

Системы, обладающие психикой, отличаются от ЭВМ, прежде всего тем, что им присущи биологические потребности, обусловленные их материальным, биохи-мическим субстратом. Отражение внешнего мира происходит сквозь призму этих потребностей, в чем выражается активность психической системы. ЭВМ не имеет потребностей, органически связанных с ее субстратом, для нее как таковой инфор-мация незначима, безразлична. Значимость, генетически заданная человеку, имеет два типа последствий. Первый - круг поиска сокращается, и, тем самым, облегчается решение задачи. Второй - нестираемые из памяти фундаментальные потребности организма обусловливают односторонность психической системы. Дрейфус пишет в связи с этим: «Если бы у нас на Земле очутился марсианин, ему, наверное, при-шлось бы действовать в абсолютно незнакомой обстановке; задача сортировки релевантного и нерелевантного, существенного и несущественного, которая бы перед ним возникла, оказалась бы для него столь же неразрешимой, как и для циф-ровой машины, если, конечно, он не сумеет принять в расчет никаких человеческих устремлений». С этим нельзя согласиться. Если «марсианин» имеет иную биологию, чем человек, то он имеет и иной фундаментальный слой неотъемлемых потреб-ностей, и принять ему «человеческие устремления» значительно труднее, чем ЭВМ, которая может быть запрограммирована на любую цель.

Животное в принципе не может быть по отношению к этому фундаментальному слою перепрограммировано, хотя для некоторых целей оно может быть запро-граммировано вновь посредством дрессировки. В этом (но только в этом) смысле потенциальные интеллектуальные возможности машины шире таких возможностей животных. У человека над фундаментальным слоем биологических потребностей надстраиваются социальные потребности, и информация для него не только био-логически, но и социально значима. Человек универсален и с точки зрения по-требностей и с точки зрения возможностей их удовлетворения. Однако эта уни-версальность присуща ему как социальному существу, производящему средства целесообразной деятельности, в том числе и системы искусственного интеллекта.

Таким образом, телесная организация не только дает дополнительные возможно-сти, но и создает дополнительные трудности. Поэтому интеллекту человека важно иметь на вооружении системы, свободные от его собственных телесных и иных потребностей, пристрастий. Конечно, от таких систем неразумно требовать, чтобы

Page 26: Искусственный интелект

26 Искусственный интеллект они самостоятельно распознавали образы, классифицировали их по признакам, по которым это делает человек. Им цели необходимо задавать в явной форме.

Вместе с тем следует отметить, что технические системы могут иметь аналог телесной организации. Развитая кибернетическая система обладает рецепторны-ми и эффекторными придатками. Начало развитию таких систем положили инте-гральные промышленные роботы, в которых ЭВМ в основном выполняет функцию памяти. В роботах третьего поколения ЭВМ выполняет и «интеллектуальные» функции. Их взаимодействие с миром призвано совершенствовать их «интеллект». Такого рода роботы имеют «телесную организацию», конструкция их рецепторов и эффекторов содержит определенные ограничения, сокращающие пространство, в котором, абстрактно говоря, могла бы совершать поиск цифровая машина.

Тем не менее, совершенствование систем искусственного интеллекта на базе цифровых машин может иметь границы, из-за которых переход к решению интел-лектуальных задач более высокого порядка, требующих учета глобального харак-тера переработки информации и ряда других гносеологических характеристик мышления, невозможен на дискретных машинах при сколь угодно совершенной программе. Это значит, что техническая (а не только биологическая) эволюция от-ражающих систем оказывается связанной с изменением материального субстрата и конструкции этих систем. Такая эволюция, т. е. аппаратурное усовершенствование систем искусственного интеллекта, например, через более интенсивное использо-вание аналоговых компонентов, гибридных систем, голографии и ряда других идей, будет иметь место. При этом не исключается использование физических процессов, протекающих в мозгу, и таких, которые психика в качестве своих механизмов не использует. Наряду с этим еще далеко не исчерпаны возможности совершенствова-ния систем искусственного интеллекта путем использования в функционировании цифровых машин гносеологических характеристик мышления, о которых речь шла выше.

В последнее время при анализе проблем, связанных с искусственным интеллек-том, часто применяют математический аппарат нечетких множеств, идея и реализа-ция которого принадлежит американскому математику Л.А.Заде. Суть его подхода состоит в своего рода некотором отказе от принципа детерминизма. Пожалуй, наи-более поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важ-нейших проблем науки. Смещение центра исследований нечетких систем в сторо-ну практических приложений привело к постановке целого ряда проблем таких, как новые архитектуры компьютеров для нечетких вычислений, элементная база нечетких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое. Математическая теория нечетких множеств, предложенная Л.А.Заде около тридцати лет назад, позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области при-

Page 27: Искусственный интелект

27Искусственный интеллект менения компьютеров. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информа-ции интерпретируются качественно, неточно или неопределенно. Эксперименталь-но показано, что нечеткое управление дает лучшие результаты, по сравнению с по-лучаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечет-кая логика, на которой основано нечеткое управление, ближе по духу к человече-скому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.

Заключение Природа мышления, загадка сознания, тайна разума, все это, безусловно, одна из

наиболее волнующих человека проблем. С того самого момента, как человек стал задумываться над проблемой мышления, в подходе к ней существуют два основных диаметрально противоположных направления: материализм и идеализм. Идеализм исходит из признания мышления некой особой сущностью, в корне отличной от материи, от всего того, с чем мы имеем дело во внешнем мире. Материализм, на-против, утверждает, что вещественный, чувственно воспринимаемый нами мир, к которому принадлежим мы сами, есть единственный действительный мир и наше сознание и мышление, как бы ни казалось оно сверхчувствительным, являются про-дуктом вещественного, телесного органа.

Можно пытаться объяснить, что, так как кибернетика позволяет моделировать не-которые функции мозга, то сознание или разум имеет чисто материальную основу. Однако данная область может считаться слабо изученной, несмотря на труд не одного поколения ученых, и делать подобные выводы еще более чем рано.

До сих пор диалектико-материалистическое понимание мышления опиралось, главным образом, на обобщенные данные психологии, физиологии и языкознания. Данные кибернетики позволяют поставить вопрос о более конкретном понимании мышления.

Инструментом философии является знание. Именно инструментом, а не резуль-татом. Знание не есть конечный предмет, который можно положить в сундук и сказать: «Да, теперь у меня есть знание!» Знание - это цепочка. Знание в области искусственного интеллекта - тоже есть цепочка, причем бесконечная.

Инструментом же кибернетики является моделирование. С точки зрения теории моделирования вообще не имеет смысла говорить о полном тождестве модели и оригинала. Поэтому нельзя стопроцентно смоделировать разумное поведение, объект, способный мыслить, и поместить его все в тот же сундук. Все это вполне со-

Page 28: Искусственный интелект

28 Искусственный интеллект гласуется с понятием знания.

Развитие информационной техники позволило компенсировать человеку психо-физиологическую ограниченность своего организма в ряде направлений. «Внешняя нервная система», создаваемая и расширяемая человеком, уже дала ему возмож-ность вырабатывать теории, открывать количественные закономерности, раздви-гать пределы познания сложных систем. Искусственный интеллект и его совершен-ствование превращают границы сложности, доступные человеку, в систематически раздвигаемые. Это особенно важно в современную эпоху, когда общество не может успешно развиваться без рационального управления сложными и сверхсложными системами. Разработка проблем искусственного интеллекта является существен-ным вкладом в осознание человеком закономерностей внешнего и внутреннего мира, в их использование в интересах общества и, тем самым, в развитие свободы человека.

Page 29: Искусственный интелект

29Искусственный интеллект

Исторически сложились три основных направления в моделировании ИИ.В рамках первого подхода объектом исследований являются структура и ме-

ханизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспе-риментов с ними, выдвижение новых гипотез относительно механизмов интеллек-туальной деятельности, совершенствование моделей и т. д.

Второй подход в качестве объекта исследования рассматривает ИИ. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислитель-ных машин. Целью работ в этом направлении является создание алгоритмическо-го и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.

Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих и сследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.

Самыми первыми интеллектуальными задачами, которые стали решаться при помощи ЭВМ были логические игры (шашки, шахматы), доказательство теорем. Хотя, правда здесь надо отметить еще кибернетические игрушки типа «электронной мыши» Клода Ш еннона, которая управлялась сложной релейной схемой. Эта мыш-ка могла «исследовать» лабиринт, и находить выход из него. А кроме того, помещен-ная в уже известный ей лабиринт, она не искала выход, а сразу же, не заглядывая в тупиковые ходы, выходила из лабиринта.

Американский кибернетик А. Самуэль составил для вычислительной машины программу, которая позволяет ей играть в шашки, причем в ходе игры машина обучается или, по крайней мере, создает впечатление, что обучается, улучшая свою игру на ос нове накопленного опыта. В 1962 г. эта программа сразилась с Р. Нили, сильнейшим шашистом в США и победила.

Каким образом машине удалось достичь столь высокого класса игры?Естественно, что в машину были программно заложены правила игры так, что вы-

бор очередного хода был подчинен этим правилам. На каждой стадии игры машина выбирала очередной ход из множества возможных ходов согласно некоторому кри-терию ка чества игры. В шашках (как и в шахматах) обычно невыгодно терять свои фигуры, и, напротив, выгодно брать фигуры противника. Игрок (будь он человек или машина), который сохраняет подвижность своих фигур и право выбора ходов и в то же время держит под боем большое число полей на доске, обычно играет луч-ше своего противника, не придающего значения этим элементам игры. Описанные критерии хорошей игры сохраняют свою силу на протяжении всей игры, но есть

История развития систем искусственного интеллекта

Page 30: Искусственный интелект

30 Искусственный интеллект и другие критерии, которые относятся к отдельным ее стадиям — дебюту, миттэн-дшпилю, эндшпилю.

Разумно сочетая такие критерии (например в виде линейной комбинации с экс-периментально подбираемыми коэффициентами или более сложным образом), можно для оценки очередного хода машины получить некоторый числовой по-казатель эффективности — оценочную функцию. Тогда машина, сравнив между собой показатели эффективности очередных ходов, выберет ход, соответствующий наибольшему показателю. Подобная автоматизация выбора очередного хода не обязательно обеспечивает оптимальный выбор, но все же это какой-то выбор, и на его основе машина может продолжать игру, совершенствуя свою стратегию (образ действия) в процессе обучения на прошлом опыте. Формально обучение состоит в подстройке параметров (коэффициентов) о ценочной функции на основе анализа проведенных ходов и игр с учетом их исхода.

По мнению А. Самуэля, машина, использующая этот вид обучения, может научить-ся играть лучше, чем средний игрок, за относительно короткий период времени.

Можно сказать, что все эти элементы интеллекта, продемонстрированные маши-ной в процессе игры в шашки, сообщены ей автором программы. Отчасти это так. Но не следует забывать, что программа эта не является «жесткой», заранее проду-манной во всех деталях. Она совершенствует свою стратегию игры в процессе само-обучения. И хотя процесс «мышления» у машины существенно отличен оттого, что происходит в мозгу играющего в шашки человека, она способна у него выиграть.

Ярким примером сложной интеллектуальной игры до недавнего времени явля-лись шахматы. В 1974 г. состоялся международный шахматный турнир машин, снаб-женных соответствующими программами. Как известно, победу на этом турнире одержала советс кая машина с шахматной программой «Каисса».

Почему здесь употреблено «до недавнего времени»? Дело в том, что недавние события показали, что несмотря на довольно большую сложность шахмат, и невоз-можность, в связи с этим произвести полный перебор ходов, возможность пере-бора их на большую глубину, чем обычно, очень увеличивает шансы на победу. К примеру, по сообщениям в печати, компьютер фирмы IBM, победивший Каспарова, имел 256 процессоров, каждый из которых имел 4 Гб дисковой памяти и 128 Мб оперативной. Весь этот комплекс мог просчитывать более 100'000'000 ходов в се-кунду. До недавнего времени редкостью был компьютер, могущий делать такое ко-личество целочисленных операций в секунду, а здесь мы говорим о хо дах, которые должны быть сгенерированы и для которых просчитаны оценочные функции. Хотя с другой стороны, этот пример говорит о могуществе и универсальности переборных алгоритмов.

В настоящее время существуют и успешно применяются программы, позволяю-щие машинам играть в деловые или военные игры, имеющие большое приклад-ное значение. Здесь также чрезвычайно важно придать программам присущие человеку способность к обучению и адаптации. Одной из наиболее интересных интеллектуальных задач, также имеющей огромное прикладное значение, является задача обучения распознавания образов и ситуаций. Решением ее занимались и продолжают заниматься представители различных наук — физиологи, психологи,

Page 31: Искусственный интелект

31Искусственный интеллект математики, инженеры. Такой интерес к задаче стимулировался фантастическими перспективами широкого практического использования результатов теоретических исследований: читающие автоматы, системы ИИ, ставящие медицинские диагнозы, п роводящие криминалистическую экспертизу и т. п., а также роботы, способные распознавать и анализировать сложные сенсорные ситуации.

В 1957 г. американский физиолог Ф. Розенблатт предложил модель зрительного восприятия и распознавания — перцептрон. Появление машины, способной обу-чаться понятиям и распознавать предъявляемые объекты, оказалось чрезвычайно интересным н е только физиологам, но и представителям других областей знания и породило большой поток теоретических и экспериментальных исследований.

Перцептрон или любая программа, имитирующая процесс распознавания, ра-ботают в двух режимах: в режиме обучения и в режиме распознавания. В режиме обучения некто (человек, машина, робот или природа), играющий роль учителя, предъявляет ма шине объекты и о каждом их них сообщает, к какому понятию (клас-су) он принадлежит. По этим данным строится решающее правило, являющееся, по существу, формальным описанием понятий. В режиме распознавания машине предъявляются новые объекты (вообще говоря, отличные от ранее предъявлен-ных), и она должна их классифицировать, по возможности, правильно.

Проблема обучения распознаванию тесно связана с другой интеллектуальной задачей — проблемой перевода с одного языка на другой, а также обучения ма-шины языку. При достаточно формальной обработке и классификации основных грамматических п равил и приемов пользования словарем можно создать вполне удовлетворительный алгоритм для перевода, скажем научного или делового текста. Для некоторых языков такие системы были созданы еще в конце 60-г. Однако для того, чтобы связно перевести достаточно большой разговорный текст, необходимо понимать его смысл. Работы над такими программами ведутся уже давно, но до полного успеха еще далеко. Имеются также программы, обеспечивающие диалог между человеком и машиной на урезанном естественном языке.

Что же касается моделирования логического мышления, то хорошей модельной задачей здесь может служить задача автоматизации доказательства теорем. На-чиная с 1960 г., был разработан ряд программ, способных находить доказательства теорем в исчислении предикатов первого порядка. Эти программы обладают, по словам американского специалиста в области ИИ Дж. Маккатти, «здравым смыс-лом», т. е. способностью делать дедуктивные заключения.

В программе К. Грина и др., реализующей вопросно-ответную систему, знания за-писываются на языке логики предикатов в виде набора аксиом, а вопросы, задавае-мые машине, формулируются как подлежащие доказательству теоремы. Большой интерес представляет «интеллектуальная» программа американского математика Хао Ванга. Эта программа за 3 минуты работы IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8.5 мин выдала доказательства еще 130 более сложных теорем, часть их которых еще не была выведена математиками. Правда, до сих пор ни одна программа не вы-вела и не доказала ни одной теоремы, которая бы, что называется «позарез» была бы нужна математи кам и была бы принципиально новой.

Page 32: Искусственный интелект

32 Искусственный интеллект Очень большим направлением систем ИИ является роботехника. В чем основное

отличие интеллекта робота от интеллекта универсальных вычислительных машин?Для ответа на этот вопрос уместно вспомнить принадлежащее великому русско-

му физиологу И. М. Сеченову высказывание: «… все бесконечное разнообразие внешних проявлений мозговой деятельности сводится окончательно лишь к одно-му явлению — м ышечному движению». Другими словами, вся интеллектуальная деятельность человека направлена в конечном счете на активное взаимодействие с внешним миром посредством движений. Точно так же элементы интеллекта робота служат прежде всего для организации его ц еленаправленных движений. В то же время основное назначение чисто компьютерных систем ИИ состоит в решении интеллектуальных задач, носящих абстрактный или вспомогательный характер, которые обычно не связаны ни с восприятием окружающей среды с помощью иск усственных органов чувств, ни с организацией движений исполнительных механиз-мов.

Первых роботов трудно назвать интеллектуальными. Только в 60-х годах появи-лись очуствленные роботы, которые управлялись универсальными компьютерами. К примеру в 1969 г. в Электротехнической лаборатории (Япония) началась разра-ботка прое кта «промышленный интеллектуальный робот». Цель этой разработки — создание очуствленного манипуляционного робота с элементами искусственного интеллекта для выполнения сборочно-монтажных работ с визуальным контролем.

Манипулятор робота имеет шесть степеней свободы и управляется мини-ЭВМ NEAC-3100 (объем оперативной памяти 32000 слов, объем внешней памяти на магнитных дисках 273000 слов), формирующей требуемое про граммное движение, которое отрабатывается следящей электрогидравлической системой. Схват мани-пулятора оснащен тактильными датчиками.

В качестве системы зрительного восприятия используются две телевизионные камеры, снабженные красно-зелено-синими фильтрами для распознавания цвета предметов. Поле зрения телевизионной камеры разбито на 64*64 ячеек. В резуль-тате обработ ки полученной информации грубо определяется область, занимаемая интересующим робота предметом. Далее, с целью детального изучения этого пред-мета выявленная область вновь делится на 4096 ячеек. В том случае, когда предмет не помещается в выбранное «окошко «, оно автоматически перемещается, подобно тому, как человек скользит взглядом по предмету. Робот Электротехнической лабо-ратории был способен распознавать простые предметы, ограниченные плоскостя-ми и цилиндрическими поверхностями при специальном освещени и. Стоимость данного экспериментального образца составляла примерно 400000 долларов.

Постепенно характеристики роботов монотонно улучшались, Но до сих пор они еще далеки по понятливости от человека, хотя некоторые операции уже выполняют на уровне лучших жонглеров. К примеру удерживают на лезвии ножа шарик от на-стольног о тенниса.

Еще пожалуй здесь можно выделить работы киевского Института кибернетики, где под руководством Н. М. Амосова и В. М. Глушкова (ныне покойного) ведется комплекс исследований, направленных на разработку элементов интеллекта робо-тов. Особо е внимание в этих исследованиях уделяется проблемам распознавания

Page 33: Искусственный интелект

33Искусственный интеллект изображений и речи, логического вывода (автоматического доказательства теорем) и управления с помощью нейроподобных сетей.

К примеру можно рассмотреть созданный еще в 70-х годах макет транспортно-го автономного интегрального робота (ТАИР). Конструктивно ТАИР представляет собой трехколесное шасси, на котором смонтирована сенсорная система и блок управления. Сенсорная система включает в себя следующие средства очуствления: оптический дальномер, навигационная система с двумя радиомаяками и компасом, контактные датчики, датчики углов наклона тележки, таймер и др. И особенность, которая отличает ТАИР от многих других систем, созданных у нас и за рубежом, это то, что в его составе нет компьютера в том виде, к которому мы привыкли. Основу системы управления составляет бортовая нейроподобная сеть, на которой реали-зуются различные алгоритмы обработки сенсорной инф ормации, планирования поведения и управления движением робота.

В конце данного очень краткого обзора рассмотрим примеры крупномасштабных экспертных систем.

MICIN — экспертная система для медицинской диагностики. Разработана группой по инфекционным заболеваниям Стенфордского университета. Ставит соответ-ствующий диагноз, исходя из представленных ей симпт омов, и рекомендует курс медикаментозного лечения любой из диагностированных инфекций. База данных состоит из 450 правил.

PUFF — анализ нарушения дыхания. Данная система представляет собой MICIN, из которой удалили данные по инфекциям и вставили данные о легочных заболева-ниях.

DENDRAL — распознавание химических структур. Данная система старейшая, из имеющих звание экспертных. Первые версии данной системы появились еще в 1965 году во все том же Стенфордском университете. По льзователь дает систе-ме DENDRAL некоторую информацию о веществе, а также данные спектрометрии (инфракрасной, ядерного магнитного резонанса и масс-спектрометрии), и та в свою очередь выдает диагноз в виде соответствующе й химической структуры.

PROSPECTOR — экспертная система, созданная для содействия поиску коммерче-ски оправданных месторождений полезных ископаемых.

Page 34: Искусственный интелект

34 Искусственный интеллект

Проблемы ИИ связаны с ресурсамиСообщения об уникальных достижениях специалистов в области искусственного

интеллекта (ИИ), суливших невиданные возможности, пропали со страниц научно-популярных изданий много лет назад. Эйфория, связанная с первыми практически-ми успехами в сфере ИИ, прошла довольно быстро, потому что перейти от исследо-вания экспериментальных компьютерных моделей к решению прикладных задач реального мира оказалось гораздо сложнее, чем предполагалось.

На трудности такого перехода обратили внимание специалисты всего мира, и после детального анализа выяснилось, что практически все проблемы связаны с не-хваткой ресурсов двух типов: компьютерных (вычислительной мощности, емкости оперативной и внешней памяти) и людских (наукоемкая разработка интеллектуаль-ного ПО требует привлечения ведущих специалистов из разных областей знания и организации долгосрочных исследовательских проектов).

К сегодняшнему дню ресурсы первого типа вышли (или выйдут в ближайшие пять-десять лет) на уровень, позволяющий системам ИИ решать весьма сложные для человека практические задачи. А вот с ресурсами второго типа ситуация в мире даже ухудшается- именно поэтому достижения в сфере ИИ связываются в основном с небольшим числом ведущих ИИ-центров при крупнейших университетах.

Перспективные технологииАвтор попытался составить общую картину развития различных направлений

ИИ путем анализа тематики европейских и американских конференций по ИИ за последние несколько лет (ежемесячно в мире проходят десятки таких конферен-ций). Сначала вкратце рассмотрим наиболее активно развиваемые подходы ИИ - в порядке убывания их популярности у специалистов. Надо отметить, что меньшая популярность нередко связана не столько с потенциалом технологии, сколько с отдаленностью перспектив ее прикладной реализации (например, крайне высо-кий потенциал киберзаводов пока не вызывает серьезного интереса из-за наличия множества нерешенных задач по их управлению).

1. Нейронные сетиЭто направление стабильно держится на первом месте. Продолжается совершен-

ствование алгоритмов обучения и классификации в масштабе реального времени, обработки естественных языков, распознавания изображений, речи, сигналов, а также создание моделей интеллектуального интерфейса, подстраивающегося под пользователя. Среди основных прикладных задач, решаемых с помощью нейрон-ных сетей, - финансовое прогнозирование, раскопка данных, диагностика систем, контроль за деятельностью сетей, шифрование данных. В последние годы идет усиленный поиск эффективных методов синхронизации работы нейронных сетей на параллельных устройствах.

2. Эволюционные вычисленияНа развитие сферы эволюционных вычислений (ЭВ; автономное и адаптивное по-

Перспективы и тенденции развития искус-ственного интеллекта

Page 35: Искусственный интелект

35Искусственный интеллект ведение компьютерных приложений и робототехнических устройств) значительное влияние оказали прежде всего инвестиции в нанотехнологии. ЭВ затрагивают прак-тические проблемы самосборки, самоконфигурирования и самовосстановления систем, состоящих из множества одновременно функционирующих узлов. При этом удается применять научные достижения из области цифровых автоматов.

Другой аспект ЭВ - использование для решения повседневных задач автономных агентов в качестве персональных секретарей, управляющих личными счетами, ассистентов, отбирающих нужные сведения в сетях с помощью поисковых алго-ритмов третьего поколения, планировщиков работ, личных учителей, виртуальных продавцов и т. д. Сюда же относится робототехника и все связанные с ней области. Основные направления развития - выработка стандартов, открытых архитектур, ин-теллектуальных оболочек, языков сценариев/запросов, методологий эффективного взаимодействия программ и людей.

Модели автономного поведения предполагается активно внедрять во всевозмож-ные бытовые устройства, способные убирать помещения, заказывать и готовить пищу, водить автомобили и т. п.

В дальнейшем для решения сложных задач (быстрого исследования содержимого Сети, больших массивов данных наподобие геномных) будут использоваться кол-лективы автономных агентов. Для этого придется заняться изучением возможных направлений эволюции подобных коллективов, планирования совместной работы, способов связи, группового самообучения, кооперативного поведения в нечетких средах с неполной информацией, коалиционного поведения агентов, объединяю-щихся «по интересам», научиться разрешать конфликты взаимодействия и т. п.

Особняком стоят социальные аспекты - как общество будет на практике относить-ся к таким сообществам интеллектуальных программ.

3. На третьем - пятом местах (по популярности) располагаются большие группы различных технологий.

3.1 Нечеткая логикаСистемы нечеткой логики активнее всего будут применяться преимущественно в

гибридных управляющих системах.3.2 Обработка изображенийПродолжится разработка способов представления и анализа изображений (сжа-

тие, кодирование при передаче с использованием различных протоколов, обра-ботка биометрических образов, снимков со спутников), независимых от устройств воспроизведения, оптимизации цветового представления на экране и при выводе на печать, распределенных методов получения изображений.

Дальнейшие развитие получат средства поиска, индексирования и анализа смыс-ла изображений, согласования содержимого справочных каталогов при автома-тической каталогизации, организации защиты от копирования, а также машинное зрение, алгоритмы распознавания и классификации образов.

3.3. Экспертные системыСпрос на экспертные системы остается на достаточно высоком уровне. Наи-

большее внимание сегодня привлечено к системам принятия решений в масштабе времени, близком к реальному, средствам хранения, извлечения, анализа и модели-

Page 36: Искусственный интелект

36 Искусственный интеллект рования знаний, системам динамического планирования.

3.4. Интеллектуальные приложенияРост числа интеллектуальных приложений, способных быстро находить опти-

мальные решения комбинаторных проблем (возникающих, например, в транс-портных задачах), связан с производственным и промышленным ростом в развитых странах.

3.5. Распределенные вычисленияРаспространение компьютерных сетей и создание высокопроизводительных кла-

стеров вызвали интерес к вопросам распределенных вычислений - балансировке ресурсов, оптимальной загрузке процессоров, самоконфигурированию устройств на максимальную эффективность, отслеживанию элементов, требующих обновле-ния, выявлению несоответствий между объектами сети, диагностированию кор-ректной работы программ, моделированию подобных систем.

3.6. ОС РВПоявление автономных робототехнических устройств повышает требования к ОС

реального времени - организации процессов самонастройки, планирования обслу-живающих операций, использования средств ИИ для принятия решений в условиях дефицита времени.

3.7. Интеллектуальная инженерияОсобую заинтересованность в ИИ проявляют в последние годы компании, за-

нимающиеся организацией процессов разработки крупных программных систем (программной инженерией). Методы ИИ все чаще используются для анализа ис-ходных текстов и понимания их смысла, управления требованиями, выработкой спецификаций, проектирования, кодогенерации, верификации, тестирования, оценки качества, выявления возможности повторного использования, решения за-дач на параллельных системах.

Программная инженерия постепенно превращается в так называемую интеллек-туальную инженерию, рассматривающую более общие проблемы представления и обработки знаний (пока основные усилия в интеллектуальной инженерии сосредо-точены на способах превращения информации в знания).

3.8. Самоорганизующиеся СУБДСамоорганизующиеся СУБД будут способны гибко подстраиваться под профиль

конкретной задачи и не потребуют администрирования.4. Следующая по популярности группа технологий ИИ.4.1. Автоматический анализ естественных языков (лексический, морфологиче-

ский, терминологический, выявление незнакомых слов, распознавание националь-ных языков, перевод, коррекция ошибок, эффективное использование словарей).

4.2. Высокопроизводительный OLAP-анализ и раскопка данных, способы визуаль-ного задания запросов.

4.3. Медицинские системы, консультирующие врачей в экстренных ситуациях, роботы-манипуляторы для выполнения точных действий в ходе хирургических операций.

4.4. Создание полностью автоматизированных киберзаводов, гибкие экономные производства, быстрое прототипирование, планирование работ, синхронизация

Page 37: Искусственный интелект

37Искусственный интеллект цепочек снабжения, авторизации финансовых транзакций путем анализа профилей пользователей.

5. Небольшое число конференций посвящено выработке прикладных методов, направленных на решение конкретных задач промышленности в области финансов, медицины и математики.

Традиционно высок интерес к ИИ в среде разработчиков игр и развлекательных программ (это отдельная тема). Среди новых направлений их исследований - моде-лирование социального поведения, общения, человеческих эмоций, творчества.

ИИ в Стране восходящего солнцаПрофиль японских конференций (а этой стране принадлежит немало оригиналь-

ных и уникальных достижений в области ИИ), не сильно отличается от общемиро-вого. Тем интереснее эти отличия - на них сосредоточены значительные объемы инвестиций государственных и частных японских организаций. Среди направле-ний, более популярных в Японии в сравнении с европейскими и американскими школами ИИ, отметим следующие: создание и моделирование работы э-рынков и э-ауционов, биоинформатика (электронные модели клеток, анализ белковой информации на параллельных компьютерах, ДНК-вычислители), обработка есте-ственных языков (самообучающиеся многоязычные системы распознавания и понимания смысла текстов), Интернет (интеграция Сети и всевозможных датчиков реального времени в жилых домах, интеллектуальные интерфейсы, автоматизация рутинных работ на основе формализации прикладных и системных понятий Интер-нета, итерационные технологии выделения нужных сведений из больших объемов данных), робототехника (машинное обучение, эффективное взаимодействие автономных устройств, организация движения, навигация, планирование действий, индексация информации, описывающей движение), способы представления и об-работки знаний (повышение качества знаний, методы получения знаний от людей-экспертов, раскопка и поиск данных, решение на этой основе задач реального мира - например, управления документооборотом).

Много работ посвящено алгоритмам логического вывода, обучению роботов, планированию ими действий.

Военные технологииИсследования в области нейронных сетей, позволяющих получить хорошие

(хотя и приближенные) результаты при решении сложных задач управления, часто финансирует военное научное агентство DARPA. Пример - проект Smart Sensor Web, который предусматривает организацию распределенной сети разнообразных дат-чиков, синхронно работающих на поле боя. Каждый объект (стоимостью не более $300) в такой сети представляет собой источник данных - визуальных, электромаг-нитных, цифровых, инфракрасных, химических и т. п. Проект требует новых мате-матических методов решения многомерных задач оптимизации. Ведутся работы по автоматическому распознаванию целей, анализу и предсказанию сбоев техники по отклонениям от типовых параметров ее работы (например, по звуку).

Операция «Буря в пустыне» стала стимулом к развитию экспертных систем с про-двинутым ИИ, применяемым в области снабжения. На разработках, связанных с технологиями машинного зрения, основано все высокоточное оружие

Page 38: Искусственный интелект

38 Искусственный интеллект В СМИ нередко можно прочитать о грядущих схватках самостоятельно действую-

щих армий самоходных машин-роботов и беспилотных самолетов. Однако суще-ствует ряд нерешенных научных проблем, не позволяющих в ближайшие десяти-летия превратить подобные прогнозы в реальность. Прежде всего это недостатки систем автоматического распознавания, не способных правильно анализировать видеоинформацию в масштабе реального времени. Не менее актуальны задачи разрешения коллизий в больших сообществах автономных устройств, абсолютно точного распознавания своих и чужих, выбора подлежащих уничтожению целей, алгоритмов поведения в незнакомой среде и т. п. Поэтому на практике военные пытаются достичь менее масштабных целей. Значительные усилия вкладываются в исследования по распознаванию речи, создаются экспертные и консультацион-ные системы, призванные автоматизировать рутинные работы и снизить нагрузку на пилотов. Нейронные сети достаточно эффективно применяются для обработки сигналов сонаров и отличения подводных камней от мин. Генетические алгорит-мы используются для эвристического поиска решения уравнений, определяющих работу военных устройств (систем ориентации, навигации), а также в задачах рас-познавания - для разделения искусственных и естественных объектов, распознава-ния типов военных машин, анализа изображения, получаемого от камеры с низким разрешением или инфракрасных датчиков.

ЗаключениеКлючевым фактором, определяющим сегодня развитие ИИ-технологий, считает-

ся темп роста вычислительной мощности компьютеров, так как принципы работы человеческой психики по-прежнему остаются неясными (на доступном для мо-делирования уровне детализации). Поэтому тематика ИИ-конференций выглядит достаточно стандартно и по составу почти не меняется уже довольно давно. Но рост производительности современных компьютеров в сочетании с повышением качества алгоритмов периодически делает возможным применение различных научных методов на практике. Так случилось с интеллектуальными игрушками, так происходит с домашними роботами.

Снова будут интенсивно развиваться временно забытые методы простого пере-бора вариантов (как в шахматных программах), обходящиеся крайне упрощенным описанием объектов. Но с помощью такого подхода (главный ресурс для его успеш-ного применения - производительность) удастся решить, как ожидается, множество самых разных задач (например, из области криптографии). Уверенно действовать автономным устройствам в сложном мире помогут достаточно простые, но ресур-соемкие алгоритмы адаптивного поведения. При этом ставится цель разрабатывать системы, не внешне похожие на человека, а действующие, как человек.

Ученые пытаются заглянуть и в более отдаленное будущее. Можно ли создать автономные устройства, способные при необходимости самостоятельно собирать себе подобные копии (размножаться)? Способна ли наука создать соответствующие алгоритмы? Сможем ли мы контролировать такие машины? Ответов на эти вопросы пока нет.

Продолжится активное внедрение формальной логики в прикладные системы представления и обработки знаний. В то же время такая логика не способна полно-

Page 39: Искусственный интелект

39Искусственный интеллект ценно отразить реальную жизнь, и произойдет интеграция различных систем логического вывода в единых оболочках. При этом, возможно, удастся перейти от концепции детального представления информации об объектах и приемов мани-пулирования этой информацией к более абстрактным формальным описаниям и применению универсальных механизмов вывода, а сами объекты будут характери-зоваться небольшим массивом данных, основанных на вероятностных распределе-ниях характеристик.

Сфера ИИ, ставшая зрелой наукой, развивается постепенно - медленно, но неуклонно продвигаясь вперед. Поэтому результаты достаточно хорошо прогно-зируемы, хотя на этом пути не исключены и внезапные прорывы, связанные со стратегическими инициативами. Например, в 80-х годах национальная компьютер-ная инициатива США вывела немало направлений ИИ из лабораторий и оказала существенное влияние на развитие теории высокопроизводительных вычислений и ее применение во множестве прикладных проектов. Такие инициативы будут появляться скорее всего на стыках разных математических дисциплин - теории вероятности, нейронных сетей, нечеткой логики.

Page 40: Искусственный интелект