8
“Vectors. Adding and multiplying vectors. Systems of particles and Newton's 2nd Law. Linear momentum. Center of mass. Conservation of angular momentum. Systems with varying mass. Collisions in 1D and 2D. Rotation of rigid body. Rolling, torque, and angular momentum. Fluid mechanics. Simple harmonic oscillations. Wave propagation. Sound waves. Heat. Entropy. The 1st and 2nd laws of thermodynamics. Kinetic theory of gasses. Course Description --- quoted from physics curriculum (2009) PHY 103 Physics for Engineering Students (3-0-6) ดร.วรวรงค์ รักเรืองเดช ดร.อัฐพล กลั่นบุศย์ ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มจธ. วิชาฟิสิกส์พื้นฐานสำหรับนักศึกษาวิศวกรรมศาสตร์ (เครื่องกล) Teaching and Research Team + ‘Total of 200 Students’ ‘Small groups of 5’ 2 Instructors: Worawarong R. Uttapol K. 4 Facilitators: Kachanon N. (LI) Banyat L. (LI) Marut P. (LI) Tossaporn L. (Ph.D. student) Teaching and Research Team 1 Grader Nantarat SCL 2109 Studio Lab: CB24XX learning space (ME?) outside the classroom space e-learning Physics Book ld Energy deas High-Schoo Motion Essentials

[PHY103] Introduction to General Physics for Engineering Students 1/2013

Embed Size (px)

DESCRIPTION

This talked was given on the first day of PHY103 class at KMUTT on August 8, 2013. It was the overview of the topics over in this physics.

Citation preview

Page 1: [PHY103] Introduction to General Physics for Engineering Students 1/2013

“Vectors. Adding and multiplying vectors. Systems of particles and Newton's 2nd Law. Linear momentum. Center of mass. Conservation of angular momentum. Systems with varying mass. Collisions in 1D and 2D. Rotation of rigid body. Rolling, torque, and angular momentum. Fluid mechanics. Simple harmonic oscillations. Wave propagation. Sound waves. Heat. Entropy. The 1st and 2nd laws of thermodynamics. Kinetic theory of gasses.”

Course Description

--- quoted from physics curriculum (2009)

PHY 103 Physics for Engineering Students (3-0-6)

ดร.วรวรงค์ รักเรืองเดชดร.อัฐพล กลั่นบุศย ์ภาควิชาฟิสิกส์ คณะวิทยาศาสตร ์มจธ.วิชาฟิสิกส์พื้นฐานสำหรับนักศึกษาวิศวกรรมศาสตร์ (เครื่องกล)

Teaching and Research Team

+

‘Total of 200 Students’

‘Small groups of 5’

2 Instructors:• Worawarong R.• Uttapol K.

4 Facilitators:• Kachanon N. (LI)• Banyat L. (LI)• Marut P. (LI)• Tossaporn L. (Ph.D. student)

Teaching and Research Team 1 Grader

• Nantarat

SCL 2109

Studio Lab: CB24XX

learning space (ME?)outside the classroom

space

e-learning

Physics Book

High-School Physics

Motion

Types

translation

2D

projectile

circular

Simple HarmonicOscillator (SHO)

1Dlinear

3D

Rotation

Oscillations

RelevantQuantities

position &displacement (~x)

speed &velocity (~v)

acceleration (~a)time (t)

tools

graphing

calculus

"rate of change"

Laws

Newton's Laws

1st law

v = const,if F = 0

2nd law

F = ma

Force (F)

Total Forceequillibrium

collisions

Friction

mass (m)acceleration (a)

T = I*a

Torque & Moment

การบิด

การดัด

Moment of Inertia (I)

angular acceleration

3rd law action = reaction

choosing relevant force

GravitationalLaw of Newton

F = Gm1m2/r^2

Body

Rigid Bodies

Fluids

(Force) Field

Energy

Heat

Electric and Magnetic

Radiation and Nuclear Energy

Types

Fusion Fission

E = mc^2

nuclearreaction

applications

power plants

radioactivesubstances

types

properties

sources

environmentalimpacts

Waves

mechanicalv = lambda * f

Sound

soundpollution

Phenomena

beats

standing waves

doppler

shock wavesresonances

Hearing

sound quality

pitch

intensity /sound level

sources

properties

parameters

Electromagnetic Light

geometrical

reflection

mirrors

planar

spherical

refraction

Snell's law

index ofrefraction

total internalreflection (TIR)

apperant depth

lens

concave

convex

physical interference

diffraction

gratingscattering

spectrum

color

seeing

matter waves

Heuygen principles

Typespotential

kinetic work

rate of doing work

= power

Essentials

Quantities

SI

UnitsMathematics Calculus

derivatives

integrals

Table and Graphing

Vector

Adding

Multiplying

Problem Analysis

Free-Body Diagram

Main ConceptPhysics = Quantitative Science

Measurement

accuracyuncertainty

significantfigures

ComparisonIdeas

Mass balance

*** Electricityand magnetism

Electrical & MagneticComponents

CapacitorInductors

ResistanceBattery

Transformer

Devices /Appliances

Principles

Maxwell's Equations

ChargesStatic

Moving

CurrentElectromagnetic

Waves

Free space In materials

Fields

ElectricMagnetic

***Quantum Mechanics

Failure of classical physics

Planck Hypothesis

Duality of LightPhotoelectric effect

Quantum Computer

AtomsLorentz Model"Spring-like"

Bohr AtomQuantized energyspectrum

Quantum Model

Schrodinger Equation

Wavefunctions

UncertaintyPrinciple

Probabilistics

High-School Physics

Motion

Types

translation

2D

projectile

circular

Simple HarmonicOscillator (SHO)

1Dlinear

3D

Rotation

Oscillations

RelevantQuantities

position &displacement (~x)

speed &velocity (~v)

acceleration (~a)time (t)

tools

graphing

calculus

"rate of change"

Laws

Newton's Laws

1st law

v = const,if F = 0

2nd law

F = ma

Force (F)

Total Forceequillibrium

collisions

Friction

mass (m)acceleration (a)

T = I*a

Torque & Moment

การบิด

การดัด

Moment of Inertia (I)

angular acceleration

3rd law action = reaction

choosing relevant force

GravitationalLaw of Newton

F = Gm1m2/r^2

Body

Rigid Bodies

Fluids

(Force) Field

Energy

Heat

Electric and Magnetic

Radiation and Nuclear Energy

Types

Fusion Fission

E = mc^2

nuclearreaction

applications

power plants

radioactivesubstances

types

properties

sources

environmentalimpacts

Waves

mechanicalv = lambda * f

Sound

soundpollution

Phenomena

beats

standing waves

doppler

shock wavesresonances

Hearing

sound quality

pitch

intensity /sound level

sources

properties

parameters

Electromagnetic Light

geometrical

reflection

mirrors

planar

spherical

refraction

Snell's law

index ofrefraction

total internalreflection (TIR)

apperant depth

lens

concave

convex

physical interference

diffraction

gratingscattering

spectrum

color

seeing

matter waves

Heuygen principles

Typespotential

kinetic work

rate of doing work

= power

Essentials

Quantities

SI

UnitsMathematics Calculus

derivatives

integrals

Table and Graphing

Vector

Adding

Multiplying

Problem Analysis

Free-Body Diagram

Main ConceptPhysics = Quantitative Science

Measurement

accuracyuncertainty

significantfigures

ComparisonIdeas

Mass balance

*** Electricityand magnetism

Electrical & MagneticComponents

CapacitorInductors

ResistanceBattery

Transformer

Devices /Appliances

Principles

Maxwell's Equations

ChargesStatic

Moving

CurrentElectromagnetic

Waves

Free space In materials

Fields

ElectricMagnetic

***Quantum Mechanics

Failure of classical physics

Planck Hypothesis

Duality of LightPhotoelectric effect

Quantum Computer

AtomsLorentz Model"Spring-like"

Bohr AtomQuantized energyspectrum

Quantum Model

Schrodinger Equation

Wavefunctions

UncertaintyPrinciple

Probabilistics

Page 2: [PHY103] Introduction to General Physics for Engineering Students 1/2013

PHY: 103 Topics

Mechanics

Newton's laws

Motion Types of motions

Linear motion

Periodic motionSimple Harmonic

Circular

Elliptical

Oscillations

Mapping mechanics with waves

Mechanical Waves

longtitudinal

sound

transverse

string

Angular motion

Description

space & time

position, velocity, acceleration

As a method of naturelaws for making prediction

Force

linear

angular

Body

Rigid

System ofparticles

FluidFlow

Lamina

Turbulance

Conservation Laws

Momentum

Angular

LinearEnergy

Essential toolsSystem of units

Free body diagram

Physics and quantitative science

Measurement

Comparison

Scaling Laws

Vectorsadding

multiplying

Mathematics

Table and graphs

Calculus

Heat & Thermodynamics

Laws of thermodynamics

0th law

thermal equillibrium

1st law

Conservation of Energy

2nd law

Set Nature's Direction

Basic Quantities

Energy

Heat

TransferConduction

Convection Radiation

Internal Energy

System Work

Temperature

Scales

Specific HeatAtomicLevels

Kinetic theory of gases

Gas laws

Statistics

Bulk Properties

*** Electricityand magnetism

***Quantum Mechanics

Waves Types

Mechanical Waves

Electromagnetic Waves

Light

Matter Waves

Parameters

Frequency / Amplitude / Phase /Polarization / Propagation direction

สอบกลางภาค

สอบปลายภาค

สอบปลายภาค

wk 1

wk 2

wk 3

wk 4

wk 5

wk 6

wk 7

wk 8

wk 9

wk 9

wk 10

wk 11

wk 12

wk 13

wk 13

wk 14

wk 15

wk 16

wk 17

wk 18

Course Introduction &Tracker Program

Gaussian cannon (conservation laws)

Paper bridge (analysis of structure)

Loaded Hoop(Newton’s Laws)

Ball Levitation(Fluid dynamics)

Spinning top(Rotational Inertia)

A simple pendulum? (Resonance condition)

Review

physics of musics(vibrations & sound)

project consultation

project performance

Thermal comfort (thermodynamics I)

water rise expt.(kinetic theory of gas)

gasoline vs. diesel engines (thermo. II)

Review

รศ.ดร.พงษ์พันธุ์ ผศ.ดร.ชวิน

ผศ.ดร.ยศพงษ์

อ.สุทธิพงษ์ / คชานนท์

คณาจารย์วิศวะเครื่องกล

คณาจารย์วิศวะเครื่องกล

(Tentative) Schedule of PHY103 in 1/56

Page 3: [PHY103] Introduction to General Physics for Engineering Students 1/2013

High-School Physics

Motion

Types

translation

2D

projectile

circular

Simple HarmonicOscillator (SHO)

1Dlinear

3D

Rotation

Oscillations

RelevantQuantities

position &displacement (~x)

speed &velocity (~v)

acceleration (~a)time (t)

tools

graphing

calculus

"rate of change"

Laws

Newton's Laws

1st law

v = const,if F = 0

2nd law

F = ma

Force (F)

Total Forceequillibrium

collisions

Friction

mass (m)acceleration (a)

T = I*a

Torque & Moment

การบิด

การดัด

Moment of Inertia (I)

angular acceleration

3rd law action = reaction

choosing relevant force

GravitationalLaw of Newton

F = Gm1m2/r^2

Body

Rigid Bodies

Fluids

(Force) Field

Energy

Heat

Electric and Magnetic

Radiation and Nuclear Energy

Types

Fusion Fission

E = mc^2

nuclearreaction

applications

power plants

radioactivesubstances

types

properties

sources

environmentalimpacts

Waves

mechanicalv = lambda * f

Sound

soundpollution

Phenomena

beats

standing waves

doppler

shock wavesresonances

Hearing

sound quality

pitch

intensity /sound level

sources

properties

parameters

Electromagnetic Light

geometrical

reflection

mirrors

planar

spherical

refraction

Snell's law

index ofrefraction

total internalreflection (TIR)

apperant depth

lens

concave

convex

physical interference

diffraction

gratingscattering

spectrum

color

seeing

matter waves

Heuygen principles

Typespotential

kinetic work

rate of doing work

= power

Essentials

Quantities

SI

UnitsMathematics Calculus

derivatives

integrals

Table and Graphing

Vector

Adding

Multiplying

Problem Analysis

Free-Body Diagram

Main ConceptPhysics = Quantitative Science

Measurement

accuracyuncertainty

significantfigures

ComparisonIdeas

Mass balance

*** Electricityand magnetism

Electrical & MagneticComponents

CapacitorInductors

ResistanceBattery

Transformer

Devices /Appliances

Principles

Maxwell's Equations

ChargesStatic

Moving

CurrentElectromagnetic

Waves

Free space In materials

Fields

ElectricMagnetic

***Quantum Mechanics

Failure of classical physics

Planck Hypothesis

Duality of LightPhotoelectric effect

Quantum Computer

AtomsLorentz Model"Spring-like"

Bohr AtomQuantized energyspectrum

Quantum Model

Schrodinger Equation

Wavefunctions

UncertaintyPrinciple

Probabilistics

Wk 1 (3hr): The core of “physics” ... the quantitative science: measurement and comparison / dimension analysis

Physics is a quantitative science. Measurement and comparison are the keys. Quantity and units are essential for measurement and making comparison

Key Concepts

Dimension analysis and modeling

ทบทวนความรูเดิม (เนื้อหา ม.ปลาย)

2 hrGoing over course syllabus

Good practice to solve a physics problem

Key Success

• ชี้แจงรายละเอียดของรายวิชา• สรางความตระหนักเกี่ยวกับศาสตรการวัดและการเปรียบเทียบ (measurement and comparison) • ทบทวนกรอบความรูเดิม

(ม.ปลาย)• เลาเรื่อง dimension analysis

F = ma represents an equation of motion, which is the cause of change of motion.

Wk 2 (3hr): The “Cannon” ... vectors and motions via the Newton’s laws

Key Concepts

Free-body diagram is a drawing representing external forces acting on the object of interest. (dealing with F)

“Monkey gun”

acceleration of a ball free fall

F = ma from kx‘projectile’ motion

Key Success

Displacement, velocity, and acceleration represent ing “motion” are connected based on calculus (dealing with a)

Vectors are useful for keeping tracks of magnitude and direction of a physical quantity

ใชเครื่องยิงลูกเหล็กแบบโปรเจคไตลเปนตัวเชื่อมโยง

• กฎของนิวตัน (ขอสอง)• เวกเตอรผานการรวมแรง และการเคลื่อนที่ (x/v/a)• การสรางโมเดลผานการวาด free-body diagram

และทำการทดสอบพื้นความรูของนักศึกษา (1 hr pre-test)

period of 1 hr:(16/8/56)

pre-test เนื้อหา ม.ปลาย

Page 4: [PHY103] Introduction to General Physics for Engineering Students 1/2013

Wk 3 (3hr): Analysis of Structure ... the equilibrium of forces and moments

Key Concepts

Equilibrium of rigid body

Condition for zero force and zero moment of forces.

activity: invent yourself?

Examples/techniques used are analysis of trusses & method of joints

1st and 3rd laws of Newton

Key Success

Conservation laws deal with constant of motion (energy / momentum / angular momentum)

Wk 4 (3hr): The Gaussian Cannon ....the Conservation Laws: Energy and Linear Momentum.

Key Concepts

Conservation of momentum is valid when F = 0. It’s useful for describing collisions

Types of collisions: elastic vs inelastic collisions. In both cases momentum and energy are always conserved

Conservation of energy is always true. Energy cannot be destroyed or created. It only change forms. “Gaussian Cannon”

F = ma can be describe as a rate of change of momentum (i.e. impulse)

• ทบทวน condition of equilibrium and Newton’s laws of motion• ทำความเขาใจเกี่ยวกับการเคลื่อนที่ของลูกเหล็กที่สัมพันธการเปลี่ยนรูปพลังงานของปนพลังแม

เหล็ก... the Gaussian cannon• conservation laws: energy and linear

momentum

Page 5: [PHY103] Introduction to General Physics for Engineering Students 1/2013

understand the basic principle of a gyroscope

Wk 5 (3hr): Spinning “Top:” .... rotational motion via a gyroscope

Conservation of angular momentum allows us to keep tracks of orientation (e.g. gyroscope)

Key Concepts

Parallel axis theorem is useful for finding moment of inertial at the pivot displaced from C.O.M.

Moment of inertia is analogy to mass. It tells the property of the object and can be calculated by I = Integrate(r^2dm) Activities

“Gyroscope”

Goal: get a longest precision time on a spinning top: Design

www.bgfl.org

similarities and differences between linear and angular motions.

Torque = (Moment of Inertia)*(angular acceleration)

Parameters to adjust/explore:•moment of inertia of the disk (mass or length)•acceleration (torque and angle and time)•symmetry for stable rotation

Work and Rotational Kinetic Energy

• เชื่อมโยงความคลายคลึงระหวาง linear motion และ rotational motion• เขาใจเรื่อง torque, moment of inertia and

angular acceleration• เขาใจการออกแบบการสราง spinning top ใหหมุนไดเวลานานที่สุด

The$Kine(c$Energy$of$Rolling$must$take$into$account$both$rota(on$and$transla(on$

12Icom�2 1

2Mv2

com+ = (K.E.)rolling

rota%onal(kine(c$energy$due$to$rota(ons$about$its$center$of$mass$

transla%onal(kine(c$energy$due$to$transla(on$of$its$

center$of$mass$Kine(c$Energy$(K.E.)$of$a$rolling$object$

Wk 6 (3hr): Hydraulic Lever and Ball’s Levitation. ... fluid mechanics

Design of hydraulic lever

Pressure is vary with height and depth

Pascal principle

Key Concepts

Buoyancy

density

How lift and drag created in imaginary stream(pipe)line

basic parameters: density, pressure, air velocity / profile.

Key Success

Bernoulli’s equation + equation of continuity.

Laminar vs. Turbulence and significance of Reynold number.

Pascal’s'Principle'and'the'Hydraulic'Lever'

Considering'the'work'done'by'the'output'piston,'

W = Fodo =

�Fi

Ao

Ai

⇥�di

Ai

Ao

⇥= Fidi

Work'done'by'the'output'piston'in'li=ing'the'load'placed'on'it'

Work'done'on'the'input'piston'by'the'applied'force'

Hydraulic*Lever*

Pascal’s*Principle:'A'change'in'the'pressure'applied'to'an'enclosed'incompressible'fluid' is'transmiCed'undiminished'to'every'porDon'of'the'fluid'and'to'the'walls'of'its'container.”'

PhET Simulator

|�Fb| = mfg

Buoyancy / lift / drag

Av1 = Av2

This%rela*onship%also%apply%to%any%so0called%tube%of%flow.%%

Any%imaginary%flow%whose%boundary%consists%of%streamlines.%

Volume%flow%rate% Mass%flow%rate%

RV = Av = const. Rm = �RV = const.

Equa*on%of%Con*nuity%

Bernoulli’s+Equa/on+A+principle+of+fluid+flow+based+on+conserva/on+of+energy+

p +12�v2 + �gy = constant

� �

• (คาบ 2 ชม.) โจทยใหเลน หามุมเอียงที่มากที่สุดที่ทำใหลูกปงปองลอยไดดวยเครื่องเปาผม

• (คาบ 1 ชม.) ใชไฮดรอลิกสที่สามารถเห็นไดในอุตสาหกรรม (air / oil) อนุเคราะหจากเครื่องกล?

Density

(

(uniform)density))

� =M

V

� = lim�V�0

�m

�V=

dm

dV

� =�m

�V

For) a) small) volume)∆V),)measuring)a)mass)∆m,)the)density)is$

For)a) infinitesimal) volume)dV)with)a)mass)of)dm,)we)define)a)density)

In)a)case)that)a)material)is) much) larger) than)atomic)dimensions,))

Page 6: [PHY103] Introduction to General Physics for Engineering Students 1/2013

Wk 7: Review of mechanics

Physics is a quantitative science. Measurement and comparison are the keys. Quantity and units are essential for measurement and making comparison

Dimension analysis and modeling

Good practice to solve a physics problem

Key Success

F = ma represents an equation of motion, which is the cause of change of motion.

Free-body diagram is a drawing representing external forces acting on the object of interest. (dealing with F)

Displacement, velocity, and acceleration represent ing “motion” are connected based on calculus (dealing with a)

Vectors are useful for keeping tracks of magnitude and direction of a physical quantity

Wk 8: Midterm examination

Equilibrium of rigid body

Condition for zero force and zero moment of forces.

Examples/techniques used are analysis of trusses & method of joints

1st and 3rd laws of Newton

Conservation laws deal with constant of motion (energy / momentum / angular momentum)

Conservation of momentum is valid when F = 0. It’s useful for describing collisions

Types of collisions: elastic vs inelastic collisions. In both cases momentum and energy are always conserved

Conservation of energy is always true. Energy cannot be destroyed or created. It only change forms.

F = ma can be describe as a rate of change of momentum (i.e. impulse)

Design of hydraulic lever

Pressure is vary with height and depth

Pascal principle

How lift and drag created in imaginary stream(pipe)line

basic parameters: density, pressure, air velocity / profile.

Bernoulli’s equation + equation of continuity.

Laminar vs. Turbulence and significance of Reynold number.

Buoyancy / lift / drag

wk 1 wk 2 wk 3 wk 4 wk 5

ทบทวนความเชื่อมโยงตั้งแตสัปดาหที ่1 ถึง 5 และเตรียมความพรอมสำหรับการสอบกลางภาค

คำนวณ 50% + ความเขาใจ 50%

understand the basic principle of a gyroscope

Conservation of angular momentum allows us to keep tracks of orientation (e.g. gyroscope)

Parallel axis theorem is useful for finding moment of inertial at the pivot displaced from C.O.M.

Moment of inertia is analogy to mass. It tells the property of the object and can be calculated by I = Integrate(r^2dm)

similarities and differences between linear and angular motions.

Torque = (Moment of Inertia)*(angular acceleration)

wk 6

Applets

Wk 9 (3hr): What is “Resonance”? ...Different types of Harmonic Motion (linear and angular dynamics)

Key Concepts

The key of “RESONANCE” phenomena: the matching of natural frequency and driving frequency.

Resonance

Pendulum

understanding the way to write “differential equations” for simple harmonic motion, damped harmonic motion, and forced harmonic motion.

the understanding of “natural frequency” with an example of (simple?) pendulum

Understanding the limit of a simple pendulum, i.e. if (1) angle is small and (2) string is massless.

Physical pendulum is useful for predicting the motion of a real pendulum

Activities

parameters: (1) mass of string (2) angle of pendulum (3) mass of the (4) ความยืดหยุ่นของ pendulum(5) ....

“Explore the limit of the Simple Pendulum”

Masses & Springs

Forced Harmonic MotionDamped Harmonic Motion

Important Oscillatory Motion

Amplitude

81ωmb =

12 2bb =

13 4bb =

0 0.5 1.0 1.5 2.0 ωω ""

( )δtωsinGF

)t(x m −""=

(small&damping)&

x = FmGsin !!! t "!( )

!

G = m2 " " # 2 $# 2( )2

+ b2 " " # 2

!"

#$%

& ''= −

Gbω

δ 1cos

Simple Harmonic Motion

d

2x

dt

2+

k

m

x = 0 d

2x

dt

2+

b

m

dx

dt

+k

m

x = 0d2x

dt2+

b

m

dx

dt+

k

mx =

Fm

mcos �00t

x(t) = xme�bt/2m cos(⇥⇥t + �)

�� =

�k

m� b2

4m2

Etotal =12kA2 � 1

2kx2

me�bt/m

Key Success

RESONANCE• เขาใจวิธีการเขียน diff. eq. ของ

Harmonic motion รูปแบบตางๆ เริ่มดวย ระบบสปริง-มวล• เปรียบเทียบระบบ simple

pendulum และ physical pendulum• เขาใจ simple harmonic

motion, damped harmonic motion, and forced harmonic motion. • ทดลอง “simple pendulum” และเขาใจ the approximation behind และขอบเขตของระบบ “simple pendulum” เพื่อเขาใจ natural frequency.

m

มุม

P!h!!!"! c!î!

P h ! " î c #$!!"#$$%

P h ! " î c #$!!"#$$%

Page 7: [PHY103] Introduction to General Physics for Engineering Students 1/2013

commons.wikimedia.org

Frequency)of)sound)produced)by)membrane)instruments)

+ - ++

+-

-

+ +- -+++

++ -

--

-

-

f1 f2 = 1.59f1 f3 = 2.13f1

f4 = 2.30f1 f5 = 2.65f1 f6 = 2.92f1

Modes)of)drum)(standing)waves))Node)line)

+)and)=)stand)for)membrane)displacement)(concave)up)or)down))

Wk 10 (3hr): The Sound of Musics ..... mechanical waves (string and musics)

Wave on a string

Sound

Wave Interference

Fourier Making Waves (optional)

Important parameters of musical instruments are sound quality, which depends on human perception and frequency mixing of the sound

Key ConceptsP

hE

T s

imul

ator

: App

lets

types of waves: mechanical vs. electromagnetic, longitudinal vs transverse.

Waves property: Superposition principles leading to simple calculation of interference and standing waves.

Standing waves are description of fixed positions.

Wk 11 (3hr): Musical Instrument project: Do-it-yourself (DIY)

Wk 12 (3hr): Musics performance. The presentation of students’ instrument project.

ปรึกษาหารือ ซักซอม การแสดงกับดนตรีดวยเครื่องดนตรีที่แตละกลุมสรางขึ้นมา

การแสดงดนตรีของนักศึกษา

Guest speakers.. นักดนตรี / อ.สุทธิพงษ (GEN241 ความงดงามแหงชีวิต)?

Revisit the “resonance”

• แยกความแตกตางระหวาง sound intensity, sound level, sound quality, ear response.• แยกแยะความแตกตางระหวางเครื่องดนตรีประเภทตางๆ เชน oscillating strings, membranes, wooden block, air column (close vs open ends)

Page 8: [PHY103] Introduction to General Physics for Engineering Students 1/2013

Wk 13-14 (6 hr): Thermal Comfort (heat + energy + kinetic theory of gas + laws of thermodynamics)

Heat transfer mechanism

Key Concepts

Gas Properties

PV-Diagram: state / process / work

the heat and energy concepts

Thermal Comfort (Y.A. Cengel, Heat and Mass Transfer: A Practical Approach, 3rd Ed., 2006, pp. 40-45)

Heat and other forms of energy

1st law of thermodynamics

- specific heat of gases, liquids and solids

- PV=nRT- energy transfer

- ∆E = Ein - Eout

- rate forms: d/dt- ∆U = ∆Q + W- Heat balances

Heat transfer mechanism

- conduction: - dQ/dt = -kA*dT/dx- atomic motion in gas

liquid and solid- thermal expansion

- convection- dQ/dt = hAs(Ts-Tœ)

- radiation- dQ/dt = c(Ts4-Tsur4)

Heat loss from a person

Introduction to engine mechanism (reading assignment, going to second laws of thermodynamics)

- “state” vs “process”- Work is area under the curve- Examples of different types of processes (adiabatic, isotherm, isobaric)

(opt

iona

l: if

tim

e’s

allo

wed

)

Thermal expansion

keywords: ASHRAE 55-2010

in-class activities (wk 2)

water rise

the 0th and 1st laws of thermodynamics

state of matters and the phase diagram

the PV digram

introduction to the heat engine

plotting the PV diagram of the ideal gas law.

conduction / convection / radiation

Wk 15 (3hr): KMUTT Ethanol Bus .... the implication of 2nd Law of Thermodynamics

1. Relevant parameters:- Internal Energy- Enthalpy- Entropy

Key Concepts

2. Heat Engine•Concept of a heat engine•Mapping onto a PV Diagram•Calculate engine efficiency•Diesel vs gasoline engines

Activities

Equipment: (1) a clip video of Aj. Yossapong

“How efficient is an ethanol bus”

Goal: compare the efficient of ethanol engine used in a bus.

gasoline diesel

CERL: อ.ยศพงษ?