20
André Gustavo Campos Pereira Joaquim Elias de Freitas Roosewelt Fonseca Soares Cálculo I DISCIPLINA Taxa de variação Autores aula 03

Cal i a03

Embed Size (px)

Citation preview

André Gustavo Campos Pereira

Joaquim Elias de Freitas

Roosewelt Fonseca Soares

Cálculo ID I S C I P L I N A

Taxa de variação

Autores

aula

03

Aula 03  Cálculo ICopyright © 2007 Todos os direitos reservados. Nenhuma parte deste material pode ser utilizada ou reproduzida sem a autorização expressa da

UFRN - Universidade Federal do Rio Grande do Norte.

Divisão de Serviços TécnicosCatalogação da publicação na Fonte. UFRN/Biblioteca Central “Zila Mamede”

Governo Federal

Presidente da RepúblicaLuiz Inácio Lula da Silva

Ministro da EducaçãoFernando Haddad

Secretário de Educação a Distância – SEEDCarlos Eduardo Bielschowsky

Universidade Federal do Rio Grande do Norte

ReitorJosé Ivonildo do Rêgo

Vice-ReitoraÂngela Maria Paiva Cruz

Secretária de Educação a DistânciaVera Lúcia do Amaral

Secretaria de Educação a Distância- SEDIS

Coordenadora da Produção dos MateriaisMarta Maria Castanho Almeida Pernambuco

Coordenador de EdiçãoAry Sergio Braga Olinisky

Projeto GráficoIvana Lima

Revisores de Estrutura e LinguagemEugenio Tavares BorgesJânio Gustavo BarbosaThalyta Mabel Nobre Barbosa

Revisora das Normas da ABNT

Verônica Pinheiro da Silva

Revisoras de Língua Portuguesa

Janaina Tomaz CapistranoSandra Cristinne Xavier da Câmara

Revisores Técnicos

Leonardo Chagas da SilvaThaísa Maria Simplício Lemos

Revisora TipográficaNouraide Queiroz

IlustradoraCarolina Costa

Editoração de ImagensAdauto HarleyCarolina Costa

Diagramadores

Bruno de Souza MeloDimetrius de Carvalho Ferreira

Ivana LimaJohann Jean Evangelista de Melo

Adaptação para Módulo MatemáticoAndré Quintiliano Bezerra da SilvaKalinne Rayana Cavalcanti Pereira

Thaísa Maria Simplício Lemos

ColaboradoraViviane Simioli Medeiros Campos

Imagens UtilizadasBanco de Imagens Sedis - UFRN

Fotografias - Adauto HarleyStock.XCHG - www.sxc.hu

Pereira, André Gustavo Campos Cálculo I / André Gustavo Campos Pereira, Joaquim Elias de Freitas, Roosewelt Fonseca Soares. – Natal, RN: EDUFRN Editora da UFRN, 2008.

220 p.

1. Cálculo. 2. Funções reais. 3. Reta real. 4. Funções compostas. I. Freitas, Joaquim Elias de. II Soares, Roosewelt Fonseca. III. Título.

ISBN: 978-85-7273-398-4

CDD 515RN/UF/BCZM 2008/12 CDU 517.2/.3

Aula 03  Cálculo I �Copyright © 2007 Todos os direitos reservados. Nenhuma parte deste material pode ser utilizada ou reproduzida sem a autorização expressa da

UFRN - Universidade Federal do Rio Grande do Norte.

Divisão de Serviços TécnicosCatalogação da publicação na Fonte. UFRN/Biblioteca Central “Zila Mamede”

Governo Federal

Presidente da RepúblicaLuiz Inácio Lula da Silva

Ministro da EducaçãoFernando Haddad

Secretário de Educação a Distância – SEEDCarlos Eduardo Bielschowsky

Universidade Federal do Rio Grande do Norte

ReitorJosé Ivonildo do Rêgo

Vice-ReitoraÂngela Maria Paiva Cruz

Secretária de Educação a DistânciaVera Lúcia do Amaral

Secretaria de Educação a Distância- SEDIS

Coordenadora da Produção dos MateriaisMarta Maria Castanho Almeida Pernambuco

Coordenador de EdiçãoAry Sergio Braga Olinisky

Projeto GráficoIvana Lima

Revisores de Estrutura e LinguagemEugenio Tavares BorgesJânio Gustavo BarbosaThalyta Mabel Nobre Barbosa

Revisora das Normas da ABNT

Verônica Pinheiro da Silva

Revisoras de Língua Portuguesa

Janaina Tomaz CapistranoSandra Cristinne Xavier da Câmara

Revisores Técnicos

Leonardo Chagas da SilvaThaísa Maria Simplício Lemos

Revisora TipográficaNouraide Queiroz

IlustradoraCarolina Costa

Editoração de ImagensAdauto HarleyCarolina Costa

Diagramadores

Bruno de Souza MeloDimetrius de Carvalho Ferreira

Ivana LimaJohann Jean Evangelista de Melo

Adaptação para Módulo MatemáticoAndré Quintiliano Bezerra da SilvaKalinne Rayana Cavalcanti Pereira

Thaísa Maria Simplício Lemos

ColaboradoraViviane Simioli Medeiros Campos

Imagens UtilizadasBanco de Imagens Sedis - UFRN

Fotografias - Adauto HarleyStock.XCHG - www.sxc.hu

Pereira, André Gustavo Campos Cálculo I / André Gustavo Campos Pereira, Joaquim Elias de Freitas, Roosewelt Fonseca Soares. – Natal, RN: EDUFRN Editora da UFRN, 2008.

220 p.

1. Cálculo. 2. Funções reais. 3. Reta real. 4. Funções compostas. I. Freitas, Joaquim Elias de. II Soares, Roosewelt Fonseca. III. Título.

ISBN: 978-85-7273-398-4

CDD 515RN/UF/BCZM 2008/12 CDU 517.2/.3

Apresentação

Nas aulas 1 (Limite de funções reais em um ponto) e 2 (Funções contínuas), estudamos os conceitos de limite e continuidade de uma função que me respondem perguntas sobre o que está acontecendo com a função em pontos específicos, como, por

exemplo, se está havendo saltos ou se está fluindo de modo contínuo. Entretanto, quando estudamos um processo qualquer, gostaríamos de ter idéia do que podemos esperar dele logo após o ponto em que o observamos. Esse tipo de questão começará a ser discutida nesta aula por meio do estudo das taxas de variação tanto média quanto instantânea. Ao final, introduziremos os conceitos e as propriedades da derivada de uma função, discussão que se estenderá por mais algumas aulas.

ObjetivosAo final desta aula, esperamos que você tenha entendido a diferença entre taxa de variação média e instantânea, saiba calculá-las e aplicá-las em alguns casos simples.

Aula 03  Cálculo I� Aula 03  Cálculo I

Taxa de variação

O que vem a sua mente quando alguém fala que a taxa de natalidade no Brasil cresceu? Se cresceu é porque está nascendo mais gente, não é isso? Mas, como se mede isso? Você tem que ter um período de tempo fixo para comparar, por exemplo, um ano.

Então, a taxa de natalidade seria expressa em número de nascimento por ano. Se em 2005 tivessem nascido 34.000 pessoas e em 2006 34.001, então, a taxa de natalidade cresceu.

Quando alguém diz que a taxa de juros ao mês é de 4%, o que ele está querendo dizer? Isso quer dizer que se você deposita R$ 100,00 no início do mês, ao final você terá R$ 104,00 na sua conta. Por quê?

O juro não é de 4% ao mês? Então, se você aumentasse R$ 100,00, dobraria o seu dinheiro e ganharia 100% do valor investido, não é isso?

Montando uma regra de 3, teremos Reais −− juros100 −− 100%x −− 4%

; resolvendo, teremos que

x = 4 reais, ou seja, ganhará R$ 4,00 de juros que, juntamente com os R$ 100,00 investidos, você terá ao final do mês R$ 104,00.

Vemos nesses exemplos que uma taxa é qualquer relação entre uma quantidade de referência (sob a qual você tem algum controle, pode escolher o tamanho, por exemplo: mês, ano etc.) e alguma coisa que depende dessa referência (juros cobrados ao mês, número de nascimentos ao ano etc.).

Na aula 8 (Funções I) de Pré-Cálculo, vimos que uma função f : A→ Bx → y = f(x)

é uma

correspondência que a cada elemento de A associa um único elemento de B . Ou seja, fica implícito que os elementos y , as quais serão escolhidos em B , dependerão dos valores x do domínio, já que a relação é dada pela função e expressa por y = f(x) . Por esse motivo, muitos livros referem-se aos pontos do domínio como os valores da variável independente x (você pode escolher o ponto) e os valores da imagem da f como sendo os valores da variável dependente y = f(x) (depois de escolhido x , o valor do y é automaticamente determinado).

Então, se você quisesse calcular uma taxa, quem seria a referência, algo que você pode escolher (um ano, um mês) ou algo sob o que você não tem controle, ou seja, uma coisa que depende de outra quantidade para poder se fazer expressar?

Seria mais coerente aquilo sob o qual tem controle (que você pode escolher). Com isso em mente, podemos começar a estudar taxa de variação.

A taxa de variação estuda e quantifica a razão entre o incremento da variável dependente e o correspondente incremento da variável independente, isto é, o resultado da divisão do

Aula 03  Cálculo I Aula 03  Cálculo I 3

incremento da variável dependente pelo incremento da variável independente, que será o ponto de partida para chegarmos ao conceito de Derivada, fundamental no Cálculo Diferencial. A partir desse conceito, fica fácil definir Velocidade, Aceleração, Densidade de Massa, Lucro Marginal, e muitos outros conceitos usados na Física, na Economia, na Biologia, nas Ciências Sociais, enfim, em todas as áreas do conhecimento científico.

Nesta aula, vamos usar a notação y = f(x) para representar uma função, em que x é a variável independente e y é a variável dependente de x, como discutido anteriormente. Para representar um valor fixo da variável independente x, usamos a notação x0 , e y0 para o valor de f(x0) , isto é, y0 = f(x0).

Um incremento na variável independente x será denotado por ∆x (lemos delta x) e, diferentemente do ∆x que estudamos em limites (veremos mais adiante por que essa permissão não terá problema), poderá ser ∆x > 0 ou ∆x < 0 . Da mesma forma, o valor do conseqüente incremento da variável dependente, que representamos por ∆y (lemos delta y), no ponto x = x0 , é calculado do seguinte modo:

∆y = f(x0 +∆x)− f(x0).

Observação � - Note que as expressões x = x0 +∆x e y = y0 +∆y podem ser reescritas como ∆x = x− x0 e ∆y = y − y0 . Os incrementos podem ser positivos, negativos ou nulos, dependendo da posição relativa dos pontos inicial (antes do acréscimo) e final (depois do acréscimo). Um incremento é positivo se o valor do ponto final for maior que o valor do ponto inicial, é negativo se o valor do ponto final for menor que o valor do ponto inicial e nulo se o valor do ponto final for igual ao do ponto inicial.

Exemplo 1Considere a função y = f(x), sendo f(x) = x2 .

Vamos construir uma tabela na qual a variável independente x tem o valor fixo x0 = 1 , relacionando os incrementos ∆x = −0, 1 ; ∆x = −0, 01; ∆x = 0, 01 e ∆x = 0, 1 com seus respectivos incrementos ∆y na variável dependente.

Vejamos o primeiro caso em que f(x) = x2 , x0 = 1 e ∆x = −0, 1. Desejamos obter o incremento ∆y nessas condições. Como sabemos, ∆y é calculado do seguinte modo

∆y = f(x0 +∆x)− f(x0) .

Portanto,

∆y = f(1 + (−0, 1))− f(1) = f(1− 0, 1)− f(1),∆y = f(0, 9)− f(1) = (0, 9)2 − 12,

∆y = 0, 81− 1 = −0, 19,∆y = −0, 19.

Resumindo, temos f(x) = x2, x0 = 1, ∆x = −0, 1 e ∆y = −0, 19.

Aula 03  Cálculo I� Aula 03  Cálculo I

Atividade 1

Atividade 2

Atividade 3

Calcule o caso em que ∆x = 0, 1 .

Calcule o caso em que ∆x = −0, 01.

Para ∆x = 0, 01 , temos

∆y = f(x0 +∆x)− f(x0) = f(1 + 0, 01)− f(1),

∆y = f(1, 01)− f(1) = (1, 01)2 − 12,

∆y = 1, 0201− 1 = 0, 0201.

Resumindo, temos f(x) = x2, x0 = 1, ∆x = 0, 01 e ∆y = 0, 0201.

Devemos ter chegado ao seguinte resultado.

Tabela � - Relaciona incrementos ∆x e ∆y na função f(x) = x2 para x0 = 1.

∆x -0,1 -0,01 0,01 0,1

∆y -0,19 -0,0199 0,0201 0, 21

Construa outra tabela para a função f(x) = x2 na qual a variável independente x tem o valor x0 = 2 , novamente relacionando os incrementos ∆x = −0, 1; ∆x = −0, 01; ∆x = 0, 01 e ∆x = 0, 1 com seus respectivos incrementos ∆y .

Aula 03  Cálculo I Aula 03  Cálculo I �

Atividade 4

Na Figura 1, a seguir, ilustramos os diferentes valores de ∆y obtidos quando utilizamos dois valores distintos de x0 , e o mesmo valor de ∆x .

Legenda: ∆x ____

∆y ____

Figura � - a) Representação da função y = x2, em x0 = 1 , com ∆x = 1 , e ∆y = 3; b) representação da função y = x2 , em x0 = 2, com ∆x = 1, e ∆y = 5.

Utilizando gráfico da figura anterior, encontre os valores de ∆y quando x0 = 1 , e dois valores distintos de ∆x = −1 e ∆x = 1.

Aula 03  Cálculo I� Aula 03  Cálculo I

Taxa de variação médiaConsiderando a função y = f(x) definimos como taxa de variação média de y entre

os valores x0 e x0 +∆x o valor da razão entre a variação ∆y da variável dependente y, e a variação ∆x da variável independente x, que denotamos por ∆y

∆x.

Portanto, a taxa de variação média de y entre x0 e x0 +∆x é definida como

∆y

∆x=

f(x0 +∆x)− f(x0)∆x

.

Podemos calcular também a taxa de variação média de y = f(x) quando x varia entre x0 e x1,

f(x1)− f(x0)x1 − x0

;

basta que identifiquemos x0 e x0 +∆x = x1.

Vamos tornar esse conceito mais claro utilizando o exemplo 2 a seguir.

Exemplo 2Vamos calcular a taxa de variação média da mesma função y = x2 quando x varia entre

x0 = 1 e x1 = 2. Temos

f(x1)− f(x0)x1 − x0

=f(2)− f(1)

2− 1=

22 − 12

2− 1=

4− 11

= 3 .

Outra maneira seria; identificando, temos x0 = 1 e x0 +∆x = x1 = 2 , ou seja, ∆x = 2− 1 = 1 e, portanto,

∆y

∆x=

f(x0 +∆x)− f(x0)∆x

=f(1 + 1)− f(1)

1=

f(2)− f(1)1

=4− 11

= 3.

Resumindo, a taxa de variação média da função y = x2 quando x varia entre x0 = 1 e

x1 = 2 é igual a 3, isto é, f(x1)− f(x0)

x1 − x0= 3.

Exemplo 3Vamos calcular a taxa de variação média da mesma função y = x2 quando x varia entre

x0 = 2 e x1 = 3 . Temos

f(x1)− f(x0)x1 − x0

=f(3)− f(2)

3− 2=

32 − 22

1=

9− 41

= 5.

Aula 03  Cálculo I Aula 03  Cálculo I �

Outra maneira seria: identificando, temos x0 = 2 e x0 +∆x = x1 = 3 , ou seja, ∆x = 3− 2 = 1 e, portanto,

∆y

∆x=

f(x0 +∆x)− f(x0)∆x

=f(2 + 1)− f(2)

1=

f(3)− f(2)1

=9− 41

= 5.

Observe que a taxa de variação média vai depender dos pontos inicial e final que estamos considerando, pois note que o ∆x foi igual a 1 em ambos os casos, mas a taxa de variação média mudou.

Exemplo 4Vamos calcular a taxa de variação média da função y = sen(x) quando x varia entre

x0 = 0 e x1 = π. Temos

f(π)− f(0)π − 0

=sen(π)− sen(0)

π=

0− 0π

= 0 .

Exemplo 5Vamos calcular a taxa de variação média da função y = sen(x) quando x varia entre

x0 = 0 e x1 =π

2. Temos

f(π

2)− f(0)π

2− 0

=sen(

π

2)− sen(0)π

2

=1− 0π

2

=2π

.

Você deve estar se perguntando depois desses dois últimos exemplos: “Como a taxa de variação média de uma função pode ser maior em um intervalo pequeno do que num intervalo maior que contém esse intervalo menor”? A resposta é bastante direta! Na taxa de variação média, consideramos apenas valores da função nos pontos dados (final e inicial), e não o comportamento geral da função. É como se apenas aqueles valores fossem levados em consideração.

Podemos fazer a seguinte associação. Você chama um amigo para marcar a quilometragem de uma corrida; você diz para ele que vai correr durante cinco minutos (em volta de uma praça); quando o sinal tocar, você pára e então ele fará a medição do ponto de partida até onde você parou pára calcular a quilometragem do número de voltas dadas e, por fim, somar tudo. Entretanto, quando você deu a partida, ele adormeceu, você deu 1,2,3,4,..., n voltas e ao toque do relógio ele acordou, mandou-lhe parar e fez a medição cujo resultado foi 100m. Então ele olha em sua direção e diz: você correu apenas 100 metros em 5 minutos? Ou seja, ele não viu o que aconteceu durante o período, só no início e no final.

Aula 03  Cálculo I� Aula 03  Cálculo I

Atividade 5

Atividade 6

Atividade 7

Usando novamente a mesma função dos exemplos � e �, y = x2, e os cálculos já obtidos, preenchamos as tabelas com mais uma entrada na qual escreveremos as respectivas taxas de variação média.

Mostre que a taxa de variação média da função y = x3 quando x varia entre x0 = 1 e x1 = 3 é igual a 13.

Recalcule as taxas de variação média da atividade anterior usando a equação1.

(Eq. 1)

Para a função f(x) = x2 , temos que a taxa de variação média em um ponto (x0, y0), onde y0 = f(x0) e ∆y = f(x0 +∆x)− f(x0) , é dada por

∆y

∆x=

f(x0 +∆x)− f(x0)∆x

=(x0 +∆x)2 − (x0)2

∆x,

∆y∆x

=x20 + 2x0∆x+ (∆x)

2 − x20∆x

= 2x0 +∆x.

Aula 03  Cálculo I Aula 03  Cálculo I �

Taxa de variação instantâneaConsiderando a função y = f(x), se olharmos para a taxa média entre x0 e x0 +∆x

percebemos que a única quantidade passível de alteração é ∆x , ou seja, podemos ver

Fx0(∆x) =∆y∆x

=f(x0 +∆x)− f(x0)

∆x como uma função de ∆x .

Definimos como taxa de variação instantânea de y no ponto x0 o valor do limite de Fx0(∆x) quando ∆x tende a zero, que denotamos por

lim∆x→0

Fx0(∆x) = lim∆x→0

∆y∆x

= lim∆x→0

f(x0 +∆x)− f(x0)∆x

Em termos de notação, lim∆x→0

Fx0(∆x) = limx→0

Fx0(x). Ora, mas o último limite sabemos calcular, caso exista!

Devemos mostrar que o limite tanto à direita quanto à esquerda existem e são iguais. Lembra como se faz?

Tínhamos que tomar ∆x positivo e verificar se os valores Fx0(0−∆x) e Fx0(0 + ∆x)sempre se aproximavam do mesmo valor quando ∆x tendia para zero. ∆x positivo

Fx0(0−∆x) =∆y∆x

=f(x0 −∆x)− f(x0)

∆x foi o que chamamos no início desta aula de

acréscimo negativo, e Fx0(0 + ∆x) =∆y∆x

=f(x0 +∆x)− f(x0)

∆x era o que estávamos

chamando de acréscimo positivo. Por isso, começamos esta aula já aceitando acréscimos positivos e negativos sem muita distinção, pois no cálculo do limite anterior sabemos como proceder sem problemas.

Para ajudar você a entender melhor o que isso significa, vamos começar com um exemplo simples usando a mesma função vista anteriormente a fim de que possamos observar a diferença entre a taxa de variação média e a taxa de variação instantânea.

Exemplo 6A taxa de variação instantânea da função f(x) = x2 no ponto x0 é dada pelo limite

lim∆x→0

∆y

∆x= lim∆x→0

f(x0 +∆x)− f(x0)∆x

= lim∆x→0

(x0 +∆x)2 − x20∆x

,

lim∆x→0

∆y∆x

= lim∆x→0

x20 + 2x0∆x+ (∆x)2 − x20

∆x= lim∆x→0

2x0∆x+ (∆x)2

∆x,

Aula 03  Cálculo I�0 Aula 03  Cálculo I

Atividade 8

Atividade 9

lim∆x→0

∆y∆x

= lim∆x→0

(2x0 +∆x)∆x∆x

= lim∆x→0

(2x0 +∆x) = 2x0 .

Resumindo, a taxa de variação instantânea da função f(x) = x2 num ponto x0 ,

lim∆x→0

∆y∆x

, é igual a 2x0 .

Comentário - Observe que a taxa de variação instantânea depende apenas do valor do ponto x0 e não depende do valor de ∆x (já que a mesma fizemos ir para zero). Para f(x) = x2 e x0 = 2 , temos que a taxa de variação instantânea é 4 (2 · x0 = 2 · 2 = 4).

Calcule a taxa de variação instantânea da função f(x) = x2 no ponto x0 = 3 .

Mostre que a taxa de variação instantânea da função f(x) = x2 + x no ponto x0 é 2x0 + 1 .

Mostre que a taxa de variação instantânea da função f(x) = x2 + x no ponto x0 = 3 é igual a 7.

Aula 03  Cálculo I Aula 03  Cálculo I ��

Aplicações de taxa de variação

VelocidadeVamos começar com um exemplo de uma corrida de automóvel em um circuito

automobilístico. A letra t representa o tempo, contado a partir da largada, s representa a distância percorrida por um determinado carro participante da corrida. Desse modo, t é a variável independente e s é a variável dependente de t, isto é, s = s(t). Vamos estabelecer que no instante t = 0 a distância percorrida s(0) é nula, isto é, s(0) = 0 . Vamos considerar também que uma volta completa do circuito tenha 4,5 km e que esse carro completou a

primeira volta em 1 min e 30. Desejamos calcular a taxa de variação média ∆s

∆t do carro

nesta primeira volta. Para facilitar os cálculos, usaremos o tempo da primeira volta na forma 1,5 min, em vez de 1 min e 30. Assim, com essas considerações, podemos escrever:

∆s

∆t=

s(t+∆t)− s(t)∆t

=s(0 + 1, 5)− s(0)

1, 5=4, 5− 01, 5

= 3 .

Observe que podemos escrever a taxa de variação média levando em conta as unidades

de medida ∆s

∆t=4, 5km

1, 5min= 3km/min . Quando a variável independente é o tempo t e

a variável dependente é o espaço s, a taxa de variação média é denominada de velocidade média. Assim, para este exemplo, a velocidade média daquele determinado carro na primeira volta foi de 3 km /min.

Velocidade médiaQuando a variável independente é o tempo, a representamos pela letra t. Usualmente, a

variável dependente será denotada por s (t), que representa o espaço percorrido por um objeto até o instante t. Nesse caso, a taxa de variação média é denominada de velocidade média.

Se ∆s

∆t

representa o deslocamento do objeto entre os instantes t e t+∆t, isto é, ∆s = s(t+∆t)− s(t), então, sua velocidade média, que denotamos por vm , nesse intervalo de tempo é

vm =∆s

∆t=

s(t+∆t)− s(t)∆t

.

Aula 03  Cálculo I�� Aula 03  Cálculo I

Velocidade média de um corpo em queda livreImaginemos um corpo em queda livre, como, por exemplo, um objeto que cai da janela

de um prédio. Sabemos por meio da Física que a equação de seu movimento, com velocidade

inicial nula, é dada por s(t) =12

gt2 = 4, 9t2 , sendo s(t) o espaço percorrido pelo objeto em

queda livre até o instante t, considerando a aceleração da gravidade,

g = 9, 8m/seg2.

Vamos calcular a velocidade média, ∆s

∆t, entre t0 e t0 +∆t .

∆s

∆t=

s(t0 +∆t)− s(t0)∆t

=9,82 (t0 +∆t)2 − 9,8

2 t20∆t

,

∆s

∆t=

9,82

t20 + 2t0∆t+ (∆t)2

− 9,8

2 t20∆t

,

∆s

∆t=4, 9t20 + 9, 8t0∆t+ 4, 9(∆t)2 − 4, 9t20

∆t,

∆s

∆t= 9, 8t0 + 4, 9∆t .

Portanto, a velocidade média de um corpo em queda livre entre t0 e t0 +∆t é

∆s

∆t= 9, 8t0 + 4, 9∆t .

Velocidade instantânea de um corpo em queda livre

Vamos agora calcular a velocidade instantânea, v(t0) , de um corpo em queda livre no instante t = t0 , que significa o valor limite das velocidades médias entre t0 e t0 +∆t , calculadas no parágrafo anterior, quando ∆t tende a zero, ∆t→ 0 , isto é,

v(t0) = lim∆t→0

∆s

∆t= lim∆t→0

(9, 8t0 + 4, 9∆t) ,

v(t0) = lim∆t→0

9, 8t0 + lim∆t→0

4, 9∆t = 9, 8t0 + 0 ,

v(t0) = 9, 8t0 .

Comentário - Observe que a velocidade instantânea em um instante t0 pode ser vista como a taxa de variação instantânea da função s(t) no ponto t0 .

Aula 03  Cálculo I Aula 03  Cálculo I �3

Atividade 10

3

Considere a função y = f(x), sendo f(x) = x2 + x .

Construa uma tabela na qual a variável independente x tem o valor fixo x0 = 1 , relacionando os incrementos ∆x = −0, 1, ∆x = −0, 01, ∆x = 0, 01 e ∆x = 0, 1 com seus respectivos incrementos ∆y .

Considerando y = x2 + x , construa uma tabela na qual a variável independente tem o valor x0 = 1 , relacionando os incrementos ∆x = −0, 1 , ∆x = −0, 01 , ∆x = 0, 01 e ∆x = 0, 1 com os

respectivos ∆y e as taxas de variação média entre os valores x0 e x0 +∆x .

Calcule a taxa de variação instantânea da função f(x) = x2 − x no ponto x0 = 2 .

Em uma corrida de automóvel com um total de 62 voltas, realizada em um circuito de rua com 4.500 metros de extensão, o primeiro colocado completou a prova em 1 hora e 30 minutos. Encontre a sua velocidade média em quilômetros por hora.

Calcule a velocidade instantânea, v(t0), de um corpo em queda livre no instante t0 = 10s.

Aula 03  Cálculo I�� Aula 03  Cálculo I

Resumo

Vimos que a palavra taxa significa uma relação existente entre duas grandezas, uma sob a qual controle (independente) e outra que depende da primeira (dependente). Dentre as taxas que podemos montar, estudamos as taxas de

variação média entre dois pontos x0 e x0 +∆x , que representamos por ∆y∆x ,

em que ∆y representa a variação da variável dependente y, e ∆x , a variação da variável independente x. Já a taxa de variação instantânea no ponto x0 é obtida da taxa de variação média entre os pontos x0 e x0 +∆x fazendo ∆x tender

a zero, ou seja, lim∆x→0

∆y

∆x= lim∆x→0

f(x0 +∆x)− f(x0)∆x

. Vimos que essas

taxas recebem nomes como velocidade média e velocidade instantânea quando a função f representa o espaço percorrido e a variável x representa o tempo.

Auto-avaliaçãoSuponha que a função f represente o valor de suas economias no tempo. Suponha que no tempo 0 você tenha R$ 100,00 e que, depois de 1 ano de retiradas e depósitos, você chegou a R$ 110,00.

a) Qual a taxa de variação média de suas economias?

b) Para este cálculo, você levou em consideração todas as retiradas e todos os depósitos ao longo do ano?

c) A taxa de variação foi positiva ou negativa?

d) O que isso significa (você tinha mais dinheiro antes ou agora)?

Com base na questão anterior, faça uma análise do sinal da taxa de variação com relação à quantidade de dinheiro no início e no final do ano.

Aula 03  Cálculo I Aula 03  Cálculo I ��

Anotações

ReferênciasANTON, Howard. Cálculo: um novo horizonte. 6. ed. Porto Alegre: Bookman, 2000. v 1.

SIMMONS, George F. Cálculo: com geometria analítica. São Paulo: McGraw-Hill, 1987. v 1.

THOMAS, George B. Cálculo. São Paulo: Addison Wesley, 2002.

Aula 03  Cálculo I��

Anotações

Aula 03  Cálculo I