120
Chapter Six Demand

Ch6

Embed Size (px)

Citation preview

Page 1: Ch6

Chapter Six

Demand

Page 2: Ch6

Properties of Demand Functions

Comparative statics analysis of ordinary demand functions -- the study of how ordinary demands x1*(p1,p2,y) and x2*(p1,p2,y) change as prices p1, p2 and income y change.

Page 3: Ch6

Own-Price Changes

How does x1*(p1,p2,y) change as p1 changes, holding p2 and y constant?

Suppose only p1 increases, from p1’ to p1’’ and then to p1’’’.

Page 4: Ch6

x1

x2

p1 = p1’

Fixed p2 and y.

p1x1 + p2x2 = y

Own-Price Changes

Page 5: Ch6

Own-Price Changes

x1

x2

p1= p1’’

p1 = p1’

Fixed p2 and y.

p1x1 + p2x2 = y

Page 6: Ch6

Own-Price Changes

x1

x2

p1= p1’’p1=p1’’’

Fixed p2 and y.

p1 = p1’

p1x1 + p2x2 = y

Page 7: Ch6

x2

x1

p1 = p1’

Own-Price ChangesFixed p2 and y.

Page 8: Ch6

x2

x1x1*(p1’)

Own-Price Changes

p1 = p1’

Fixed p2 and y.

Page 9: Ch6

x2

x1x1*(p1’)

p1

x1*(p1’)

p1’

x1*

Own-Price ChangesFixed p2 and y.

p1 = p1’

Page 10: Ch6

x2

x1x1*(p1’)

p1

x1*(p1’)

p1’

p1 = p1’’

x1*

Own-Price ChangesFixed p2 and y.

Page 11: Ch6

x2

x1x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)

p1’

p1 = p1’’

x1*

Own-Price ChangesFixed p2 and y.

Page 12: Ch6

x2

x1x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)

x1*(p1’’)

p1’

p1’’

x1*

Own-Price ChangesFixed p2 and y.

Page 13: Ch6

x2

x1x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)

x1*(p1’’)

p1’

p1’’

p1 = p1’’’

x1*

Own-Price ChangesFixed p2 and y.

Page 14: Ch6

x2

x1x1*(p1’’’) x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)

x1*(p1’’)

p1’

p1’’

p1 = p1’’’

x1*

Own-Price ChangesFixed p2 and y.

Page 15: Ch6

x2

x1x1*(p1’’’) x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)x1*(p1’’’)

x1*(p1’’)

p1’

p1’’

p1’’’

x1*

Own-Price ChangesFixed p2 and y.

Page 16: Ch6

x2

x1x1*(p1’’’) x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)x1*(p1’’’)

x1*(p1’’)

p1’

p1’’

p1’’’

x1*

Own-Price Changes Ordinarydemand curvefor commodity 1Fixed p2 and y.

Page 17: Ch6

x2

x1x1*(p1’’’) x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)x1*(p1’’’)

x1*(p1’’)

p1’

p1’’

p1’’’

x1*

Own-Price Changes Ordinarydemand curvefor commodity 1Fixed p2 and y.

Page 18: Ch6

x2

x1x1*(p1’’’) x1*(p1’)

x1*(p1’’)

p1

x1*(p1’)x1*(p1’’’)

x1*(p1’’)

p1’

p1’’

p1’’’

x1*

Own-Price Changes Ordinarydemand curvefor commodity 1

p1 price offer curve

Fixed p2 and y.

Page 19: Ch6

Own-Price Changes

The curve containing all the utility-maximizing bundles traced out as p1 changes, with p2 and y constant, is the p1- price offer curve.

The plot of the x1-coordinate of the p1- price offer curve against p1 is the ordinary demand curve for commodity 1.

Page 20: Ch6

Own-Price Changes

What does a p1 price-offer curve look like for Cobb-Douglas preferences?

Page 21: Ch6

Own-Price Changes

What does a p1 price-offer curve look like for Cobb-Douglas preferences?

Take

Then the ordinary demand functions for commodities 1 and 2 are

U x x x xa b( , ) .1 2 1 2

Page 22: Ch6

Own-Price Changesx p p y

aa b

yp1 1 21

*( , , )

x p p yb

a by

p2 1 22

* ( , , ) .

and

Notice that x2* does not vary with p1 so thep1 price offer curve is

Page 23: Ch6

Own-Price Changesx p p y

aa b

yp1 1 21

*( , , )

x p p yb

a by

p2 1 22

* ( , , ) .

and

Notice that x2* does not vary with p1 so the

p1 price offer curve is flat

Page 24: Ch6

Own-Price Changesx p p y

aa b

yp1 1 21

*( , , )

x p p yb

a by

p2 1 22

* ( , , ) .

and

Notice that x2* does not vary with p1 so the

p1 price offer curve is flat and the ordinarydemand curve for commodity 1 is a

Page 25: Ch6

Own-Price Changesx p p y

aa b

yp1 1 21

*( , , )

x p p yb

a by

p2 1 22

* ( , , ) .

and

Notice that x2* does not vary with p1 so the

p1 price offer curve is flat and the ordinary

demand curve for commodity 1 is a rectangular hyperbola.

Page 26: Ch6

x1*(p1’’’) x1*(p1’)

x1*(p1’’)

x2

x1

Own-Price ChangesFixed p2 and y.

x

bya b p

2

2

*

( )

xay

a b p11

*

( )

Page 27: Ch6

x1*(p1’’’) x1*(p1’)

x1*(p1’’)

x2

x1

p1

x1*

Own-Price Changes Ordinarydemand curvefor commodity 1 is

Fixed p2 and y.

x

bya b p

2

2

*

( )

xay

a b p11

*

( )

xay

a b p11

*

( )

Page 28: Ch6

Own-Price Changes

What does a p1 price-offer curve look like for a perfect-complements utility function?

Page 29: Ch6

Own-Price Changes

What does a p1 price-offer curve look like for a perfect-complements utility function?

U x x x x( , ) min , .1 2 1 2Then the ordinary demand functionsfor commodities 1 and 2 are

Page 30: Ch6

Own-Price Changes

x p p y x p p yy

p p1 1 2 2 1 21 2

* *( , , ) ( , , ) .

Page 31: Ch6

Own-Price Changes

x p p y x p p yy

p p1 1 2 2 1 21 2

* *( , , ) ( , , ) .

With p2 and y fixed, higher p1 causessmaller x1* and x2*.

Page 32: Ch6

Own-Price Changes

x p p y x p p yy

p p1 1 2 2 1 21 2

* *( , , ) ( , , ) .

With p2 and y fixed, higher p1 causessmaller x1* and x2*.

p x xy

p1 1 22

0 , .* *As

Page 33: Ch6

Own-Price Changes

x p p y x p p yy

p p1 1 2 2 1 21 2

* *( , , ) ( , , ) .

With p2 and y fixed, higher p1 causessmaller x1* and x2*.

p x xy

p1 1 22

0 , .* *As

p x x1 1 2 0 , .* *As

Page 34: Ch6

Fixed p2 and y.

Own-Price Changes

x1

x2

Page 35: Ch6

p1

x1*

Fixed p2 and y.

x

yp p

2

1 2

*

xy

p p11 2

*

Own-Price Changes

x1

x2

p1’

xy

p p11 2

* ’

p1 = p1’

y/p2

Page 36: Ch6

p1

x1*

Fixed p2 and y.

x

yp p

2

1 2

*

xy

p p11 2

*

Own-Price Changes

x1

x2

p1’

p1’’p1 = p1’’

’’x

yp p11 2

* ’’

’’

y/p2

Page 37: Ch6

p1

x1*

Fixed p2 and y.

x

yp p

2

1 2

*

xy

p p11 2

*

Own-Price Changes

x1

x2

p1’

p1’’

p1’’’

xy

p p11 2

*

p1 = p1’’’

’’’’’’

’’’

y/p2

Page 38: Ch6

p1

x1*

Ordinarydemand curvefor commodity 1 is

Fixed p2 and y.

x

yp p

2

1 2

*

xy

p p11 2

*

xy

p p11 2

* .

Own-Price Changes

x1

x2

p1’

p1’’

p1’’’

yp2

y/p2

Page 39: Ch6

Own-Price Changes

What does a p1 price-offer curve look like for a perfect-substitutes utility function?

U x x x x( , ) .1 2 1 2 Then the ordinary demand functionsfor commodities 1 and 2 are

Page 40: Ch6

Own-Price Changes

x p p yif p p

y p if p p1 1 21 2

1 1 2

0*( , , ),

/ ,

x p p yif p p

y p if p p2 1 21 2

2 1 2

0* ( , , ),

/ , .

and

Page 41: Ch6

Fixed p2 and y.

Own-Price Changes

x2

x1

Fixed p2 and y.

x2 0* x

yp11

*

p1 = p1’ < p2

Page 42: Ch6

Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

x2 0* x

yp11

*

p1’

p1 = p1’ < p2

xyp11

* ’

Page 43: Ch6

Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

p1’

p1 = p1’’ = p2

Page 44: Ch6

Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

p1’

p1 = p1’’ = p2

Page 45: Ch6

Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

x2 0*

xyp11

*

p1’

p1 = p1’’ = p2

’’

x1 0*

xy

p22

*

Page 46: Ch6

Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

x2 0*

xy

p12

*

p1’

p1 = p1’’ = p2

x1 0*

xy

p22

*

0 1

2 x

yp

*

p2 = p1’’

Page 47: Ch6

Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

xy

p22

*

x1 0*

p1’

p1’’’

x1 0*

p2 = p1’’

Page 48: Ch6

Fixed p2 and y.

Own-Price Changes

x2

x1

p1

x1*

Fixed p2 and y.

p1’

p2 = p1’’

p1’’’

xyp11

*

0 1

2 x

yp

*

yp2

p1 price offer curve

Ordinarydemand curvefor commodity 1

Page 49: Ch6

Own-Price Changes

Usually we ask “Given the price for commodity 1 what is the quantity demanded of commodity 1?”

But we could also ask the inverse question “At what price for commodity 1 would a given quantity of commodity 1 be demanded?”

Page 50: Ch6

Own-Price Changesp1

x1*

p1’

Given p1’, what quantity isdemanded of commodity 1?

Page 51: Ch6

Own-Price Changesp1

x1*

p1’

Given p1’, what quantity isdemanded of commodity 1?Answer: x1’ units.

x1’

Page 52: Ch6

Own-Price Changesp1

x1*x1’

Given p1’, what quantity isdemanded of commodity 1?Answer: x1’ units.

The inverse question is:Given x1’ units are demanded, what is the price of commodity 1?

Page 53: Ch6

Own-Price Changesp1

x1*

p1’

x1’

Given p1’, what quantity isdemanded of commodity 1?Answer: x1’ units.

The inverse question is:Given x1’ units are demanded, what is the price of commodity 1? Answer: p1’

Page 54: Ch6

Own-Price Changes

Taking quantity demanded as given and then asking what must be price describes the inverse demand function of a commodity.

Page 55: Ch6

Own-Price Changes

A Cobb-Douglas example:

xay

a b p11

*

( )

is the ordinary demand function and

pay

a b x1

1

( ) *

is the inverse demand function.

Page 56: Ch6

Own-Price Changes

A perfect-complements example:

xy

p p11 2

*

is the ordinary demand function and

py

xp1

12

*

is the inverse demand function.

Page 57: Ch6

Income Changes

How does the value of x1*(p1,p2,y) change as y changes, holding both p1 and p2 constant?

Page 58: Ch6

x2

x1

Income ChangesFixed p1 and p2.

y’ < y’’ < y’’’

Page 59: Ch6

x2

x1

Income ChangesFixed p1 and p2.

y’ < y’’ < y’’’

Page 60: Ch6

x2

x1

Income ChangesFixed p1 and p2.

y’ < y’’ < y’’’

x1’’’x1’’

x1’

x2’’’x2’’x2’

Page 61: Ch6

x2

x1

Income ChangesFixed p1 and p2.

y’ < y’’ < y’’’

x1’’’x1’’

x1’

x2’’’x2’’x2’

Incomeoffer curve

Page 62: Ch6

Income Changes

A plot of quantity demanded against income is called an Engel curve.

Page 63: Ch6

x2

x1

Income ChangesFixed p1 and p2.

y’ < y’’ < y’’’

x1’’’x1’’

x1’

x2’’’x2’’x2’

Incomeoffer curve

Page 64: Ch6

x2

x1

Income ChangesFixed p1 and p2.

y’ < y’’ < y’’’

x1’’’x1’’

x1’

x2’’’x2’’x2’

Incomeoffer curve

x1*

y

x1’’’x1’’

x1’

y’y’’y’’’

Page 65: Ch6

x2

x1

Income ChangesFixed p1 and p2.

y’ < y’’ < y’’’

x1’’’x1’’

x1’

x2’’’x2’’x2’

Incomeoffer curve

x1*

y

x1’’’x1’’

x1’

y’y’’y’’’ Engel

curve;good 1

Page 66: Ch6

x2

x1

Income ChangesFixed p1 and p2.

y’ < y’’ < y’’’

x1’’’x1’’

x1’

x2’’’x2’’x2’

Incomeoffer curve x2*

y

x2’’’x2’’

x2’

y’y’’y’’’

Page 67: Ch6

x2

x1

Income ChangesFixed p1 and p2.

y’ < y’’ < y’’’

x1’’’x1’’

x1’

x2’’’x2’’x2’

Incomeoffer curve x2*

y

x2’’’x2’’

x2’

y’y’’y’’’

Engelcurve;good 2

Page 68: Ch6

x2

x1

Income ChangesFixed p1 and p2.

y’ < y’’ < y’’’

x1’’’x1’’

x1’

x2’’’x2’’x2’

Incomeoffer curve

x1*

x2*

y

y

x1’’’x1’’

x1’

x2’’’x2’’

x2’

y’y’’y’’’

y’y’’y’’’

Engelcurve;good 2

Engelcurve;good 1

Page 69: Ch6

Income Changes and Cobb-Douglas Preferences

An example of computing the equations of Engel curves; the Cobb-Douglas case.

The ordinary demand equations are

U x x x xa b( , ) .1 2 1 2

xay

a b px

bya b p1

12

2

* *

( );

( ).

Page 70: Ch6

Income Changes and Cobb-Douglas Preferences

xay

a b px

bya b p1

12

2

* *

( );

( ).

Rearranged to isolate y, these are:

ya b p

ax

ya b p

bx

( )

( )

*

*

11

22

Engel curve for good 1

Engel curve for good 2

Page 71: Ch6

Income Changes and Cobb-Douglas Preferences

y

yx1*

x2*

ya b p

ax ( ) *11

Engel curvefor good 1

ya b p

bx ( ) *22

Engel curvefor good 2

Page 72: Ch6

Income Changes and Perfectly-Complementary Preferences

Another example of computing the equations of Engel curves; the perfectly-complementary case.

The ordinary demand equations are

x xy

p p1 21 2

* * .

U x x x x( , ) min , .1 2 1 2

Page 73: Ch6

Income Changes and Perfectly-Complementary Preferences

Rearranged to isolate y, these are:

y p p x

y p p x

( )

( )

*

*1 2 1

1 2 2

Engel curve for good 1

x xy

p p1 21 2

* * .

Engel curve for good 2

Page 74: Ch6

Fixed p1 and p2.

Income Changes

x1

x2

Page 75: Ch6

Income Changes

x1

x2

y’ < y’’ < y’’’

Fixed p1 and p2.

Page 76: Ch6

Income Changes

x1

x2

y’ < y’’ < y’’’

Fixed p1 and p2.

Page 77: Ch6

Income Changes

x1

x2

y’ < y’’ < y’’’

x1’’x1’

x2’’’x2’’x2’

x1’’’

Fixed p1 and p2.

Page 78: Ch6

Income Changes

x1

x2

y’ < y’’ < y’’’

x1’’x1’

x2’’’x2’’x2’

x1’’’ x1*

y

y’y’’y’’’ Engel

curve;good 1

x1’’’x1’’

x1’

Fixed p1 and p2.

Page 79: Ch6

Income Changes

x1

x2

y’ < y’’ < y’’’

x1’’x1’

x2’’’x2’’x2’

x1’’’

x2*

y

x2’’’x2’’

x2’

y’y’’y’’’

Engelcurve;good 2

Fixed p1 and p2.

Page 80: Ch6

Income Changes

x1

x2

y’ < y’’ < y’’’

x1’’x1’

x2’’’x2’’x2’

x1’’’ x1*

x2*

y

y x2’’’x2’’

x2’

y’y’’y’’’

y’y’’y’’’

Engelcurve;good 2

Engelcurve;good 1

x1’’’x1’’

x1’

Fixed p1 and p2.

Page 81: Ch6

Income Changes

x1*

x2*

y

y x2’’’x2’’

x2’

y’y’’y’’’

y’y’’y’’’

x1’’’x1’’

x1’

y p p x ( ) *1 2 2

y p p x ( ) *1 2 1

Engelcurve;good 2

Engelcurve;good 1

Fixed p1 and p2.

Page 82: Ch6

Income Changes and Perfectly-Substitutable Preferences

Another example of computing the equations of Engel curves; the perfectly-substitution case.

The ordinary demand equations are

U x x x x( , ) .1 2 1 2

Page 83: Ch6

Income Changes and Perfectly-Substitutable Preferences

x p p yif p p

y p if p p1 1 21 2

1 1 2

0*( , , ),

/ ,

x p p yif p p

y p if p p2 1 21 2

2 1 2

0* ( , , ),

/ , .

Page 84: Ch6

Income Changes and Perfectly-Substitutable Preferences

x p p yif p p

y p if p p1 1 21 2

1 1 2

0*( , , ),

/ ,

x p p yif p p

y p if p p2 1 21 2

2 1 2

0* ( , , ),

/ , .

Suppose p1 < p2. Then

Page 85: Ch6

Income Changes and Perfectly-Substitutable Preferences

x p p yif p p

y p if p p1 1 21 2

1 1 2

0*( , , ),

/ ,

x p p yif p p

y p if p p2 1 21 2

2 1 2

0* ( , , ),

/ , .

Suppose p1 < p2. Then xyp11

* x2 0* and

Page 86: Ch6

Income Changes and Perfectly-Substitutable Preferences

x p p yif p p

y p if p p1 1 21 2

1 1 2

0*( , , ),

/ ,

x p p yif p p

y p if p p2 1 21 2

2 1 2

0* ( , , ),

/ , .

Suppose p1 < p2. Then xyp11

* x2 0* and

x2 0* .y p x 1 1*

and

Page 87: Ch6

Income Changes and Perfectly-Substitutable Preferences

x2 0* .y p x 1 1*

y y

x1* x2*0Engel curvefor good 1

Engel curvefor good 2

Page 88: Ch6

Income Changes

In every example so far the Engel curves have all been straight lines?Q: Is this true in general?

A: No. Engel curves are straight lines if the consumer’s preferences are homothetic.

Page 89: Ch6

Homotheticity

A consumer’s preferences are homothetic if and only if

for every k > 0. That is, the consumer’s MRS is the

same anywhere on a straight line drawn from the origin.

(x1,x2) (y1,y2) (kx1,kx2) (ky1,ky2)

Page 90: Ch6

Income Effects -- A Nonhomothetic Example

Quasilinear preferences are not homothetic.

For example,

U x x f x x( , ) ( ) .1 2 1 2

U x x x x( , ) .1 2 1 2

Page 91: Ch6

Quasi-linear Indifference Curvesx2

x1

Each curve is a vertically shifted copy of the others.

Each curve intersectsboth axes.

Page 92: Ch6

Income Changes; Quasilinear Utility

x2

x1

x1~

Page 93: Ch6

Income Changes; Quasilinear Utility

x2

x1

x1~

x1*

y

x1~

Engelcurveforgood 1

Page 94: Ch6

Income Changes; Quasilinear Utility

x2

x1

x1~

x2*

y Engelcurveforgood 2

Page 95: Ch6

Income Changes; Quasilinear Utility

x2

x1

x1~

x1*

x2*y

y

x1~

Engelcurveforgood 2

Engelcurveforgood 1

Page 96: Ch6

Income Effects

A good for which quantity demanded rises with income is called normal.

Therefore a normal good’s Engel curve is positively sloped.

Page 97: Ch6

Income Effects

A good for which quantity demanded falls as income increases is called income inferior.

Therefore an income inferior good’s Engel curve is negatively sloped.

Page 98: Ch6

x2

x1

Income Changes; Goods1 & 2 Normal

x1’’’x1’’

x1’

x2’’’x2’’x2’

Incomeoffer curve

x1*

x2*

y

y

x1’’’x1’’

x1’

x2’’’x2’’

x2’

y’y’’y’’’

y’y’’y’’’

Engelcurve;good 2

Engelcurve;good 1

Page 99: Ch6

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferiorx2

x1

Page 100: Ch6

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferiorx2

x1

Page 101: Ch6

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferiorx2

x1

Page 102: Ch6

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferiorx2

x1

Page 103: Ch6

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferiorx2

x1

Page 104: Ch6

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferiorx2

x1

Incomeoffer curve

Page 105: Ch6

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferiorx2

x1x1*

yEngel curvefor good 1

Page 106: Ch6

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferiorx2

x1x1*

x2*

y

y

Engel curvefor good 2

Engel curvefor good 1

Page 107: Ch6

Ordinary Goods

A good is called ordinary if the quantity demanded of it always increases as its own price decreases.

Page 108: Ch6

Ordinary GoodsFixed p2 and y.

x1

x2

Page 109: Ch6

Ordinary GoodsFixed p2 and y.

x1

x2

p1 price offer curve

Page 110: Ch6

Ordinary GoodsFixed p2 and y.

x1

x2

p1 price offer curve

x1*

Downward-sloping demand curve

Good 1 isordinary

p1

Page 111: Ch6

Giffen Goods

If, for some values of its own price, the quantity demanded of a good rises as its own-price increases then the good is called Giffen.

Page 112: Ch6

Ordinary GoodsFixed p2 and y.

x1

x2

Page 113: Ch6

Ordinary GoodsFixed p2 and y.

x1

x2 p1 price offer curve

Page 114: Ch6

Ordinary GoodsFixed p2 and y.

x1

x2 p1 price offer curve

x1*

Demand curve has a positively sloped part

Good 1 isGiffen

p1

Page 115: Ch6

Cross-Price Effects

If an increase in p2

– increases demand for commodity 1 then commodity 1 is a gross substitute for commodity 2.

– reduces demand for commodity 1 then commodity 1 is a gross complement for commodity 2.

Page 116: Ch6

Cross-Price Effects

A perfect-complements example:

xy

p p11 2

*

xp

y

p p1

2 1 22

0*

.

so

Therefore commodity 2 is a grosscomplement for commodity 1.

Page 117: Ch6

Cross-Price Effectsp1

x1*

p1’

p1’’

p1’’’

yp2’

Increase the price ofgood 2 from p2’ to p2’’and

Page 118: Ch6

Cross-Price Effectsp1

x1*

p1’

p1’’

p1’’’

yp2’’

Increase the price ofgood 2 from p2’ to p2’’and the demand curvefor good 1 shifts inwards-- good 2 is acomplement for good 1.

Page 119: Ch6

Cross-Price Effects

A Cobb- Douglas example:

xby

a b p22

*

( )

so

Page 120: Ch6

Cross-Price Effects

A Cobb- Douglas example:

xby

a b p22

*

( )

xp2

10

*.

so

Therefore commodity 1 is neither a grosscomplement nor a gross substitute forcommodity 2.